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Fixed-Point Concepts

• “Fixed-Point Data Types” on page 1-2
• “Scaling” on page 1-3
• “Compute Slope and Bias” on page 1-4
• “Precision and Range” on page 1-6
• “Arithmetic Operations” on page 1-9
• “fi Objects and C Integer Data Types” on page 1-17
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Fixed-Point Data Types
In digital hardware, numbers are stored in binary words. A binary word is a fixed-length sequence of
bits (1's and 0's). How hardware components or software functions interpret this sequence of 1's and
0's is defined by the data type. Binary numbers are represented as either fixed-point or floating-point
data types.

A fixed-point data type is characterized by the word length in bits, the position of the binary point,
and whether it is signed or unsigned. The position of the binary point is the means by which fixed-
point values are scaled and interpreted.

For example, a binary representation of a generalized fixed-point number (either signed or unsigned)
is shown below:

where

• bi is the ith binary digit.
• wl is the word length in bits.
• bwl-1 is the location of the most significant, or highest, bit (MSB).
• b0 is the location of the least significant, or lowest, bit (LSB).
• The binary point is shown four places to the left of the LSB. In this example, the number is said to

have four fractional bits, or a fraction length of four.

Fixed-point data types can be either signed or unsigned. Whether a fixed-point value is signed or
unsigned is usually not encoded explicitly within the binary word; that is, there is no sign bit. Instead,
the sign information is implicitly defined within the computer architecture.

Signed binary fixed-point numbers are typically represented in computer hardware in one of three
ways:

• Sign/magnitude – One bit of a binary word is always the dedicated sign bit, while the remaining
bits of the word encode the magnitude of the number. Negation using sign/magnitude
representation consists of flipping the sign bit from 0 (positive) to 1 (negative), or from 1 to 0.

• One's complement – Negating a binary number in one's complement requires a bitwise
complement. That is, all 0's are flipped to 1's and all 1's are flipped to 0's. In one's complement
notation there are two ways to represent zero. A binary word of all 0's represents "positive" zero,
while a binary word of all 1's represents "negative" zero.

• Two's complement – Negation using signed two's complement representation consists of a bit
inversion (translation into one's complement) followed by the binary addition of a one. For
example, the two's complement of 000101 is 111011.

Two's complement is the most common representation of signed fixed-point numbers and is the only
representation used by Fixed-Point Designer documentation.

1 Fixed-Point Concepts
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Scaling
Fixed-point numbers can be encoded according to the scheme

real‐world value = slope×integer + bias

where the slope can be expressed as

slope = slope adjustment factor  ×  2fixed exponent

The integer is sometimes called the stored integer. This is the raw binary number, in which the binary
point assumed to be at the far right of the word. In Fixed-Point Designer documentation, the negative
of the fixed exponent is often referred to as the fraction length.

The slope and bias together represent the scaling of the fixed-point number. In a number with zero
bias, only the slope affects the scaling. A fixed-point number that is only scaled by binary point
position is equivalent to a number in [Slope Bias] representation that has a bias equal to zero and a
slope adjustment factor equal to one. This is referred to as binary point-only scaling or power-of-two
scaling:

real‐world value = 2fixed exponent × integer

or

real‐world value = 2‐fraction length × integer

Fixed-Point Designer software supports both binary point-only scaling and [Slope Bias] scaling.

Note For examples of binary point-only scaling, see the Fixed-Point Designer “Perform Binary-Point
Scaling” on page 53-39 example.

For an example of how to compute slope and bias in MATLAB®, see “Compute Slope and Bias” on
page 1-4

 Scaling
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Compute Slope and Bias
In this section...
“What Is Slope Bias Scaling?” on page 1-4
“Compute Slope and Bias” on page 1-4

What Is Slope Bias Scaling?
With slope bias scaling, you must specify the slope and bias of a number. The real-world value of a
slope bias scaled number can be represented by:

real‐worldvalue = (slope × integer) + bias

slope = slopead justmentfactor × 2f ixedexponent

Compute Slope and Bias
Start with the endpoints that you want, signedness, and word length.

lower_bound = 999;
upper_bound = 1000;
is_signed = true;
word_length = 16;

To find the range of a fi object with a specified word length and signedness, use the range function.

[Q_min, Q_max] = range(fi([], is_signed, word_length, 0));

To find the slope and bias, solve the system of equations:

lower_bound = slope * Q_min + bias

upper_bound = slope * Q_max + bias

Rewrite these equations in matrix form.

lower_bound
upper_bound

=
Q_min 1
Q_max 1

×
slope
bias

Solve for the slope and bias.

A = double ([Q_min, 1; Q_max, 1]);
b = double ([lower_bound; upper_bound]);
x = A\b;
format long g

To find the slope, or precision, call the first element of the slope-bias vector, x.

slope = x(1)

slope =

      1.52590218966964e-05
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To find the bias, call the second element of vector x.

bias = x(2)

bias =

          999.500007629511

Create a numerictype object with slope bias scaling.

T = numerictype(is_signed, word_length, slope, bias)

T =

          DataTypeMode: Fixed-point: slope and bias scaling
            Signedness: Signed
            WordLength: 16
                 Slope: 1.5259021896696368e-5
                  Bias: 999.500007629511

Create a fi object with numerictype T.

a = fi(999.255, T)

a = 

          999.254993514916

          DataTypeMode: Fixed-point: slope and bias scaling
            Signedness: Signed
            WordLength: 16
                 Slope: 1.5259021896696368e-5
                  Bias: 999.500007629511

Verify that the fi object that you created has the correct specifications by finding the range of a.

range(a)

ans = 

         999        1000

          DataTypeMode: Fixed-point: slope and bias scaling
            Signedness: Signed
            WordLength: 16
                 Slope: 1.5259021896696368e-5
                  Bias: 999.500007629511

 Compute Slope and Bias
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Precision and Range
In this section...
“Range” on page 1-6
“Precision” on page 1-7

Note You must pay attention to the precision and range of the fixed-point data types and scalings you
choose in order to know whether rounding methods will be invoked or if overflows or underflows will
occur.

Range
The range is the span of numbers that a fixed-point data type and scaling can represent. The range of
representable numbers for a two's complement fixed-point number of word length wl, scaling S and
bias B is illustrated below:

For both signed and unsigned fixed-point numbers of any data type, the number of different bit
patterns is 2wl.

For example, in two's complement, negative numbers must be represented as well as zero, so the
maximum value is 2wl -1 – 1. Because there is only one representation for zero, there are an unequal
number of positive and negative numbers. This means there is a representation for −2wl− 1 but not
for 2wl− 1:

Overflow Handling

Because a fixed-point data type represents numbers within a finite range, overflows and underflows
can occur if the result of an operation is larger or smaller than the numbers in that range.

Fixed-Point Designer software allows you to either saturate or wrap overflows. Saturation represents
positive overflows as the largest positive number in the range being used, and negative overflows as
the largest negative number in the range being used. Wrapping uses modulo arithmetic to cast an
overflow back into the representable range of the data type.

When you create a fi object, any overflows are saturated. The OverflowAction property of the
default fimath is saturate. You can log overflows and underflows by setting the LoggingMode
property of the fipref object to on.
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Precision
The precision of a fixed-point number is the difference between successive values representable by its
data type and scaling, which is equal to the value of its least significant bit. The value of the least
significant bit, and therefore the precision of the number, is determined by the number of fractional
bits. A fixed-point value can be represented to within half of the precision of its data type and scaling.

For example, a fixed-point representation with four bits to the right of the binary point has a precision
of 2-4 or 0.0625, which is the value of its least significant bit. Any number within the range of this
data type and scaling can be represented to within (2-4)/2 or 0.03125, which is half the precision. This
is an example of representing a number with finite precision.

Rounding Methods

When you represent numbers with finite precision, not every number in the available range can be
represented exactly. If a number cannot be represented exactly by the specified data type and
scaling, a rounding method is used to cast the value to a representable number. Although precision is
always lost in the rounding operation, the cost of the operation and the amount of bias that is
introduced depends on the rounding method itself. To provide you with greater flexibility in the trade-
off between cost and bias, Fixed-Point Designer software currently supports the following rounding
methods:

• Ceiling rounds to the closest representable number in the direction of positive infinity.
• Convergent rounds to the closest representable number. In the case of a tie, convergent

rounds to the nearest even number. This is the least biased rounding method provided by the
toolbox.

• Zero rounds to the closest representable number in the direction of zero.
• Floor, which is equivalent to two's complement truncation, rounds to the closest representable

number in the direction of negative infinity.
• Nearest rounds to the closest representable number. In the case of a tie, nearest rounds to the

closest representable number in the direction of positive infinity. This rounding method is the
default for fi object creation and fi arithmetic.

• Round rounds to the closest representable number. In the case of a tie, the round method rounds:

• Positive numbers to the closest representable number in the direction of positive infinity.
• Negative numbers to the closest representable number in the direction of negative infinity.

Choosing a Rounding Method

Each rounding method has a set of inherent properties. Depending on the requirements of your
design, these properties could make the rounding method more or less desirable to you. By knowing
the requirements of your design and understanding the properties of each rounding method, you can
determine which is the best fit for your needs. The most important properties to consider are:

• Cost — Independent of the hardware being used, how much processing expense does the rounding
method require?

• Low — The method requires few processing cycles.
• Moderate — The method requires a moderate number of processing cycles.
• High — The method requires more processing cycles.

 Precision and Range
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Note The cost estimates provided here are hardware independent. Some processors have
rounding modes built-in, so consider carefully the hardware you are using before calculating the
true cost of each rounding mode.

• Bias — What is the expected value of the rounded values minus the original values: Ε θ − θ ?

• Ε θ − θ < 0 — The rounding method introduces a negative bias.

• Ε θ − θ = 0 — The rounding method is unbiased.

• Ε θ − θ > 0 — The rounding method introduces a positive bias.

The following table shows a comparison of the different rounding methods available in the Fixed-
Point Designer product.

Fixed-Point Designer Rounding
Mode

Cost Bias

Ceiling Low Large positive
Convergent High Unbiased
Zero Low • Large positive for negative samples

• Unbiased for samples with evenly distributed
positive and negative values

• Large negative for positive samples
Floor Low Large negative
Nearest Moderate Small positive
Round High • Small negative for negative samples

• Unbiased for samples with evenly distributed
positive and negative values

• Small positive for positive samples
Simplest
(Simulink® only)

Low Depends on the operation
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Arithmetic Operations
In this section...
“Modulo Arithmetic” on page 1-9
“Two's Complement” on page 1-9
“Addition and Subtraction” on page 1-10
“Multiplication” on page 1-10
“Casts” on page 1-15

Note These sections will help you understand what data type and scaling choices result in overflows
or a loss of precision.

Modulo Arithmetic
Binary math is based on modulo arithmetic. Modulo arithmetic uses only a finite set of numbers,
wrapping the results of any calculations that fall outside the given set back into the set.

For example, the common everyday clock uses modulo 12 arithmetic. Numbers in this system can
only be 1 through 12. Therefore, in the “clock” system, 9 plus 9 equals 6. This can be more easily
visualized as a number circle:

Similarly, binary math can only use the numbers 0 and 1, and any arithmetic results that fall outside
this range are wrapped “around the circle” to either 0 or 1.

Two's Complement
Two's complement is a way to interpret a binary number. In two's complement, positive numbers
always start with a 0 and negative numbers always start with a 1. If the leading bit of a two's
complement number is 0, the value is obtained by calculating the standard binary value of the
number. If the leading bit of a two's complement number is 1, the value is obtained by assuming that
the leftmost bit is negative, and then calculating the binary value of the number. For example,
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01 = (0 + 20) = 1

11 = −21 + 20 = (− 2 + 1) = − 1

To compute the negative of a binary number using two's complement,

1 Take the one's complement, or “flip the bits.”
2 Add a 2^(-FL) using binary math, where FL is the fraction length.
3 Discard any bits carried beyond the original word length.

For example, consider taking the negative of 11010 (-6). First, take the one's complement of the
number, or flip the bits:

11010 00101

Next, add a 1, wrapping all numbers to 0 or 1:

00101
+1

00110 (6)

Addition and Subtraction
The addition of fixed-point numbers requires that the binary points of the addends be aligned. The
addition is then performed using binary arithmetic so that no number other than 0 or 1 is used.

For example, consider the addition of 010010.1 (18.5) with 0110.110 (6.75):

010010.1
+0110.110

011001.010

(18.5)
(6.75)
(25.25)

Fixed-point subtraction is equivalent to adding while using the two's complement value for any
negative values. In subtraction, the addends must be sign-extended to match each other's length. For
example, consider subtracting 0110.110 (6.75) from 010010.1 (18.5):

010010.100
−0110.110

(18.5)
(6.75)

The default fimath has a value of 1 (true) for the CastBeforeSum property. This casts addends to the
sum data type before addition. Therefore, no further shifting is necessary during the addition to line
up the binary points.

If CastBeforeSum has a value of 0 (false), the addends are added with full precision maintained.
After the addition the sum is then quantized.

Multiplication
The multiplication of two's complement fixed-point numbers is directly analogous to regular decimal
multiplication, with the exception that the intermediate results must be sign-extended so that their
left sides align before you add them together.
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For example, consider the multiplication of 10.11 (-1.25) with 011 (3):

Multiplication Data Types

The following diagrams show the data types used for fixed-point multiplication using Fixed-Point
Designer software. The diagrams illustrate the differences between the data types used for real-real,
complex-real, and complex-complex multiplication.

Real-Real Multiplication

The following diagram shows the data types used by the toolbox in the multiplication of two real
numbers. The software returns the output of this operation in the product data type, which is
governed by the fimath object ProductMode property.

Real-Complex Multiplication

The following diagram shows the data types used by the toolbox in the multiplication of a real and a
complex fixed-point number. Real-complex and complex-real multiplication are equivalent. The
software returns the output of this operation in the product data type, which is governed by the
fimath object ProductMode property:
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Complex-Complex Multiplication

The following diagram shows the multiplication of two complex fixed-point numbers. The software
returns the output of this operation in the sum data type, which is governed by the fimath object
SumMode property. The intermediate product data type is determined by the fimath object
ProductMode property.

When the fimath object CastBeforeSum property is true, the casts to the sum data type are
present after the multipliers in the preceding diagram. In C code, this is equivalent to

acc=ac;
acc-=bd;

for the subtractor, and

acc=ad;
acc+=bc;

for the adder, where acc is the accumulator. When the CastBeforeSum property is false, the casts
are not present, and the data remains in the product data type before the subtraction and addition
operations.

Multiplication with fimath

In the following examples, let

F = fimath('ProductMode','FullPrecision',...
'SumMode','FullPrecision');
T1 = numerictype('WordLength',24,'FractionLength',20);
T2 = numerictype('WordLength',16,'FractionLength',10);
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Real*Real

Notice that the word length and fraction length of the result z are equal to the sum of the word
lengths and fraction lengths, respectively, of the multiplicands. This is because the fimath SumMode
and ProductMode properties are set to FullPrecision:

P = fipref;
P.FimathDisplay = 'none';
x = fi(5,T1,F)

x = 

     5

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 24
        FractionLength: 20

y = fi(10,T2,F)

y = 

    10

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 10

z = x*y

z = 

    50

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 40
        FractionLength: 30

Real*Complex

Notice that the word length and fraction length of the result z are equal to the sum of the word
lengths and fraction lengths, respectively, of the multiplicands. This is because the fimath SumMode
and ProductMode properties are set to FullPrecision:

x = fi(5,T1,F)

x = 

     5

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 24
        FractionLength: 20
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y = fi(10+2i,T2,F)

y = 

  10.0000 + 2.0000i

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 10

z = x*y

z = 

  50.0000 +10.0000i

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 40
        FractionLength: 30

Complex*Complex

Complex-complex multiplication involves an addition as well as multiplication. As a result, the word
length of the full-precision result has one more bit than the sum of the word lengths of the
multiplicands:

x = fi(5+6i,T1,F)

x = 

   5.0000 + 6.0000i

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 24
        FractionLength: 20

y = fi(10+2i,T2,F)

y = 

  10.0000 + 2.0000i

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 10

z = x*y

z = 

  38.0000 +70.0000i

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 41
        FractionLength: 30
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Casts
The fimath object allows you to specify the data type and scaling of intermediate sums and products
with the SumMode and ProductMode properties. It is important to keep in mind the ramifications of
each cast when you set the SumMode and ProductMode properties. Depending upon the data types
you select, overflow and/or rounding might occur. The following two examples demonstrate cases
where overflow and rounding can occur.

Note For more examples of casting, see “Cast fi Objects” on page 2-10.

Casting from a Shorter Data Type to a Longer Data Type

Consider the cast of a nonzero number, represented by a 4-bit data type with two fractional bits, to an
8-bit data type with seven fractional bits:

As the diagram shows, the source bits are shifted up so that the binary point matches the destination
binary point position. The highest source bit does not fit, so overflow might occur and the result can
saturate or wrap. The empty bits at the low end of the destination data type are padded with either
0's or 1's:

• If overflow does not occur, the empty bits are padded with 0's.
• If wrapping occurs, the empty bits are padded with 0's.
• If saturation occurs,

• The empty bits of a positive number are padded with 1's.
• The empty bits of a negative number are padded with 0's.

You can see that even with a cast from a shorter data type to a longer data type, overflow can still
occur. This can happen when the integer length of the source data type (in this case two) is longer
than the integer length of the destination data type (in this case one). Similarly, rounding might be
necessary even when casting from a shorter data type to a longer data type, if the destination data
type and scaling has fewer fractional bits than the source.
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Casting from a Longer Data Type to a Shorter Data Type

Consider the cast of a nonzero number, represented by an 8-bit data type with seven fractional bits,
to a 4-bit data type with two fractional bits:

As the diagram shows, the source bits are shifted down so that the binary point matches the
destination binary point position. There is no value for the highest bit from the source, so sign
extension is used to fill the integer portion of the destination data type. Sign extension is the addition
of bits that have the value of the most significant bits to the high end of a two's complement number.
Sign extension does not change the value of the binary number. In this example, the bottom five bits
of the source do not fit into the fraction length of the destination. Therefore, precision can be lost as
the result is rounded.

In this case, even though the cast is from a longer data type to a shorter data type, all the integer bits
are maintained. Conversely, full precision can be maintained even if you cast to a shorter data type,
as long as the fraction length of the destination data type is the same length or longer than the
fraction length of the source data type. In that case, however, bits are lost from the high end of the
result and overflow can occur.

The worst case occurs when both the integer length and the fraction length of the destination data
type are shorter than those of the source data type and scaling. In that case, both overflow and a loss
of precision can occur.
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fi Objects and C Integer Data Types
In this section...
“Integer Data Types” on page 1-17
“Unary Conversions” on page 1-18
“Binary Conversions” on page 1-19
“Overflow Handling” on page 1-20

Note The sections in this topic compare the fi object with fixed-point data types and operations in
C. In these sections, the information on ANSI® C is adapted from Samuel P. Harbison and Guy L.
Steele Jr., C: A Reference Manual, 3rd ed., Prentice Hall, 1991.

Integer Data Types
This section compares the numerical range of fi integer data types to the minimum numerical range
of C integer data types, assuming a “Two's Complement” on page 1-9 representation.

C Integer Data Types

Many C compilers support a two's complement representation of signed integer data types. The
following table shows the minimum ranges of C integer data types using a two's complement
representation. The integer ranges can be larger than or equal to the ranges shown, but cannot be
smaller. The range of a long must be larger than or equal to the range of an int, which must be
larger than or equal to the range of a short.

In the two's complement representation, a signed integer with n bits has a range from −2n− 1 to
2n− 1− 1, inclusive. An unsigned integer with n bits has a range from 0 to 2n− 1, inclusive. The
negative side of the range has one more value than the positive side, and zero is represented
uniquely.

Integer Type Minimum Maximum
signed char –128 127
unsigned char 0 255
short int –32,768 32,767
unsigned short 0 65,535
int –32,768 32,767
unsigned int 0 65,535
long int –2,147,483,648 2,147,483,647
unsigned long 0 4,294,967,295

fi Integer Data Types

The following table lists the numerical ranges of the integer data types of the fi object, in particular
those equivalent to the C integer data types. The ranges are large enough to accommodate the two's
complement representation, which is the only signed binary encoding technique supported by Fixed-
Point Designer software.
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Constructor Signed Word
Length

Fraction
Length Minimum Maximum Closest ANSI C

Equivalent

fi(x,1,n,0) Yes
n

(2 to
65,535)

0 −2n− 1 2n− 1− 1 Not applicable

fi(x,0,n,0) No
n

(2 to
65,535)

0 0 2n− 1 Not applicable

fi(x,1,8,0) Yes 8 0 –128 127 signed char
fi(x,0,8,0) No 8 0 0 255 unsigned char
fi(x,1,16,0) Yes 16 0 –32,768 32,767 short int
fi(x,0,16,0) No 16 0 0 65,535 unsigned short
fi(x,1,32,0) Yes 32 0 –2,147,483,648 2,147,483,647 long int
fi(x,0,32,0) No 32 0 0 4,294,967,295 unsigned long

Unary Conversions
Unary conversions dictate whether and how a single operand is converted before an operation is
performed. This section discusses unary conversions in ANSI C and of fi objects.

ANSI C Usual Unary Conversions

Unary conversions in ANSI C are automatically applied to the operands of the unary !, –, ~, and *
operators, and of the binary << and >> operators, according to the following table:

Original Operand Type ANSI C Conversion
char or short int
unsigned char or unsigned short int or unsigned int1

float float
Array of T Pointer to T
Function returning T Pointer to function returning T

1If type int cannot represent all the values of the original data type without overflow, the converted
type is unsigned int.

fi Usual Unary Conversions

The following table shows the fi unary conversions:

C Operator fi Equivalent fi Conversion
!x ~x = not(x) Result is logical.
~x bitcmp(x) Result is same numeric type as operand.
*x No equivalent Not applicable
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C Operator fi Equivalent fi Conversion
x<<n bitshift(x,n)

positive n
Result is same numeric type as operand. Round mode is always
floor. Overflow mode is obeyed. 0-valued bits are shifted in on
the right.

x>>n bitshift(x,-n) Result is same numeric type as operand. Round mode is always
floor. Overflow mode is obeyed. 0-valued bits are shifted in on
the left if the operand is unsigned or signed and positive. 1-
valued bits are shifted in on the left if the operand is signed and
negative.

+x +x Result is same numeric type as operand.
-x -x Result is same numeric type as operand. Overflow mode is

obeyed. For example, overflow might occur when you negate an
unsigned fi or the most negative value of a signed fi.

Binary Conversions
This section describes the conversions that occur when the operands of a binary operator are
different data types.

ANSI C Usual Binary Conversions

In ANSI C, operands of a binary operator must be of the same type. If they are different, one is
converted to the type of the other according to the first applicable conversion in the following table:

Type of One Operand Type of Other Operand ANSI C Conversion
long double Any long double
double Any double
float Any float
unsigned long Any unsigned long
long unsigned long or unsigned long1

long int long
unsigned int or unsigned unsigned
int int int

1Type long is only used if it can represent all values of type unsigned.

fi Usual Binary Conversions

When one of the operands of a binary operator (+, –, *, .*) is a fi object and the other is a MATLAB
built-in numeric type, then the non-fi operand is converted to a fi object before the operation is
performed, according to the following table:
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Type of One
Operand

Type of Other
Operand

Properties of Other Operand After Conversion to a fi Object

fi double or
single

• Signed = same as the original fi operand
• WordLength = same as the original fi operand
• FractionLength = set to best precision possible

fi int8 • Signed = 1
• WordLength = 8
• FractionLength = 0

fi uint8 • Signed = 0
• WordLength = 8
• FractionLength = 0

fi int16 • Signed = 1
• WordLength = 16
• FractionLength = 0

fi uint16 • Signed = 0
• WordLength = 16
• FractionLength = 0

fi int32 • Signed = 1
• WordLength = 32
• FractionLength = 0

fi uint32 • Signed = 0
• WordLength = 32
• FractionLength = 0

fi int64 • Signed = 1
• WordLength = 64
• FractionLength = 0

fi uint64 • Signed = 0
• WordLength = 64
• FractionLength = 0

Overflow Handling
The following sections compare how ANSI C and Fixed-Point Designer software handle overflows.

ANSI C Overflow Handling

In ANSI C, the result of signed integer operations is whatever value is produced by the machine
instruction used to implement the operation. Therefore, ANSI C has no rules for handling signed
integer overflow.

The results of unsigned integer overflows wrap in ANSI C.
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fi Overflow Handling

Addition and multiplication with fi objects yield results that can be exactly represented by a fi
object, up to word lengths of 65,535 bits or the available memory on your machine. This is not true of
division, however, because many ratios result in infinite binary expressions. You can perform division
with fi objects using the divide function, which requires you to explicitly specify the numeric type
of the result.

The conditions under which a fi object overflows and the results then produced are determined by
the associated fimath object. You can specify certain overflow characteristics separately for sums
(including differences) and products. Refer to the following table:

fimath Object Properties
Related to Overflow Handling

Property Value Description

OverflowAction 'saturate' Overflows are saturated to the maximum or
minimum value in the range.

'wrap' Overflows wrap using modulo arithmetic if
unsigned, two's complement wrap if signed.

ProductMode 'FullPrecision' Full-precision results are kept. Overflow does not
occur. An error is thrown if the resulting word
length is greater than MaxProductWordLength.

The rules for computing the resulting product
word and fraction lengths are given in “fimath
Object Properties” on page 3-4 in the Property
Reference.

 'KeepLSB' The least significant bits of the product are kept.
Full precision is kept, but overflow is possible.
This behavior models the C language integer
operations.

The ProductWordLength property determines
the resulting word length. If
ProductWordLength is greater than is necessary
for the full-precision product, then the result is
stored in the least significant bits. If
ProductWordLength is less than is necessary for
the full-precision product, then overflow occurs.

The rule for computing the resulting product
fraction length is given in “fimath Object
Properties” on page 3-4 in the Property
Reference.
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fimath Object Properties
Related to Overflow Handling

Property Value Description

 'KeepMSB' The most significant bits of the product are kept.
Overflow is prevented, but precision may be lost.

The ProductWordLength property determines
the resulting word length. If
ProductWordLength is greater than is necessary
for the full-precision product, then the result is
stored in the most significant bits. If
ProductWordLength is less than is necessary for
the full-precision product, then rounding occurs.

The rule for computing the resulting product
fraction length is given in “fimath Object
Properties” on page 3-4 in the Property
Reference.

 'SpecifyPrecision' You can specify both the word length and the
fraction length of the resulting product.

ProductWordLength Positive integer The word length of product results when
ProductMode is 'KeepLSB', 'KeepMSB', or
'SpecifyPrecision'.

MaxProductWordLength Positive integer The maximum product word length allowed when
ProductMode is 'FullPrecision'. The default
is 65,535 bits. This property can help ensure that
your simulation does not exceed your hardware
requirements.

ProductFractionLength Integer The fraction length of product results when
ProductMode is 'Specify Precision'.

SumMode 'FullPrecision' Full-precision results are kept. Overflow does not
occur. An error is thrown if the resulting word
length is greater than MaxSumWordLength.

The rules for computing the resulting sum word
and fraction lengths are given in “fimath Object
Properties” on page 3-4 in the Property
Reference.
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fimath Object Properties
Related to Overflow Handling

Property Value Description

 'KeepLSB' The least significant bits of the sum are kept. Full
precision is kept, but overflow is possible. This
behavior models the C language integer
operations.

The SumWordLength property determines the
resulting word length. If SumWordLength is
greater than is necessary for the full-precision
sum, then the result is stored in the least
significant bits. If SumWordLength is less than is
necessary for the full-precision sum, then overflow
occurs.

The rule for computing the resulting sum fraction
length is given in “fimath Object Properties” on
page 3-4 in the Property Reference.

 'KeepMSB' The most significant bits of the sum are kept.
Overflow is prevented, but precision may be lost.

The SumWordLength property determines the
resulting word length. If SumWordLength is
greater than is necessary for the full-precision
sum, then the result is stored in the most
significant bits. If SumWordLength is less than is
necessary for the full-precision sum, then
rounding occurs.

The rule for computing the resulting sum fraction
length is given in “fimath Object Properties” on
page 3-4 in the Property Reference.

 'SpecifyPrecision' You can specify both the word length and the
fraction length of the resulting sum.

SumWordLength Positive integer The word length of sum results when SumMode is
'KeepLSB', 'KeepMSB', or
'SpecifyPrecision'.

MaxSumWordLength Positive integer The maximum sum word length allowed when
SumMode is 'FullPrecision'. The default is
65,535 bits. This property can help ensure that
your simulation does not exceed your hardware
requirements.

SumFractionLength Integer The fraction length of sum results when SumMode
is 'SpecifyPrecision'.
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Working with fi Objects

• “Ways to Construct fi Objects” on page 2-2
• “Cast fi Objects” on page 2-10
• “fi Object Properties” on page 2-15
• “fi Object Functions” on page 2-20
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Ways to Construct fi Objects
In this section...
“Types of fi Constructors” on page 2-2
“Examples of Constructing fi Objects” on page 2-2

Types of fi Constructors
You can create fi objects using Fixed-Point Designer software in any of the following ways:

• You can use the fi constructor function to create a fi object.
• You can use the sfi constructor function to create a new signed fi object.
• You can use the ufi constructor function to create a new unsigned fi object.
• You can use any of the fi constructor functions to copy an existing fi object.

To get started, to create a fi object with the default data type and a value of 0:

a = fi(0)

a =
 
     0

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 15

This constructor syntax creates a signed fi object with a value of 0, word length of 16 bits, and
fraction length of 15 bits. Because you did not specify any fimath object properties in the fi
constructor, the resulting fi object a has no local fimath.

To see all of the fi, sfi, and ufi constructor syntaxes, refer to the respective reference pages.

For information on the display format of fi objects, refer to “View Fixed-Point Data”.

Examples of Constructing fi Objects
The following examples show you several different ways to construct fi objects. For other, more
basic examples of constructing fi objects, see the Examples section of the following constructor
function reference pages:

• fi
• sfi
• ufi

Note The fi constructor creates the fi object using a RoundingMethod of Nearest and an
OverflowAction of Saturate. If you construct a fi from floating-point values, the default
RoundingMethod and OverflowAction property settings are not used.
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Constructing a fi Object with Property Name/Property Value Pairs

You can use property name/property value pairs to set fi and fimath object properties when you
create the fi object:

a = fi(pi, 'RoundingMethod','Floor', 'OverflowAction','Wrap')

a = 

    3.1415

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 13

        RoundingMethod: Floor
        OverflowAction: Wrap
           ProductMode: FullPrecision
               SumMode: FullPrecision

You do not have to specify every fimath object property in the fi constructor. The fi object uses
default values for all unspecified fimath object properties.

• If you specify at least one fimath object property in the fi constructor, the fi object has a local
fimath object. The fi object uses default values for the remaining unspecified fimath object
properties.

• If you do not specify any fimath object properties in the fi object constructor, the fi object uses
default fimath values.

Constructing a fi Object Using a numerictype Object

You can use a numerictype object to define a fi object:

T = numerictype

T =
 

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 15

a = fi(pi, T)

 a =
 
    1.0000

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 15

You can also use a fimath object with a numerictype object to define a fi object:

 Ways to Construct fi Objects

2-3



F = fimath('RoundingMethod', 'Nearest',...
'OverflowAction', 'Saturate',...
'ProductMode','FullPrecision',...
'SumMode','FullPrecision') 

F =
 
        RoundingMethod: Nearest
        OverflowAction: Saturate
           ProductMode: FullPrecision
               SumMode: FullPrecision

a = fi(pi, T, F)

a =
 
    1.0000

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 15

        RoundingMethod: Nearest
        OverflowAction: Saturate
           ProductMode: FullPrecision
               SumMode: FullPrecision

Note The syntax a = fi(pi,T,F) is equivalent to a = fi(pi,F,T). You can use both statements
to define a fi object using a fimath object and a numerictype object.

Constructing a fi Object Using a fimath Object

You can create a fi object using a specific fimath object. When you do so, a local fimath object is
assigned to the fi object you create. If you do not specify any numerictype object properties, the
word length of the fi object defaults to 16 bits. The fraction length is determined by best precision
scaling:

F = fimath('RoundingMethod', 'Nearest',...
'OverflowAction', 'Saturate',...
'ProductMode','FullPrecision',...
'SumMode','FullPrecision') 

F =
 

             RoundingMethod: Nearest
          OverflowAction: Saturate
           ProductMode: FullPrecision
               SumMode: FullPrecision

F.OverflowAction = 'Wrap'

F =
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             RoundingMethod: Nearest
          OverflowAction: Wrap
           ProductMode: FullPrecision
               SumMode: FullPrecision

 a = fi(pi, F)

a =
 
    3.1416

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 13

        RoundingMethod: Nearest
        OverflowAction: Wrap
           ProductMode: FullPrecision
               SumMode: FullPrecision

You can also create fi objects using a fimath object while specifying various numerictype
properties at creation time:

b = fi(pi, 0, F)

b =
 
    3.1416

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Unsigned
            WordLength: 16
        FractionLength: 14

        RoundingMethod: Nearest
        OverflowAction: Wrap
           ProductMode: FullPrecision
               SumMode: FullPrecision

c = fi(pi, 0, 8, F)

c =
 
    3.1406

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Unsigned
            WordLength: 8
        FractionLength: 6

        RoundingMethod: Nearest
        OverflowAction: Wrap
           ProductMode: FullPrecision
               SumMode: FullPrecision

d = fi(pi, 0, 8, 6, F)

d =
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    3.1406

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Unsigned
            WordLength: 8
        FractionLength: 6

        RoundingMethod: Nearest
        OverflowAction: wrap
           ProductMode: FullPrecision
               SumMode: FullPrecision

Building fi Object Constructors in a GUI

When you are working with files in MATLAB, you can build your fi object constructors using the
Insert fi Constructor dialog box. After specifying the value and properties of the fi object in the
dialog box, you can insert the prepopulated fi object constructor at a specific location in your file.

For example, to create a signed fi object with a value of pi, a word length of 16 bits and a fraction
length of 13 bits:

1 On the Home tab, in the File section, click New > Script to open the MATLAB Editor.
2

On the Editor tab, in the Edit section, click  in the Insert button group. Click Insert fi...
to open the Insert fi Constructor dialog box.

3 Use the edit boxes and drop-down menus to specify the following properties of the fi object:

• Value = pi
• Data type mode = Fixed-point: binary point scaling
• Signedness = Signed
• Word length = 16
• Fraction length = 13

2 Working with fi Objects

2-6



4 To insert the fi object constructor in your file, place your cursor at the desired location in the
file, and click OK on the Insert fi Constructor dialog box. Clicking OK closes the Insert fi
Constructor dialog box and automatically populates the fi object constructor in your file:

Determining Property Precedence

The value of a property is taken from the last time it is set. For example, create a numerictype
object with a value of true for the Signed property and a fraction length of 14:

T = numerictype('Signed', true, 'FractionLength', 14)

T =
 

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 14        

Now, create the following fi object in which you specify the numerictype property after the
Signed property, so that the resulting fi object is signed:

a = fi(pi,'Signed',false,'numerictype',T)

a =
 
    1.9999

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 14

Contrast the fi object in this code sample with the fi object in the following code sample. The
numerictype property in the following code sample is specified before the Signed property, so the
resulting fi object is unsigned:

b = fi(pi,'numerictype',T,'Signed',false)

b =
 
    3.1416

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Unsigned
            WordLength: 16
        FractionLength: 14

Copying a fi Object

To copy a fi object, simply use assignment:

a = fi(pi)

a =
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    3.1416

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 13

b = a

b =
 
    3.1416

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 13

Creating fi Objects For Use in a Types Table

You can write a reusable MATLAB algorithm by keeping the data types of the algorithmic variables in
a separate types table. For example,

function T = mytypes(dt)
  switch dt
    case 'double'
      T.b = double([]);
      T.x = double([]);
      T.y = double([]);

     case 'fixed16'
      T.b = fi([],1,16,15);
      T.x = fi([],1,16,15);
      T.y = fi([],1,16,14);
  end
end

Cast the variables in the algorithm to the data types in the types table as described in “Manual Fixed-
Point Conversion Best Practices” on page 11-3.

function [y,z]=myfilter(b,x,z,T)
  y = zeros(size(x),'like',T.y);
  for n=1:length(x)
    z(:) = [x(n); z(1:end-1)];
    y(n) = b * z;
  end
end

In a separate test file, set up input data to feed into your algorithm, and specify the data types of the
inputs.

% Test inputs
b = fir1(11,0.25);
t = linspace(0,10*pi,256)';
x = sin((pi/16)*t.^2); 
% Linear chirp

% Cast inputs
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T=mytypes('fixed16');
b=cast(b,'like',T.b);
x=cast(x,'like',T.x);
z=zeros(size(b'),'like',T.x);

% Run
[y,z] = myfilter(b,x,z,T);
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Cast fi Objects
In this section...
“Overwriting by Assignment” on page 2-10
“Ways to Cast with MATLAB Software” on page 2-10

Overwriting by Assignment
Because MATLAB software does not have type declarations, an assignment like A = B replaces the
type and content of A with the type and content of B. If A does not exist at the time of the assignment,
MATLAB creates the variable A and assigns it the same type and value as B. Such assignment
happens with all types in MATLAB — objects and built-in types alike — including fi, double,
single, int8, uint8, int16, etc.

For example, the following code overwrites the value and int8 type of A with the value and int16
type of B:

A = int8(0);
B = int16(32767);
A = B 

A =

  int16

   32767

class(A)

ans =

    'int16'

Ways to Cast with MATLAB Software
You may find it useful to cast data into another type—for example, when you are casting data from an
accumulator to memory. There are several ways to cast data in MATLAB. The following sections
provide examples of four different methods:

• Casting by Subscripted Assignment
• Casting by Conversion Function
• Casting with the Fixed-Point Designer reinterpretcast function
• Casting with the cast Function

Casting by Subscripted Assignment

The following subscripted assignment statement retains the type of A and saturates the value of B to
an int8:

A = int8(0);
B = int16(32767);
A(:) = B
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A =

  int8

   127

class(A)

ans =

    'int8'

The same is true for fi objects:

fipref('NumericTypeDisplay', 'short');
A = fi(0, 1, 8, 0);
B = fi(32767, 1, 16, 0);
A(:) = B

A = 

   127
      numerictype(1,8,0)

Note For more information on subscripted assignments, see the subsasgn function.

Casting by Conversion Function

You can convert from one data type to another by using a conversion function. In this example, A does
not have to be predefined because it is overwritten.

B = int16(32767);
A = int8(B)

A =

  int8

   127

class(A)

ans =

    'int8'

The same is true for fi objects:

B = fi(32767,1,16,0)
A = fi(B,1,8,0)

B = 

       32767
      numerictype(1,16,0)

A = 
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   127
      numerictype(1,8,0)

Using a numerictype Object in the fi Conversion Function

Often a specific numerictype is used in many places, and it is convenient to predefine
numerictype objects for use in the conversion functions. Predefining these objects is a good
practice because it also puts the data type specification in one place.

T8 = numerictype(1,8,0)
T16 = numerictype(1,16,0)

T8 =

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 8
        FractionLength: 0

T16 =

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 0

B = fi(32767,T16)
A = fi(B,T8)

B = 

       32767
      numerictype(1,16,0)

A = 

   127
      numerictype(1,8,0)

Casting with the reinterpretcast Function

You can convert fixed-point and built-in data types without changing the underlying data. The Fixed-
Point Designer reinterpretcast function performs this type of conversion.

In the following example, B is an unsigned fi object with a word length of 8 bits and a fraction length
of 5 bits. The reinterpretcast function converts B into a signed fi object A with a word length of
8 bits and a fraction length of 1 bit. The real-world values of A and B differ, but their binary
representations are the same.

B = fi([pi/4 1 pi/2 4],0,8,5)
T = numerictype(1,8,1);
A = reinterpretcast(B,T)

B = 
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    0.7813    1.0000    1.5625    4.0000

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Unsigned
            WordLength: 8
        FractionLength: 5

A = 

   12.5000   16.0000   25.0000  -64.0000

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 8
        FractionLength: 1

To verify that the underlying data has not changed, compare the binary representations of A and B:

binary_B = bin(B)
binary_A = bin(A)

binary_B =

    '00011001   00100000   00110010   10000000'

binary_A =

    '00011001   00100000   00110010   10000000'

Casting with the cast Function

Using the cast function, you can convert the value of a variable to the same numerictype,
complexity, and fimath as another variable.

In the following example, a is cast to the data type of b. The output, c, has the same numerictype
and fimath properties as b, and the value of a.

a = pi;
b = fi([],1,16,13,'RoundingMethod','Floor');
c = cast(a,'like',b)

c = 

    3.1415

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 13

        RoundingMethod: Floor
        OverflowAction: Saturate
           ProductMode: FullPrecision
               SumMode: FullPrecision

Using this syntax allows you to specify data types separately from your algorithmic code as described
in “Manual Fixed-Point Conversion Best Practices” on page 11-3.
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See Also
cast | fi | numerictype | reinterpretcast | subsasgn
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fi Object Properties
In this section...
“Data Properties” on page 2-15
“fimath Properties” on page 2-15
“numerictype Properties” on page 2-16
“Setting fi Object Properties” on page 2-17

Data Properties
The data properties of a fi object are always writable.

• bin — Stored integer value of a fi object in binary
• data — Numerical real-world value of a fi object
• dec — Stored integer value of a fi object in decimal
• double — Real-world value of a fi object, stored as a MATLAB double data type
• hex — Stored integer value of a fi object in hexadecimal
• int — Stored integer value of a fi object, stored in a built-in MATLAB integer data type
• oct — Stored integer value of a fi object in octal

To learn more about these properties, see “fi Object Properties” in the Fixed-Point Designer
Reference.

fimath Properties
In general, the fimath properties associated with fi objects depend on how you create the fi
object:

• When you specify one or more fimath object properties in the fi constructor, the resulting fi
object has a local fimath object.

• When you do not specify any fimath object properties in the fi constructor, the resulting fi
object has no local fimath.

To determine whether a fi object has a local fimath object, use the isfimathlocal function.

The fimath properties associated with fi objects determine how fixed-point arithmetic is performed.
These fimath properties can come from a local fimath object or from default fimath property
values. To learn more about fimath objects in fixed-point arithmetic, see “fimath Rules for Fixed-
Point Arithmetic” on page 3-10.

The following fimath properties are, by transitivity, also properties of the fi object. You can set
these properties for individual fi objects. The following fimath properties are always writable.

• CastBeforeSum — Whether both operands are cast to the sum data type before addition

Note This property is hidden when the SumMode is set to FullPrecision.
• MaxProductWordLength — Maximum allowable word length for the product data type
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• MaxSumWordLength — Maximum allowable word length for the sum data type
• OverflowAction — Action to take on overflow
• ProductBias — Bias of the product data type
• ProductFixedExponent — Fixed exponent of the product data type
• ProductFractionLength — Fraction length, in bits, of the product data type
• ProductMode — Defines how the product data type is determined
• ProductSlope — Slope of the product data type
• ProductSlopeAdjustmentFactor — Slope adjustment factor of the product data type
• ProductWordLength — Word length, in bits, of the product data type
• RoundingMethod — Rounding method
• SumBias — Bias of the sum data type
• SumFixedExponent — Fixed exponent of the sum data type
• SumFractionLength — Fraction length, in bits, of the sum data type
• SumMode — Defines how the sum data type is determined
• SumSlope — Slope of the sum data type
• SumSlopeAdjustmentFactor — Slope adjustment factor of the sum data type
• SumWordLength — The word length, in bits, of the sum data type

For more information, see “fimath Object Properties” on page 3-4.

numerictype Properties
When you create a fi object, a numerictype object is also automatically created as a property of
the fi object:

numerictype — Object containing all the data type information of a fi object, Simulink signal, or
model parameter

The following numerictype properties are, by transitivity, also properties of a fi object. The
following properties of the numerictype object become read only after you create the fi object.
However, you can create a copy of a fi object with new values specified for the numerictype
properties:

• Bias — Bias of a fi object
• DataType — Data type category associated with a fi object
• DataTypeMode — Data type and scaling mode of a fi object
• FixedExponent — Fixed-point exponent associated with a fi object
• FractionLength — Fraction length of the stored integer value of a fi object in bits
• Scaling — Fixed-point scaling mode of a fi object
• Signed — Whether a fi object is signed or unsigned
• Signedness — Whether a fi object is signed or unsigned

Note numerictype objects can have a Signedness of Auto, but all fi objects must be Signed
or Unsigned. If a numerictype object with Auto Signedness is used to create a fi object, the
Signedness property of the fi object automatically defaults to Signed.
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• Slope — Slope associated with a fi object
• SlopeAdjustmentFactor — Slope adjustment associated with a fi object
• WordLength — Word length of the stored integer value of a fi object in bits

For more information, see “numerictype Object Properties” on page 5-5.

There are two ways to specify properties for fi objects in Fixed-Point Designer software. Refer to the
following sections:

• “Setting Fixed-Point Properties at Object Creation” on page 2-17
• “Using Direct Property Referencing with fi” on page 2-18

Setting fi Object Properties
You can set fi object properties in two ways:

• Setting the properties when you create the object
• Using direct property referencing

Setting Fixed-Point Properties at Object Creation

You can set properties of fi objects at the time of object creation by including properties after the
arguments of the fi constructor function. For example, to set the overflow action to Wrap and the
rounding method to Convergent,

a = fi(pi,'OverflowAction','Wrap','RoundingMethod','Convergent')

a = 

    3.1416

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 13

        RoundingMethod: Convergent
        OverflowAction: Wrap
           ProductMode: FullPrecision
               SumMode: FullPrecision

To set the stored integer value of a fi object, use the parameter/value pair for the 'int' property
when you create the object. For example, create a signed fi object with a stored integer value of 4,
16-bit word length, and 15-bit fraction length.

x = fi(0,1,16,15,'int',4);

Verify that the fi object has the expected integer setting.

x.int

ans =

  int16

   4
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Using Direct Property Referencing with fi

You can reference directly into a property for setting or retrieving fi object property values using
MATLAB structure-like referencing. You do so by using a period to index into a property by name.

For example, to get the WordLength of a,

a.WordLength

ans =

    16

To set the OverflowAction of a,

a.OverflowAction = 'Wrap'

a = 

    3.1416

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 13

        RoundingMethod: Convergent
        OverflowAction: Wrap
           ProductMode: FullPrecision
               SumMode: FullPrecision

If you have a fi object b with a local fimath object, you can remove the local fimath object and
force b to use default fimath values:

b = fi(pi,1,'RoundingMethod','Floor')

b =
    3.1415

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 13

        RoundingMethod: Floor
        OverflowAction: Saturate
           ProductMode: FullPrecision
               SumMode: FullPrecision

b.fimath = []

b =
    3.1415

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 13
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isfimathlocal(b)

ans =

  logical

   0

 fi Object Properties

2-19



fi Object Functions
In addition to functions that operate on fi objects, you can use the following functions to access data
in a fi object using dot notation.

• bin
• data
• dec
• double
• hex
• storedInteger
• storedIntegerToDouble
• oct

For example,

a = fi(pi);
n = storedInteger(a)

n =

  int16

   25736

h = hex(a)

h =

    '6488'

a.hex

ans =

    '6488'
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Working with fimath Objects

• “fimath Object Construction” on page 3-2
• “fimath Object Properties” on page 3-4
• “fimath Properties Usage for Fixed-Point Arithmetic” on page 3-10
• “fimath for Rounding and Overflow Modes” on page 3-16
• “fimath for Sharing Arithmetic Rules” on page 3-17
• “fimath ProductMode and SumMode” on page 3-19
• “How Functions Use fimath” on page 3-24
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fimath Object Construction
In this section...
“fimath Object Syntaxes” on page 3-2
“Building fimath Object Constructors in a GUI” on page 3-3

fimath Object Syntaxes
The arithmetic attributes of a fi object are defined by a local fimath object, which is attached to
that fi object. If a fi object has no local fimath, the following default fimath values are used:

        RoundingMethod: Nearest
        OverflowAction: Wrap
           ProductMode: FullPrecision
               SumMode: FullPrecision

You can create fimath objects in Fixed-Point Designer software in one of two ways:

• You can use the fimath constructor function to create new fimath objects.
• You can use the fimath constructor function to copy an existing fimath object.

To get started, type

F = fimath

to create a fimath object.

F = 

        RoundingMethod: Nearest
        OverflowAction: Saturate
           ProductMode: FullPrecision
               SumMode: FullPrecision

To copy a fimath object, simply use assignment as in the following example:

F = fimath;
G = F;
isequal(F,G)

ans =

  logical

   1

The syntax

F = fimath(...'PropertyName',PropertyValue...)

allows you to set properties for a fimath object at object creation with property name/property value
pairs. Refer to “Setting fimath Properties at Object Creation” on page 3-8.
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Building fimath Object Constructors in a GUI
When you are working with files in MATLAB, you can build your fimath object constructors using
the Insert fimath Constructor dialog box. After specifying the properties of the fimath object in
the dialog box, you can insert the prepopulated fimath object constructor at a specific location in
your file.

For example, to create a fimath object that uses convergent rounding and wraps on overflow,
perform the following steps:

1 On the Home tab, in the File section, click New > Script to open the MATLAB Editor
2

On the Editor tab, in the Edit section, click  in the Insert button group. Click the Insert
fimath... to open the Insert fimath Constructor dialog box.

3 Use the edit boxes and drop-down menus to specify the following properties of the fimath
object:

• Rounding method = Floor
• Overflow action = Wrap
• Product mode = FullPrecision
• Sum mode = FullPrecision

4 To insert the fimath object constructor in your file, place your cursor at the desired location in
the file. Then click OK on the Insert fimath Constructor dialog box. Clicking OK closes the
Insert fimath Constructor dialog box and automatically populates the fimath object
constructor in your file:
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fimath Object Properties

In this section...
“Math, Rounding, and Overflow Properties” on page 3-4
“How Properties are Related” on page 3-7
“Setting fimath Object Properties” on page 3-8

Math, Rounding, and Overflow Properties
You can always write to the following properties of fimath objects:

Property Description Valid Values
CastBeforeSum Whether both

operands are cast to
the sum data type
before addition

• 0 (default) — do not cast before sum
• 1 — cast before sum

Note This property is hidden when the SumMode is set to
FullPrecision.

MaxProduct
WordLength

Maximum allowable
word length for the
product data type

• 65535 (default)
• Any positive integer

MaxSum
WordLength

Maximum allowable
word length for the
sum data type

• 65535 (default)
• Any positive integer

OverflowAction Action to take on
overflow

• Saturate (default) — Saturate to maximum or minimum value
of the fixed-point range on overflow.

• Wrap — Wrap on overflow. This mode is also known as two's
complement overflow.

ProductBias Bias of the product
data type

• 0 (default)
• Any floating-point number

ProductFixed
Exponent

Fixed exponent of
the product data
type

• -30 (default)
• Any positive or negative integer

Note The ProductFractionLength is the negative of the
ProductFixedExponent. Changing one property changes the
other.

ProductFraction
Length

Fraction length, in
bits, of the product
data type

• 30 (default)
• Any positive or negative integer

Note The ProductFractionLength is the negative of the
ProductFixedExponent. Changing one property changes the
other.
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Property Description Valid Values
ProductMode Defines how the

product data type is
determined

• FullPrecision (default) — The full precision of the result is
kept.

• KeepLSB— Keep least significant bits. Specify the product word
length, while the fraction length is set to maintain the least
significant bits of the product.

• KeepMSB — Keep most significant bits. Specify the product
word length, while the fraction length is set to maintain the
most significant bits of the product.

• SpecifyPrecision— specify the word and fraction lengths or
slope and bias of the product.

ProductSlope Slope of the product
data type

• 9.3132e-010 (default)
• Any floating-point number

Note

ProductSlope = ProductSlopeAd justmentFactor
× 2ProductFixedExponent

Changing one of these properties affects the others.
ProductSlope
AdjustmentFactor

Slope adjustment
factor of the
product data type

• 1 (default)
• Any floating-point number greater than or equal to 1 and less

than 2

Note

ProductSlope = ProductSlopeAd justmentFactor
× 2ProductFixedExponent

Changing one of these properties affects the others.
ProductWord
Length

Word length, in bits,
of the product data
type

• 32 (default)
• Any positive integer

RoundingMethod Rounding method • Nearest (default) — Round toward nearest. Ties round toward
positive infinity.

• Ceiling — Round toward positive infinity.
• Convergent — Round toward nearest. Ties round to the

nearest even stored integer (least biased).
• Zero — Round toward zero.
• Floor — Round toward negative infinity.
• Round — Round toward nearest. Ties round toward negative
infinity for negative numbers, and toward positive infinity for
positive numbers.
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Property Description Valid Values
SumBias Bias of the sum data

type
• 0 (default)
• Any floating-point number

SumFixed
Exponent

Fixed exponent of
the sum data type

• -30 (default)
• Any positive or negative integer

Note The SumFractionLength is the negative of the
SumFixedExponent. Changing one property changes the other.

SumFraction
Length

Fraction length, in
bits, of the sum
data type

• 30 (default)
• Any positive or negative integer

Note The SumFractionLength is the negative of the
SumFixedExponent. Changing one property changes the other.

SumMode Defines how the
sum data type is
determined

• FullPrecision (default) — The full precision of the result is
kept.

• KeepLSB — Keep least significant bits. Specify the sum data
type word length, while the fraction length is set to maintain
the least significant bits of the sum.

• KeepMSB — Keep most significant bits. Specify the sum data
type word length, while the fraction length is set to maintain
the most significant bits of the sum and no more fractional bits
than necessary

• SpecifyPrecision — Specify the word and fraction lengths
or the slope and bias of the sum data type.

SumSlope Slope of the sum
data type

• 9.3132e-010 (default)
• Any floating-point number

Note

SumSlope=SumSlopeAd justmentFactor × 2SumFixedExponent

Changing one of these properties affects the others.
SumSlope
AdjustmentFactor

Slope adjustment
factor of the sum
data type

• 1 (default)
• Any floating-point number greater than or equal to 1 and less

than 2

Note

SumSlope=SumSlopeAd justmentFactor × 2SumFixedExponent

Changing one of these properties affects the others.
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Property Description Valid Values
SumWord
Length

Word length, in bits,
of the sum data
type

• 32 (default)
• Any positive integer

For details about these properties, refer to the “fi Object Properties” on page 2-15. To learn how to
specify properties for fimath objects in Fixed-Point Designer software, refer to “Setting fimath
Object Properties” on page 3-8.

How Properties are Related
Sum data type properties

The slope of the sum of two fi objects is related to the SumSlopeAdjustmentFactor and
SumFixedExponent properties by

SumSlope=SumSlopeAd justmentFactor × 2SumFixedExponent

If any of these properties are updated, the others are modified accordingly.

In a FullPrecision sum, the resulting word length is represented by

Ws = integer length + Fs

where

integer length = max Wa− Fa, Wb− Fb + ceil log2 NumberOfSummands

and

Fs = max(Fa, Fb)

When the SumMode is set to KeepLSB, the resulting word length and fraction length is determined by

Ws = specified in the SumWordLength property
Fs = max(Fa, Fb)

When the SumMode is set to KeepMSB, the resulting word length and fraction length is determined by

Ws = specified in the SumWordLength property
Fs = Ws− integer length

where

integer length = max Wa− Fa, Wb− Fb + ceil log2 NumberOfSummands

When the SumMode is set to SpecifyPrecision, you specify both the word and fraction length or
slope and bias of the sum data type with the SumWordLength and SumFractionLength, or
SumSlope and SumBias properties respectively.

Product data type properties

The slope of the product of two fi objects is related to the ProductSlopeAdjustmentFactor and
ProductFixedExponent properties by
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ProductSlope = ProductSlopeAd justmentFactor × 2ProductFixedExponent

If any of these properties are updated, the others are modified accordingly.

In a FullPrecision multiply, the resulting word length and fraction length are represented by

Wp = Wa + Wb
Fp = Fa + Fb

When the ProductMode is KeepLSB the word length and fraction length are determined by

Wp = specified in the ProductWordLength property
Fp = Fa + Fb

When the ProductMode is KeepMSB the word length and fraction length are

Wp = specified in the ProductWordLength property
Fp = Wp− integer length

where

integer length = (Wa + Wb)− (Fa + Fb)

When the ProductMode is set to SpecifyPrecision, you specify both the word and fraction length
or slope and bias of the product data type with the ProductWordLength and
ProductFractionLength, or ProductSlope and ProductBias properties respectively.

For more information about how certain functions use the fimath properties, see

Setting fimath Object Properties
• “Setting fimath Properties at Object Creation” on page 3-8
• “Using Direct Property Referencing with fimath” on page 3-9

Setting fimath Properties at Object Creation

You can set properties of fimath objects at the time of object creation by including properties after
the arguments of the fimath constructor function.

For example, to set the overflow action to Saturate and the rounding method to Convergent,

F = fimath('OverflowAction','Saturate','RoundingMethod','Convergent')

F = 

        RoundingMethod: Convergent
        OverflowAction: Saturate
           ProductMode: FullPrecision
               SumMode: FullPrecision

In addition to creating a fimath object at the command line, you can also set fimath properties
using the Insert fimath Constructor dialog box. For an example of this approach, see “Building
fimath Object Constructors in a GUI” on page 3-3.
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Using Direct Property Referencing with fimath

You can reference directly into a property for setting or retrieving fimath object property values
using MATLAB structure-like referencing. You do so by using a period to index into a property by
name.

For example, to get the RoundingMethod of F,

F.RoundingMethod

ans =

    'Convergent'

To set the OverflowAction of F,

F.OverflowAction = 'Wrap'

F = 

        RoundingMethod: Convergent
        OverflowAction: Wrap
           ProductMode: FullPrecision
               SumMode: FullPrecision
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fimath Properties Usage for Fixed-Point Arithmetic
In this section...
“fimath Rules for Fixed-Point Arithmetic” on page 3-10
“Binary-Point Arithmetic” on page 3-11
“[Slope Bias] Arithmetic” on page 3-14

fimath Rules for Fixed-Point Arithmetic
fimath properties define the rules for performing arithmetic operations on fi objects. The fimath
properties that govern fixed-point arithmetic operations can come from a local fimath object or the
fimath default values.

To determine whether a fi object has a local fimath object, use the isfimathlocal function.

The following sections discuss how fi objects with local fimath objects interact with fi objects
without local fimath.

Binary Operations

In binary fixed-point operations such as c = a + b, the following rules apply:

• If both a and b have no local fimath, the operation uses default fimath values to perform the fixed-
point arithmetic. The output fi object c also has no local fimath.

• If either a or b has a local fimath object, the operation uses that fimath object to perform the
fixed-point arithmetic. The output fi object c has the same local fimath object as the input.

Unary Operations

In unary fixed-point operations such as b = abs(a), the following rules apply:

• If a has no local fimath, the operation uses default fimath values to perform the fixed-point
arithmetic. The output fi object b has no local fimath.

• If a has a local fimath object, the operation uses that fimath object to perform the fixed-point
arithmetic. The output fi object b has the same local fimath object as the input a.

When you specify a fimath object in the function call of a unary fixed-point operation, the operation
uses the fimath object you specify to perform the fixed-point arithmetic. For example, when you use
a syntax such as b = abs(a,F) or b = sqrt(a,F), the abs and sqrt operations use the fimath
object F to compute intermediate quantities. The output fi object b always has no local fimath.

Concatenation Operations

In fixed-point concatenation operations such as c = [a b], c = [a;b] and c = bitconcat(a,b),
the following rule applies:

• The fimath properties of the leftmost fi object in the operation determine the fimath
properties of the output fi object c.

For example, consider the following scenarios for the operation d = [a b c]:
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• If a is a fi object with no local fimath, the output fi object d also has no local fimath.
• If a has a local fimath object, the output fi object d has the same local fimath object.
• If a is not a fi object, the output fi object d inherits the fimath properties of the next leftmost

fi object. For example, if b is a fi object with a local fimath object, the output fi object d has
the same local fimath object as the input fi object b.

fimath Object Operations: add, mpy, sub

The output of the fimath object operations add, mpy, and sub always have no local fimath. The
operations use the fimath object you specify in the function call, but the output fi object never has
a local fimath object.

MATLAB Function Block Operations

Fixed-point operations performed with the MATLAB Function block use the same rules as fixed-point
operations performed in MATLAB.

All input signals to the MATLAB Function block that you treat as fi objects associate with whatever
you specify for the MATLAB Function block fimath parameter. When you set this parameter to
Same as MATLAB, your fi objects do not have local fimath. When you set the MATLAB Function
block fimath parameter to Specify other, you can define your own set of fimath properties for
all fi objects in the MATLAB Function block to associate with. You can choose to treat only fixed-
point input signals as fi objects or both fixed-point and integer input signals as fi objects. See
“Using fimath Objects in MATLAB Function Blocks” on page 12-54.

Binary-Point Arithmetic
The fimath object encapsulates the math properties of Fixed-Point Designer software.

fi objects only have a local fimath object when you explicitly specify fimath properties in the fi
constructor. When you use the sfi or ufi constructor or do not specify any fimath properties in the
fi constructor, the resulting fi object does not have any local fimath and uses default fimath values.

a = fi(pi)

a = 

    3.1416

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 13

a.fimath
isfimathlocal(a)

ans = 

        RoundingMethod: Nearest
        OverflowAction: Saturate
           ProductMode: FullPrecision
               SumMode: FullPrecision

 fimath Properties Usage for Fixed-Point Arithmetic

3-11



ans =

  logical

   0

To perform arithmetic with +, -, .*, or * on two fi operands with local fimath objects, the local
fimath objects must be identical. If one of the fi operands does not have a local fimath, the
fimath properties of the two operands need not be identical. See “fimath Rules for Fixed-Point
Arithmetic” on page 3-10 for more information.

a = fi(pi);
b = fi(8);
isequal(a.fimath, b.fimath)

ans =

  logical

   1

a + b

ans = 

   11.1416

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 19
        FractionLength: 13

To perform arithmetic with +, -, .*, or *, two fi operands must also have the same data type. For
example, you can add two fi objects with data type double, but you cannot add an object with data
type double and one with data type single:

a = fi(3, 'DataType', 'double')

a = 

     3

          DataTypeMode: Double

b = fi(27, 'DataType', 'double')

b = 

    27

          DataTypeMode: Double

a + b

ans = 

    30

          DataTypeMode: Double
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c = fi(12, 'DataType', 'single')

c = 

    12

          DataTypeMode: Single

a + c

Error using  +  (line 24)
Math operations are not allowed on fi objects with different data types.

Fixed-point fi object operands do not have to have the same scaling. You can perform binary math
operations on a fi object with a fixed-point data type and a fi object with a scaled doubles data type.
In this sense, the scaled double data type acts as a fixed-point data type:

a = fi(pi)

a = 

    3.1416

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 13

b = fi(magic(2), ...
'DataTypeMode', 'Scaled double: binary point scaling')

b = 

     1     3
     4     2

          DataTypeMode: Scaled double: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 12

a + b

ans = 

    4.1416    6.1416
    7.1416    5.1416

          DataTypeMode: Scaled double: binary point scaling
            Signedness: Signed
            WordLength: 18
        FractionLength: 13

Use the divide function to perform division with doubles, singles, or binary point-only scaling fi
objects.
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[Slope Bias] Arithmetic
Fixed-Point Designer software supports fixed-point arithmetic using the local fimath object or
default fimath for all binary point-only signals. The toolbox also supports arithmetic for [Slope Bias]
signals with the following restrictions:

• [Slope Bias] signals must be real.
• You must set the SumMode and ProductMode properties of the governing fimath to

'SpecifyPrecision' for sum and multiply operations, respectively.
• You must set the CastBeforeSum property of the governing fimath to 'true'.
• Fixed-Point Designer does not support the divide function for [Slope Bias] signals.

f = fimath('SumMode', 'SpecifyPrecision', ...
           'SumFractionLength', 16)

f = 

        RoundingMethod: Nearest
        OverflowAction: Saturate
           ProductMode: FullPrecision
               SumMode: SpecifyPrecision
         SumWordLength: 32
     SumFractionLength: 16
         CastBeforeSum: true

a = fi(pi, 'fimath', f)

a = 

    3.1416

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 13

        RoundingMethod: Nearest
        OverflowAction: Saturate
           ProductMode: FullPrecision
               SumMode: SpecifyPrecision
         SumWordLength: 32
     SumFractionLength: 16
         CastBeforeSum: true

b = fi(22, true, 16, 2^-8, 3, 'fimath', f)

b = 

    22

          DataTypeMode: Fixed-point: slope and bias scaling
            Signedness: Signed
            WordLength: 16
                 Slope: 0.00390625
                  Bias: 3
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        RoundingMethod: Nearest
        OverflowAction: Saturate
           ProductMode: FullPrecision
               SumMode: SpecifyPrecision
         SumWordLength: 32
     SumFractionLength: 16
         CastBeforeSum: true

a + b

ans = 

   25.1416

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 32
        FractionLength: 16

        RoundingMethod: Nearest
        OverflowAction: Saturate
           ProductMode: FullPrecision
               SumMode: SpecifyPrecision
         SumWordLength: 32
     SumFractionLength: 16
         CastBeforeSum: true

Setting the SumMode and ProductMode properties to SpecifyPrecision are mutually exclusive
except when performing the * operation between matrices. In this case, you must set both the
SumMode and ProductMode properties to SpecifyPrecision for [Slope Bias] signals. Doing so is
necessary because the * operation performs both sum and multiply operations to calculate the result.
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fimath for Rounding and Overflow Modes
Only rounding methods and overflow actions set prior to an operation with fi objects affect the
outcome of those operations. Once you create a fi object in MATLAB, changing its rounding or
overflow settings does not affect its value. For example, consider the fi objects a and b:

p = fipref('NumberDisplay', 'RealWorldValue',...
'NumericTypeDisplay', 'none', 'FimathDisplay', 'none');
T = numerictype('WordLength',8,'FractionLength',7);
F = fimath('RoundingMethod','Floor','OverflowAction','Wrap');
a = fi(1,T,F)

a = 

    -1

b = fi(1,T)

b = 

    0.9922

Because you create a with a fimath object F that has OverflowAction set to Wrap, the value of a
wraps to -1. Conversely, because you create b with the default OverflowAction value of Saturate,
its value saturates to 0.9922.

Now, assign the fimath object F to b:

b.fimath = F

b = 

    0.9922

Because the assignment operation and corresponding overflow and saturation happened when you
created b, its value does not change when you assign it the new fimath object F.

Note fi objects with no local fimath and created from a floating-point value always get constructed
with a RoundingMethod of Nearest and an OverflowAction of Saturate. To construct fi
objects with different RoundingMethod and OverflowAction properties, specify the desired
RoundingMethod and OverflowAction properties in the fi constructor.

For more information about the fimath object and its properties, see “fimath Object Properties” on
page 3-4

3 Working with fimath Objects

3-16



fimath for Sharing Arithmetic Rules
There are two ways of sharing fimath properties in Fixed-Point Designer software:

• “Default fimath Usage to Share Arithmetic Rules” on page 3-17
• “Local fimath Usage to Share Arithmetic Rules” on page 3-17

Sharing fimath properties across fi objects ensures that the fi objects are using the same
arithmetic rules and helps you avoid “mismatched fimath” errors.

Default fimath Usage to Share Arithmetic Rules
You can ensure that your fi objects are all using the same fimath properties by not specifying any
local fimath. To assure no local fimath is associated with a fi object, you can:

• Create a fi object using the fi constructor without specifying any fimath properties in the
constructor call. For example:

a = fi(pi)
• Create a fi object using the sfi or ufi constructor. All fi objects created with these

constructors have no local fimath.

b = sfi(pi)
• Use removefimath to remove a local fimath object from an existing fi object.

Local fimath Usage to Share Arithmetic Rules
You can also use a fimath object to define common arithmetic rules that you would like to use for
multiple fi objects. You can then create your fi objects, using the same fimath object for each. To
do so, you must also create a numerictype object to define a common data type and scaling. Refer
to “numerictype Object Construction” on page 5-2 for more information on numerictype objects.
The following example shows the creation of a numerictype object and fimath object, and then
uses those objects to create two fi objects with the same numerictype and fimath attributes:

T = numerictype('WordLength', 32, 'FractionLength', 30)

T =

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 32
        FractionLength: 30

F = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap')

F = 

        RoundingMethod: Floor
        OverflowAction: Wrap
           ProductMode: FullPrecision
               SumMode: FullPrecision

a = fi(pi, T, F)
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a = 

   -0.8584

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 32
        FractionLength: 30

        RoundingMethod: Floor
        OverflowAction: Wrap
           ProductMode: FullPrecision
               SumMode: FullPrecision

b = fi(pi/2, T, F)

b = 

    1.5708

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 32
        FractionLength: 30

        RoundingMethod: Floor
        OverflowAction: Wrap
           ProductMode: FullPrecision
               SumMode: FullPrecision

3 Working with fimath Objects

3-18



fimath ProductMode and SumMode
In this section...
“Example Setup” on page 3-19
“FullPrecision” on page 3-19
“KeepLSB” on page 3-20
“KeepMSB” on page 3-21
“SpecifyPrecision” on page 3-22

Example Setup
The examples in the sections of this topic show the differences among the four settings of the
ProductMode and SumMode properties:

• FullPrecision
• KeepLSB
• KeepMSB
• SpecifyPrecision

To follow along, first set the following preferences:

p = fipref;
p.NumericTypeDisplay = 'short';
p.FimathDisplay = 'none';
p.LoggingMode = 'on';
F = fimath('OverflowAction','Wrap','RoundingMethod','Floor',...
        'CastBeforeSum',false);
warning off
format compact

Next, define fi objects a and b. Both have signed 8-bit data types. The fraction length gets chosen
automatically for each fi object to yield the best possible precision:

a = fi(pi, true, 8)

a = 
    3.1562
      numerictype(1,8,5)

b = fi(exp(1), true, 8)

b = 
    2.7188
      numerictype(1,8,5)

FullPrecision
Now, set ProductMode and SumMode for a and b to FullPrecision and look at some results:

F.ProductMode = 'FullPrecision';
F.SumMode = 'FullPrecision';
a.fimath = F;
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b.fimath = F;
a

a = 
    3.1562
      numerictype(1,8,5)

b

b = 
    2.7188
      numerictype(1,8,5)

a*b

ans = 
    8.5811
      numerictype(1,16,10)

a+b

ans = 
    5.8750
      numerictype(1,9,5)

In FullPrecision mode, the product word length grows to the sum of the word lengths of the
operands. In this case, each operand has 8 bits, so the product word length is 16 bits. The product
fraction length is the sum of the fraction lengths of the operands, in this case 5 + 5 = 10 bits.

The sum word length grows by one most significant bit to accommodate the possibility of a carry bit.
The sum fraction length aligns with the fraction lengths of the operands, and all fractional bits are
kept for full precision. In this case, both operands have 5 fractional bits, so the sum has 5 fractional
bits.

KeepLSB
Now, set ProductMode and SumMode for a and b to KeepLSB and look at some results:

F.ProductMode = 'KeepLSB';
F.ProductWordLength = 12;
F.SumMode = 'KeepLSB';
F.SumWordLength = 12;
a.fimath = F;
b.fimath = F;
a

a = 
    3.1562
      numerictype(1,8,5)

b

b = 
    2.7188
      numerictype(1,8,5)

a*b
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ans = 
    0.5811
      numerictype(1,12,10)

a+b

ans = 
    5.8750
      numerictype(1,12,5)

In KeepLSB mode, you specify the word lengths and the least significant bits of results are
automatically kept. This mode models the behavior of integer operations in the C language.

The product fraction length is the sum of the fraction lengths of the operands. In this case, each
operand has 5 fractional bits, so the product fraction length is 10 bits. In this mode, all 10 fractional
bits are kept. Overflow occurs because the full-precision result requires 6 integer bits, and only 2
integer bits remain in the product.

The sum fraction length aligns with the fraction lengths of the operands, and in this model all least
significant bits are kept. In this case, both operands had 5 fractional bits, so the sum has 5 fractional
bits. The full-precision result requires 4 integer bits, and 7 integer bits remain in the sum, so no
overflow occurs in the sum.

KeepMSB
Now, set ProductMode and SumMode for a and b to KeepMSB and look at some results:

F.ProductMode = 'KeepMSB';
F.ProductWordLength = 12;
F.SumMode = 'KeepMSB';
F.SumWordLength = 12;
a.fimath = F;
b.fimath = F;
a

a = 
    3.1562
      numerictype(1,8,5)

b

b = 
    2.7188
      numerictype(1,8,5)

a*b

ans = 
    8.5781
      numerictype(1,12,6)

a+b

ans = 
    5.8750
      numerictype(1,12,8)

In KeepMSB mode, you specify the word lengths and the most significant bits of sum and product
results are automatically kept. This mode models the behavior of many DSP devices where the
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product and sum are kept in double-wide registers, and the programmer chooses to transfer the most
significant bits from the registers to memory after each operation.

The full-precision product requires 6 integer bits, and the fraction length of the product is adjusted to
accommodate all 6 integer bits in this mode. No overflow occurs. However, the full-precision product
requires 10 fractional bits, and only 6 are available. Therefore, precision is lost.

The full-precision sum requires 4 integer bits, and the fraction length of the sum is adjusted to
accommodate all 4 integer bits in this mode. The full-precision sum requires only 5 fractional bits; in
this case there are 8, so there is no loss of precision.

This example shows that, in KeepMSB mode the fraction length changes regardless of whether an
overflow occurs. The fraction length is set to the amount needed to represent the product in case
both terms use the maximum possible value (18+18-16=20 in this example).

F = fimath('SumMode','KeepMSB','ProductMode','KeepMSB',...
    'ProductWordLength',16,'SumWordLength',16);
a = fi(100,1,16,-2,'fimath',F);
a*a

ans = 
     0
      numerictype(1,16,-20)

SpecifyPrecision
Now set ProductMode and SumMode for a and b to SpecifyPrecision and look at some results:

F.ProductMode = 'SpecifyPrecision';
F.ProductWordLength = 8;
F.ProductFractionLength = 7;
F.SumMode = 'SpecifyPrecision';
F.SumWordLength = 8;
F.SumFractionLength = 7;
a.fimath = F;
b.fimath = F;
a

a = 
    3.1562
      numerictype(1,8,5)

b

b = 
    2.7188
      numerictype(1,8,5)

a*b

ans = 
    0.5781
      numerictype(1,8,7)

a+b
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ans = 
   -0.1250
      numerictype(1,8,7)

In SpecifyPrecision mode, you must specify both word length and fraction length for sums and
products. This example unwisely uses fractional formats for the products and sums, with 8-bit word
lengths and 7-bit fraction lengths.

The full-precision product requires 6 integer bits, and the example specifies only 1, so the product
overflows. The full-precision product requires 10 fractional bits, and the example only specifies 7, so
there is precision loss in the product.

The full-precision sum requires 4 integer bits, and the example specifies only 1, so the sum overflows.
The full-precision sum requires 5 fractional bits, and the example specifies 7, so there is no loss of
precision in the sum.

For more information about the fimath object and its properties, see “fimath Object Properties” on
page 3-4
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How Functions Use fimath
In this section...
“Functions that use then discard attached fimath” on page 3-24
“Functions that ignore and discard attached fimath” on page 3-24
“Functions that do not perform math” on page 3-24

Functions that use then discard attached fimath
Functions Note
conv, filter Error if attached fimaths differ.
mean, median —

Functions that ignore and discard attached fimath
Functions Note
accumneg, accumpos • By default, use Floor rounding method and

Wrap overflow
add, sub, mpy • Override and discard any fimath objects

attached to the input fi objects
• Uses the fimath from input, F, as in add(F,

a, b)
CORDIC functions (see “CORDIC Algorithms in
MATLAB”)

CORDIC functions use their own internal
fimath:

• Rounding Mode – Floor
• Overflow Action – Wrap

mod —
qr —
quantize Uses the math settings on the quantizer object,

ignores and discards any fimath settings on the
input

Trigonometric functions — atan2, cos, sin —

Functions that do not perform math
Functions Note
Built-in Types—int32, int64, int8, uint16,
uint32, uint64, uint8

Ignore any fimath settings on the input. Always
use the rounding method Round when casting to
the new data type. The output is not a fi object
so it has no attached fimath.

bitsll, bitsra, bitsrl OverflowAction and RoundingMethod are
ignored — bits drop off the end.
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Functions Note
bitshift RoundingMethod is ignored, but

OverflowAction property is obeyed.
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Working with fipref Objects

• “Set fi Object Display Preferences Using fipref” on page 4-2
• “Underflow and Overflow Logging Using fipref” on page 4-3
• “Data Type Override Preferences Using fipref” on page 4-7
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Set fi Object Display Preferences Using fipref
You use the fipref object to specify three aspects of the display of fi objects: the object values, the
local fimath properties, and the numerictype properties.

For example, the following code shows the default fipref display for a fi object with a local
fimath object:

a = fi(pi,'RoundingMethod','Floor','OverflowAction','Wrap')

a = 
    3.1415

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 13

        RoundingMethod: Floor
        OverflowAction: Wrap
           ProductMode: FullPrecision
               SumMode: FullPrecision

The default fipref display for a fi object with no local fimath is as follows:

a = fi(pi)

a = 
    3.1416

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 13

Next, change the fipref display properties:

P = fipref;
P.NumberDisplay = 'bin';
P.NumericTypeDisplay = 'short';
P.FimathDisplay = 'none'

P = 
         NumberDisplay: 'bin'
    NumericTypeDisplay: 'short'
         FimathDisplay: 'none'
           LoggingMode: 'Off'
      DataTypeOverride: 'ForceOff'

a

a = 
0110010010001000
      numerictype(1,16,13)
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Underflow and Overflow Logging Using fipref
In this section...
“Logging Overflows and Underflows as Warnings” on page 4-3
“Accessing Logged Information with Functions” on page 4-5

Logging Overflows and Underflows as Warnings
Overflows and underflows are logged as warnings for all assignment, plus, minus, and multiplication
operations when the fipref LoggingMode property is set to on. For example, try the following:

1 Create a signed fi object that is a vector of values from 1 to 5, with 8-bit word length and 6-bit
fraction length.

a = fi(1:5,1,8,6);
2 Define the fimath object associated with a, and indicate that you will specify the sum and

product word and fraction lengths.

F = a.fimath;
F.SumMode = 'SpecifyPrecision';
F.ProductMode = 'SpecifyPrecision';
a.fimath = F;

3 Define the fipref object and turn on overflow and underflow logging.

P = fipref;
P.LoggingMode = 'on';

4 Suppress the numerictype and fimath displays.

P.NumericTypeDisplay = 'none';
P.FimathDisplay = 'none';

5 Specify the sum and product word and fraction lengths.

a.SumWordLength = 16;
a.SumFractionLength = 15;
a.ProductWordLength = 16;
a.ProductFractionLength = 15;

6 Warnings are displayed for overflows and underflows in assignment operations. For example, try:

a(1) = pi

Warning: 1 overflow(s) occurred in the fi assignment operation. 

a = 

    1.9844    1.9844    1.9844    1.9844    1.9844

a(1) = double(eps(a))/10

Warning: 1 underflow(s) occurred in the fi assignment operation. 

a = 

         0    1.9844    1.9844    1.9844    1.9844
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7 Warnings are displayed for overflows and underflows in addition and subtraction operations. For
example, try:

a+a

Warning: 12 overflow(s) occurred in the fi + operation. 
> In  +  (line 24) 

ans = 

         0    1.0000    1.0000    1.0000    1.0000

a-a

Warning: 8 overflow(s) occurred in the fi - operation. 
> In  -  (line 24) 

ans = 

     0     0     0     0     0
8 Warnings are displayed for overflows and underflows in multiplication operations. For example,

try:

a.*a

Warning: 4 product overflow(s) occurred in the fi .* operation. 
> In  .*  (line 24) 

ans = 

         0    1.0000    1.0000    1.0000    1.0000

a*a'

Warning: 4 product overflow(s) occurred in the fi * operation. 
> In  *  (line 25) 
Warning: 3 sum overflow(s) occurred in the fi * operation. 
> In  *  (line 25) 

ans = 

    1.0000

The final example above is a complex multiplication that requires both multiplication and addition
operations. The warnings inform you of overflows and underflows in both.

Because overflows and underflows are logged as warnings, you can use the dbstop MATLAB function
with the syntax

dbstop if warning

to find the exact lines in a file that are causing overflows or underflows.

Use

dbstop if warning fi:underflow

to stop only on lines that cause an underflow. Use
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dbstop if warning fi:overflow

to stop only on lines that cause an overflow.

Accessing Logged Information with Functions
When the fipref LoggingMode property is set to on, you can use the following functions to return
logged information about assignment and creation operations to the MATLAB command line:

• maxlog — Returns the maximum real-world value
• minlog — Returns the minimum value
• noverflows — Returns the number of overflows
• nunderflows — Returns the number of underflows

LoggingMode must be set to on before you perform any operation in order to log information about
it. To clear the log, use the function resetlog.

For example, consider the following. First turn logging on, then perform operations, and then finally
get information about the operations:

fipref('LoggingMode','on');
x = fi([-1.5 eps 0.5], true, 16, 15);
x(1) = 3.0;

maxlog(x)

ans =

    1.0000

minlog(x)

ans =

    -1

noverflows(x)

ans =

     2

nunderflows(x)

ans =

     1

Next, reset the log and request the same information again. Note that the functions return empty [],
because logging has been reset since the operations were run:

resetlog(x)

maxlog(x)

Warning: Logging is turned on in 'maxlog'. However, no values have been logged for this variable yet. 
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ans =

     []

minlog(x)

Warning: Logging is turned on in 'minlog'. However, no values have been logged for this variable yet. 

ans =

     []

noverflows(x)

Warning: Logging is turned on in 'noverflows'. However, no values have been logged for this variable yet. 

ans =

     []

nunderflows(x)

Warning: Logging is turned on in 'nunderflows'. However, no values have been logged for this variable yet. 

ans =

     []
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Data Type Override Preferences Using fipref
In this section...
“Overriding the Data Type of fi Objects” on page 4-7
“Data Type Override for Fixed-Point Scaling” on page 4-8

Overriding the Data Type of fi Objects
Use the fipref DataTypeOverride property to override fi objects with singles, doubles, or scaled
doubles. Data type override only occurs when the fi constructor function is called. Objects that are
created while data type override is on have the overridden data type. They maintain that data type
when data type override is later turned off. To obtain an object with a data type that is not the
override data type, you must create an object when data type override is off:

p = fipref('DataTypeOverride', 'TrueDoubles')
 
p =
 
         NumberDisplay: 'RealWorldValue'
    NumericTypeDisplay: 'full'
         FimathDisplay: 'full'
           LoggingMode: 'Off'
      DataTypeOverride: 'TrueDoubles'

a = fi(pi)
 
a =
 
    3.1416

          DataTypeMode: Double

p = fipref('DataTypeOverride', 'ForceOff')
 
p =
 
         NumberDisplay: 'RealWorldValue'
    NumericTypeDisplay: 'full'
         FimathDisplay: 'full'
           LoggingMode: 'Off'
      DataTypeOverride: 'ForceOff'

a
 
a =
 
    3.1416

          DataTypeMode: Double

b = fi(pi)
 
b =
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    3.1416

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 13

Tip To reset the fipref object to its default values use reset(fipref) or reset(p), where p is a
fipref object. This is useful to ensure that data type override and logging are off.

Data Type Override for Fixed-Point Scaling
Choosing the scaling for the fixed-point variables in your algorithms can be difficult. In Fixed-Point
Designer software, you can use a combination of data type override and min/max logging to help you
discover the numerical ranges that your fixed-point data types need to cover. These ranges dictate the
appropriate scalings for your fixed-point data types. In general, the procedure is

1 Implement your algorithm using fixed-point fi objects, using initial “best guesses” for word
lengths and scalings.

2 Set the fipref DataTypeOverride property to ScaledDoubles, TrueSingles, or
TrueDoubles.

3 Set the fipref LoggingMode property to on.
4 Use the maxlog and minlog functions to log the maximum and minimum values achieved by the

variables in your algorithm in floating-point mode.
5 Set the fipref DataTypeOverride property to ForceOff.
6 Use the information obtained in step 4 to set the fixed-point scaling for each variable in your

algorithm such that the full numerical range of each variable is representable by its data type
and scaling.

A detailed example of this process is shown in the Fixed-Point Designer “Set Data Types Using
Min/Max Instrumentation” on page 53-177 example.
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Working with numerictype Objects

• “numerictype Object Construction” on page 5-2
• “numerictype Object Properties” on page 5-5
• “numerictype of Fixed-Point Objects” on page 5-9
• “numerictype Objects Usage to Share Data Type and Scaling Settings of fi objects” on page 5-12
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numerictype Object Construction

In this section...
“numerictype Object Syntaxes” on page 5-2
“Example: Construct a numerictype Object with Property Name and Property Value Pairs” on page 5-
2
“Example: Copy a numerictype Object” on page 5-3
“Example: Build numerictype Object Constructors in a GUI” on page 5-4

numerictype Object Syntaxes
numerictype objects define the data type and scaling attributes of fi objects, as well as Simulink
signals and model parameters. You can create numerictype objects in Fixed-Point Designer software
in one of two ways:

• You can use the numerictype constructor function to create a new object.
• You can use the numerictype constructor function to copy an existing numerictype object.

To create a default numerictype object, type

T = numerictype

T =
 

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 15

To see all of the numerictype object syntaxes, refer to the numerictype constructor function
reference page.

The following examples show different ways of constructing numerictype objects. For more
examples of constructing numerictype objects, see the “Examples” on the numerictype
constructor function reference page.

Example: Construct a numerictype Object with Property Name and
Property Value Pairs
When you create a numerictype object using property name and property value pairs, Fixed-Point
Designer software first creates a default numerictype object, and then, for each property name you
specify in the constructor, assigns the corresponding value.

This behavior differs from the behavior that occurs when you use a syntax such as T =
numerictype(s,w), where you only specify the property values in the constructor. Using such a
syntax results in no default numerictype object being created, and the numerictype object
receives only the assigned property values that are specified in the constructor.
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The following example shows how the property name/property value syntax creates a slightly
different numerictype object than the property values syntax, even when you specify the same
property values in both constructors.

To demonstrate this difference, suppose you want to create an unsigned numerictype object with a
word length of 32 bits.

First, create the numerictype object using property name/property value pairs.

T1 = numerictype('Signed',0,'WordLength',32)

T1 =
 

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Unsigned
            WordLength: 32
        FractionLength: 15

The numerictype object T1 has the same DataTypeMode and FractionLength as a default
numerictype object, but the WordLength and Signed properties are overwritten with the values
you specified.

Now, create another unsigned 32 bit numerictype object, but this time specify only property values
in the constructor.

T2 = numerictype(0,32)

T2 =
 

          DataTypeMode: Fixed-point: unspecified scaling
            Signedness: Unsigned
            WordLength: 32

Unlike T1, T2 only has the property values you specified. The DataTypeMode of T2 is Fixed-Point:
unspecified scaling, so no fraction length is assigned.

fi objects cannot have unspecified numerictype properties. Thus, all unspecified numerictype
object properties become specified at the time of fi object creation.

Example: Copy a numerictype Object
To copy a numerictype object, use assignment:

T = numerictype;
U = T;
isequal(T,U)

ans =

  logical

   1
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Example: Build numerictype Object Constructors in a GUI
When you are working with files in MATLAB, you can build your numerictype object constructors
using the Insert numerictype Constructor dialog box. After specifying the properties of the
numerictype object in the dialog box, you can insert the pre-populated numerictype object
constructor at a specific location in your file.

For example, create a signed numerictype object with binary-point scaling, a word length of 32 bits
and a fraction length of 30 bits:

1 On the Home tab, in the File section, click New > Script to open the MATLAB Editor
2

On the Editor tab, in the Edit section of the toolstrip, click  in the Insert button group.
Click the Insert numerictype to open the Insert numerictype Constructor dialog box.

3 Use the edit boxes and drop-down menus to specify the following properties of the numerictype
object:

• Data type mode: Fixed-point: binary point scaling
• Signedness: Signed
• Word length: 32
• Fraction length: 30

4 To insert the numerictype object constructor in your file, place your cursor at the desired
location in the file, and click OK on the Insert numerictype Constructor dialog box. Clicking
OK closes the Insert numerictype Constructor dialog box and automatically populates the
numerictype object constructor in your file:

numerictype(1, 32, 30)
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numerictype Object Properties

In this section...
“Data Type and Scaling Properties” on page 5-5
“How Properties are Related” on page 5-7
“Set numerictype Object Properties” on page 5-8

Data Type and Scaling Properties
All properties of a numerictype object are writable. However, the numerictype properties of a fi
object become read only after the fi object has been created. Any numerictype properties of a fi
object that are unspecified at the time of fi object creation are automatically set to their default
values. The properties of a numerictype object are:

Property Description Valid Values
Bias Bias associated with the object.

Along with the slope, the bias forms
the scaling of a fixed-point number.

• Any floating-point number

DataType Data type category • Fixed (default) — Fixed-point or integer data type
• boolean — Built-in MATLAB boolean data type
• double — Built-in MATLAB double data type
• ScaledDouble — Scaled double data type
• single — Built-in MATLAB single data type

DataTypeMode Data type and scaling associated
with the object

• Fixed-point: binary point scaling (default)
— Fixed-point data type and scaling defined by the
word length and fraction length

• Boolean — Built-in boolean
• Double — Built-in double
• Fixed-point: slope and bias scaling —

Fixed-point data type and scaling defined by the
slope and bias

• Fixed-point: unspecified scaling — Fixed-
point data type with unspecified scaling

• Scaled double: binary point scaling —
Double data type with fixed-point word length and
fraction length information retained

• Scaled double: slope and bias scaling —
Double data type with fixed-point slope and bias
information retained

• Scaled double: unspecified scaling —
Double data type with unspecified fixed-point scaling

• Single — Built-in single
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Property Description Valid Values
FixedExponen
t

Fixed-point exponent associated with
the object

• Any integer

Note The FixedExponent property is the negative of
the FractionLength. Changing one property changes
the other.

FractionLeng
th

Fraction length of the stored integer
value, in bits

• Best precision fraction length based on value of the
object and the word length (default)

• Any integer

Note The FractionLength property is the negative of
the FixedExponent. Changing one property changes
the other.

Scaling Scaling mode of the object • BinaryPoint (default) — Scaling for the fi object
is defined by the fraction length.

• SlopeBias — Scaling for the fi object is defined by
the slope and bias.

• Unspecified — A temporary setting that is only
allowed at fi object creation, to allow for the
automatic assignment of a binary point best-
precision scaling.

Signed Whether the object is signed

Note Although the Signed property
is still supported, the Signedness
property always appears in the
numerictype object display. If you
choose to change or set the
signedness of your numerictype
objects using the Signed property,
MATLAB updates the corresponding
value of the Signedness property.

• true (default) — signed
• false — unsigned
• 1 — signed
• 0 — unsigned
• [] — auto

Signedness Whether the object is signed,
unsigned, or has an unspecified sign

• Signed (default)
• Unsigned
• Auto — unspecified sign

Slope Slope associated with the object

Along with the bias, the slope forms
the scaling of a fixed-point number.

• Any finite floating-point number greater than zero

Note

slope = slopead justmentfactor × 2f ixedexponent

Changing one of these properties changes the other.
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Property Description Valid Values
Slope
AdjustmentFa
ctor

Slope adjustment associated with the
object

The slope adjustment is equivalent to
the fractional slope of a fixed-point
number.

• Any number greater than or equal to 1 and less than
2

Note

slope = slopead justmentfactor × 2f ixedexponent

Changing one of these properties changes the other.
WordLength Word length of the stored integer

value, in bits
• 16 (default)
• Any positive integer if Signedness is Unsigned or
unspecified

• Any integer greater than one if Signedness is set to
Signed

These properties are described in detail in the “fi Object Properties” on page 2-15. To learn how to
specify properties for numerictype objects in Fixed-Point Designer software, refer to “Set
numerictype Object Properties” on page 5-8.

How Properties are Related
Properties that affect the slope

The Slope field of the numerictype object is related to the SlopeAdjustmentFactor and
FixedExponent properties by

slope = slopead justmentfactor × 2f ixedexponent

The FixedExponent and FractionLength properties are related by

f ixedexponent = − f ractionlength

If you set the SlopeAdjustmentFactor, FixedExponent, or FractionLength property, the
Slope field is modified.

Stored integer value and real world value

In binary point scaling the numerictype StoredIntegerValue and RealWorldValue properties
are related according to

real‐worldvalue = storedintegervalue × 2− f ractionlength

In [Slope Bias] scaling the RealWorldValue can be represented by

real‐worldvalue =

            storedintegervalue × (slopead justmentfactor × 2f ixedexponent) + bias

which is equivalent to

real‐worldvalue = (slope × storedinteger) + bias

If any of these properties are updated, the others are modified accordingly.
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Set numerictype Object Properties
Setting numerictype Properties at Object Creation

You can set properties of numerictype objects at the time of object creation by including properties
after the arguments of the numerictype constructor function.

For example, to set the word length to 32 bits and the fraction length to 30 bits,

T = numerictype('WordLength',32,'FractionLength',30)

T =
 

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 32
        FractionLength: 30

In addition to creating a numerictype object at the command line, you can also set numerictype
properties using the Insert numerictype Constructor dialog box. For an example of this approach,
see “Example: Build numerictype Object Constructors in a GUI” on page 5-4.

Use Direct Property Referencing with numerictype Objects

You can reference directly into a property for setting or retrieving numerictype object property
values using MATLAB structure-like referencing. You do this by using a period to index into a
property by name.

For example, to get the word length of T,

T.WordLength

ans =

32

To set the fraction length of T,

T.FractionLength = 31

T =
 

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 32
        FractionLength: 31
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numerictype of Fixed-Point Objects
In this section...
“Valid Values for numerictype Object Properties” on page 5-9
“Properties That Affect the Slope” on page 5-10
“Stored Integer Value and Real World Value” on page 5-10

Valid Values for numerictype Object Properties
The numerictype object contains all the data type and scaling attributes of a fixed-point object. The
numerictype object behaves like any MATLAB object, except that it only lets you set valid values for
defined fields. The following table shows the possible settings of each field of the object.

Note When you create a fi object, any unspecified field of the numerictype object reverts to its
default value. Thus, if the DataTypeMode is set to unspecified scaling, it defaults to binary
point scaling when the fi object is created. If the Signedness property of the numerictype
object is set to Auto, it defaults to Signed when the fi object is created.

DataTypeMode DataType Scaling Signedness Word-
Length

Fraction-
Length

Slope Bias

Fixed-point data types
Fixed-point:
binary point
scaling

Fixed BinaryPoint Signed
Unsigned
Auto

Positive
integer
from 1 to
65,535

Positive or
negative
integer

2^(-
fraction
length)

0

Fixed-point:
slope and bias
scaling

Fixed SlopeBias Signed
Unsigned
Auto

Positive
integer
from 1 to
65,535

N/A Any
floating-
point
number
greater
than zero

Any
floating
- point
number

Fixed-point:
unspecified
scaling

Fixed Unspecified Signed
Unsigned
Auto

Positive
integer
from 1 to
65,535

N/A N/A N/A

Scaled double data types
Scaled double:
binary point
scaling

ScaledDouble BinaryPoint Signed
Unsigned
Auto

Positive
integer
from 1 to
65,535

Positive or
negative
integer

2^(-
fraction
length)

0
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DataTypeMode DataType Scaling Signedness Word-
Length

Fraction-
Length

Slope Bias

Scaled double:
slope and bias
scaling

ScaledDouble SlopeBias Signed
Unsigned
Auto

Positive
integer
from 1 to
65,535

N/A Any
floating-
point
number
greater
than zero

Any
floating
- point
number

Scaled double:
unspecified
scaling

ScaledDouble Unspecified Signed
Unsigned
Auto

Positive
integer
from 1 to
65,535

N/A N/A N/A

Built-in data types
Double double N/A 1

true
64 0 1 0

Single single N/A 1
true

32 0 1 0

Boolean boolean N/A 0
false

1 0 1 0

You cannot change the numerictype properties of a fi object after fi object creation.

Properties That Affect the Slope
The Slope field of the numerictype object is related to the SlopeAdjustmentFactor and
FixedExponent properties by

slope = slopead justmentfactor × 2f ixedexponent

The FixedExponent and FractionLength properties are related by

f ixedexponent = − f ractionlength

If you set the SlopeAdjustmentFactor, FixedExponent, or FractionLength property, the
Slope field is modified.

Stored Integer Value and Real World Value
In binary point scaling the numerictype StoredIntegerValue and RealWorldValue properties
are related according to

real‐worldvalue = storedintegervalue × 2− f ractionlength

In [Slope Bias] scaling the RealWorldValue can be represented by

real‐worldvalue =

            storedintegervalue × (slopead justmentfactor × 2f ixedexponent) + bias

which is equivalent to
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real‐worldvalue = (slope × storedinteger) + bias

If any of these properties are updated, the others are modified accordingly.

See Also

More About
• “numerictype Object Properties” on page 5-5
• “Scaling” on page 1-3
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numerictype Objects Usage to Share Data Type and Scaling
Settings of fi objects

You can use a numerictype object to define common data type and scaling rules that you would like
to use for many fi objects. You can then create multiple fi objects, using the same numerictype
object for each.

Example 1
In the following example, you create a numerictype object T with word length 32 and fraction
length 28. Next, to ensure that your fi objects have the same numerictype attributes, create fi
objects a and b using your numerictype object T.

format long g
T = numerictype('WordLength',32,'FractionLength',28)

T =
 

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 32
        FractionLength: 28

a = fi(pi,T)

a =
 
           3.1415926553309

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 32
        FractionLength: 28

b = fi(pi/2,T)

b =
 
           1.5707963258028

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 32
        FractionLength: 28

Example 2
In this example, start by creating a numerictype object T with [Slope Bias] scaling. Next, use that
object to create two fi objects, c and d with the same numerictype attributes:

T = numerictype('Scaling','slopebias','Slope',2^2,'Bias',0)
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T =
 
          DataTypeMode: Fixed-point: slope and bias scaling
            Signedness: Signed
            WordLength: 16
                 Slope: 2^2
                  Bias: 0

c = fi(pi,T)

c =
 
     4

          DataTypeMode: Fixed-point: slope and bias scaling
            Signedness: Signed
            WordLength: 16
                 Slope: 2^2
                  Bias: 0

d = fi(pi/2,T)

d =
 
     0

          DataTypeMode: Fixed-point: slope and bias scaling
            Signedness: Signed
            WordLength: 16
                 Slope: 2^2
                  Bias: 0

For more detail on the properties of numerictype objects see “numerictype Object Properties” on
page 5-5.
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Transformations for Quantized Data
You can convert data values from numeric to hexadecimal or binary according to the specifications of
a quantizer object.

• Use num2bin to convert data to binary
• Use num2hex to convert data to hexadecimal
• Use hex2num to convert hexadecimal data to numeric
• Use bin2num to convert binary data to numeric

For example,

q = quantizer([3 2]);
x = [0.75   -0.25
     0.50   -0.50
     0.25   -0.75
        0      -1 ];
b = num2bin(q,x)

b = 8x3 char array
    '011'
    '010'
    '001'
    '000'
    '111'
    '110'
    '101'
    '100'

produces all two's complement fractional representations of 3-bit fixed-point numbers.

See Also
num2bin | num2hex | hex2num | bin2num
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Automated Fixed-Point Conversion

• “Fixed-Point Conversion Workflows” on page 7-2
• “Automated Fixed-Point Conversion” on page 7-4
• “Debug Numerical Issues in Fixed-Point Conversion Using Variable Logging” on page 7-23
• “MATLAB Language Features Supported for Automated Fixed-Point Conversion” on page 7-35
• “Generated Fixed-Point Code” on page 7-37
• “Fixed-Point Code for MATLAB Classes” on page 7-42
• “Automated Fixed-Point Conversion Best Practices” on page 7-44
• “Replacing Functions Using Lookup Table Approximations” on page 7-50
• “Custom Plot Functions” on page 7-51
• “Generate Fixed-Point MATLAB Code for Multiple Entry-Point Functions” on page 7-52
• “Convert Code Containing Global Data to Fixed Point” on page 7-56
• “Convert Code Containing Global Variables to Fixed-Point” on page 7-60
• “Convert Code Containing Structures to Fixed Point” on page 7-64
• “Data Type Issues in Generated Code” on page 7-67
• “System Objects Supported by Fixed-Point Converter App” on page 7-69
• “Convert dsp.FIRFilter Object to Fixed-Point Using the Fixed-Point Converter App” on page 7-70
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Fixed-Point Conversion Workflows
In this section...
“Choosing a Conversion Workflow” on page 7-2
“Automated Workflow” on page 7-2
“Manual Workflow” on page 7-2

Choosing a Conversion Workflow
MathWorks® provides a number of solutions for fixed-point conversion. Which conversion method you
use depends on your end goal and your level of fixed-point expertise.

Goal Conversion Method See Also
Use generated fixed-point
MATLAB code for simulation
purposes.

If you are new to fixed-point
modeling, use the Fixed-Point
Converter app.

“Automated Workflow” on page
7-2

If you are familiar with fixed-
point modeling, and want to
quickly explore design tradeoffs,
convert your code manually.

“Manual Workflow” on page 7-
2

Generate fixed-point C code
(requires MATLAB Coder™)

MATLAB Coder Fixed-Point
Conversion tool

“Convert MATLAB Code to
Fixed-Point C Code” (MATLAB
Coder)

Generated HDL code (requires
HDL Coder™)

HDL Coder Workflow Advisor “Floating-Point to Fixed-Point
Conversion” (HDL Coder)

Integrate fixed-point MATLAB
code in larger applications for
system-level simulation.

Generate a MEX function from
the fixed-point algorithm and
call the MEX function instead of
the original MATLAB function.

“Propose Data Types Based on
Simulation Ranges” on page 8-
13 and “Propose Data Types
Based on Derived Ranges” on
page 8-24

Automated Workflow
If you are new to fixed-point modeling and you are looking for a direct path from floating-point
MATLAB to fixed-point MATLAB code, use the automated workflow. Using this automated workflow,
you can obtain data type proposals based on simulation ranges, static ranges, or both. For more
information, see “Automated Fixed-Point Conversion” on page 7-4, “Propose Data Types Based on
Simulation Ranges” on page 8-13, and “Propose Data Types Based on Derived Ranges” on page 8-
24.

Manual Workflow
If you have a baseline understanding of fixed-point implementation details and an interest in
exploring design tradeoffs to achieve optimized results, use the separate algorithm/data type
workflow. Separating algorithmic code from data type specifications allows you to quickly explore
design tradeoffs. This approach provides readable, portable fixed-point code that you can easily
integrated into other projects. For more information, see “Manual Fixed-Point Conversion Workflow”
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on page 11-2 and “Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using
cast and zeros” on page 53-188.
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Automated Fixed-Point Conversion

In this section...
“Automated Fixed-Point Conversion Capabilities” on page 7-4
“Code Coverage” on page 7-5
“Proposing Data Types” on page 7-7
“Locking Proposed Data Types” on page 7-10
“Viewing Functions” on page 7-10
“Viewing Variables” on page 7-17
“Log Data for Histogram” on page 7-19
“Function Replacements” on page 7-21
“Validating Types” on page 7-21
“Testing Numerics” on page 7-22
“Detecting Overflows” on page 7-22

Automated Fixed-Point Conversion Capabilities
You can convert floating-point MATLAB code to fixed-point code using the Fixed-Point Converter app
or at the command line using the fiaccel function -float2fixed option. You can choose to
propose data types based on simulation range data, derived (also known as static) range data, or
both.

You can manually enter static ranges. These manually entered ranges take precedence over
simulation ranges and the app uses them when proposing data types. In addition, you can modify and
lock the proposed type so that the app cannot change it. For more information, see “Locking
Proposed Data Types” on page 7-10.

For a list of supported MATLAB features and functions, see “MATLAB Language Features Supported
for Automated Fixed-Point Conversion” on page 7-35.

During fixed-point conversion, you can:

• Verify that your test files cover the full intended operating range of your algorithm using code
coverage results.

• Propose fraction lengths based on default word lengths.
• Propose word lengths based on default fraction lengths.
• Optimize whole numbers.
• Specify safety margins for simulation min/max data.
• Validate that you can build your project with the proposed data types.
• Test numerics by running the test file with the fixed-point types applied.
• View a histogram of bits that each variable uses.
• Detect overflows.
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Code Coverage
By default, the app shows code coverage results. Your test files must exercise the algorithm over its
full operating range so that the simulation ranges are accurate. The quality of the proposed fixed-
point data types depends on how well the test files cover the operating range of the algorithm with
the accuracy that you want.

Reviewing code coverage results helps you to verify that your test files are exercising the algorithm
adequately. If the code coverage is inadequate, modify the test files or add more test files to increase
coverage. If you simulate multiple test files in one run, the app displays cumulative coverage.
However, if you specify multiple test files, but run them one at a time, the app displays the coverage
of the file that ran last.

The app displays a color-coded coverage bar to the left of the code.

This table describes the color coding.
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Coverage Bar
Color

Indicates

Green One of the following situations:

• The entry-point function executes multiple times and the code executes more
than one time.

• The entry-point function executes one time and the code executes one time.

Different shades of green indicate different ranges of line execution counts. The
darkest shade of green indicates the highest range.

Orange The entry-point function executes multiple times, but the code executes one
time.

Red Code does not execute.

When you place your cursor over the coverage bar, the color highlighting extends over the code. For
each section of code, the app displays the number of times that the section executes.
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To verify that your test files are testing your algorithm over the intended operating range, review the
code coverage results.

Coverage Bar
Color

Action

Green If you expect sections of code to execute more frequently than the coverage
shows, either modify the MATLAB code or the test files.

Orange This behavior is expected for initialization code, for example, the initialization
of persistent variables. If you expect the code to execute more than one time,
either modify the MATLAB code or the test files.

Red If the code that does not execute is an error condition, this behavior is
acceptable. If you expect the code to execute, either modify the MATLAB code
or the test files. If the code is written conservatively and has upper and lower
boundary limits, and you cannot modify the test files to reach this code, add
static minimum and maximum values. See “Computing Derived Ranges” on
page 7-9.

Code coverage is on by default. Turn it off only after you have verified that you have adequate test file
coverage. Turning off code coverage can speed up simulation. To turn off code coverage, on the
Convert to Fixed Point page:

1 Click the Analyze arrow .
2 Clear the Show code coverage check box.

Proposing Data Types
In the define input types step, you specify a test file that calls the entry-point function. The app runs
the test file to analyze the code and infer the types for entry-point input arguments.
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The app proposes fixed-point data types based on computed ranges and the word length or fraction
length setting. The computed ranges are based on simulation range data, derived range data (also
known as static ranges), or both. If you run a simulation and compute derived ranges, the app merges
the simulation and derived ranges.

Note You cannot propose data types based on derived ranges for MATLAB classes.

Derived range analysis is not supported for non-scalar variables.

You can manually enter static ranges. These manually entered ranges take precedence over
simulation ranges and the app uses them when proposing data types. If you analyze ranges using
derived range analysis alone, you must enter static ranges.

You can modify and lock the proposed type so that the tool cannot change it. For more information,
see “Locking Proposed Data Types” on page 7-10.

Running a Simulation

During fixed-point conversion, the app generates an instrumented MEX function for your entry-point
MATLAB file. If the build completes without errors, the app displays compiled information (type, size,
complexity) for functions and variables in your code. To navigate to local functions, click the
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Functions tab. If build errors occur, the app provides error messages that link to the line of code that
caused the build issues. You must address these errors before running a simulation. Use the link to
navigate to the offending line of code in the MATLAB editor and modify the code to fix the issue. If
your code uses functions that are not supported for fixed-point conversion, the app displays them on
the Function Replacements tab. See “Function Replacements” on page 7-21.

Before running a simulation, specify the test file or files that you want to run. When you run a
simulation, the app runs the test file, calling the instrumented MEX function. If you modify the
MATLAB design code, the app automatically generates an updated MEX function before running a
test file.

If the test file runs successfully, the simulation minimum and maximum values and the proposed types
are displayed on the Variables tab. If you manually enter static ranges for a variable, the manually
entered ranges take precedence over the simulation ranges. If you manually modify the proposed
types by typing or using the histogram, the data types are locked so that the app cannot modify them.

If the test file fails, the errors are displayed on the Output tab.

Test files must exercise your algorithm over its full operating range. The quality of the proposed
fixed-point data types depends on how well the test file covers the operating range of the algorithm
with the accuracy that you want. You can add test files and select to run more than one test file
during the simulation. If you run multiple test files, the app merges the simulation results.

Optionally, you can select to log data for histograms. After running a simulation, you can view the
histogram for each variable. For more information, see “Log Data for Histogram” on page 7-19.

Computing Derived Ranges

The advantage of proposing data types based on derived ranges is that you do not have to provide
test files that exercise your algorithm over its full operating range. Running such test files often takes
a very long time. The app can compute derived ranges for scalar variables only.

To compute derived ranges and propose data types based on these ranges, provide static minimum
and maximum values or proposed data types for all input variables. To improve the analysis, enter as
much static range information as possible for other variables. You can manually enter ranges or
promote simulation ranges to use as static ranges. Manually entered static ranges always take
precedence over simulation ranges.

If you know what data type your hardware target uses, set the proposed data types to match this
type. Manually entered data types are locked so that the app cannot modify them. The app uses these
data types to calculate the input minimum and maximum values and to derive ranges for other
variables. For more information, see “Locking Proposed Data Types” on page 7-10.

When you select Compute Derived Ranges, the app runs a derived range analysis to compute static
ranges for variables in your MATLAB algorithm. When the analysis is complete, the static ranges are
displayed on the Variables tab. If the run produces +/-Inf derived ranges, consider defining ranges
for all persistent variables.

Optionally, you can select Quick derived range analysis. With this option, the app performs faster
static analysis. The computed ranges might be larger than necessary. Select this option in cases
where the static analysis takes more time than you can afford.

If the derived range analysis for your project is taking a long time, you can optionally set a timeout.
When the timeout is reached, the app aborts the analysis.
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Locking Proposed Data Types
You can lock proposed data types against changes by the app using one of the following methods:

• Manually setting a proposed data type in the app.
• Right-clicking a type proposed by the tool and selecting Lock computed value.

The app displays locked data types in bold so that they are easy to identify. You can unlock a type
using one of the following methods:

• Manually overwriting it.
• Right-clicking it and selecting Undo changes. This action unlocks only the selected type.
• Right-clicking and selecting Undo changes for all variables. This action unlocks all locked

proposed types.

Viewing Functions
During the Convert to Fixed Point step of the fixed-point conversion process, you can view a list of
functions in your project in the left pane. This list also includes function specializations and class
methods. When you select a function from the list, the MATLAB code for that function or class
method is displayed in the code window and the variables that they use are displayed on the
Variables tab.

After conversion, the left pane also displays a list of output files including the fixed-point version of
the original algorithm. If your function is not specialized, the app retains the original function name
in the fixed-point file name and appends the fixed-point suffix. For example, here the fixed-point
version of ex_2ndOrder_filter.m is ex_2ndOrder_filter_fixpt.m.
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Classes

The app displays information for the class and each of its methods. For example, consider a class,
Counter, that has a static method, MAX_VALUE, and a method, next.

If you select the class, the app displays the class and its properties on the Variables tab.
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If you select a method, the app displays only the variables that the method uses.
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Specializations

If a function is specialized, the app lists each specialization and numbers them sequentially. For
example, consider a function, dut, that calls subfunctions, foo and bar, multiple times with different
input types.

function y = dut(u, v)
 
tt1 = foo(u);
tt2 = foo([u v]);
tt3 = foo(complex(u,v));
 
ss1 = bar(u);
ss2 = bar([u v]); 
ss3 = bar(complex(u,v));
 
y = (tt1 + ss1) + sum(tt2 + ss2) + real(tt3) + real(ss3);
 
end
 
function y = foo(u)
  y = u * 2;
end
 
function y = bar(u)
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  y = u * 4;
end

If you select the top-level function, the app displays all the variables on the Variables tab.

If you select the tree view, the app also displays the line numbers for the call to each specialization.
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If you select a specialization, the app displays only the variables that the specialization uses.
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In the generated fixed-point code, the number of each fixed-point specialization matches the number
in the Source Code list, which makes it easy to trace between the floating-point and fixed-point
versions of your code. For example, the generated fixed-point function for foo > 1 is named
foo_s1.
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Viewing Variables
The Variables tab provides the following information for each variable in the function selected in the
Navigation pane:

• Type — The original data type of the variable in the MATLAB algorithm.
• Sim Min and Sim Max — The minimum and maximum values assigned to the variable during

simulation.

You can edit the simulation minimum and maximum values. Edited fields are shown in bold.
Editing these fields does not trigger static range analysis, but the tool uses the edited values in
subsequent analyses. You can revert to the types proposed by the app.

• Static Min and Static Max — The static minimum and maximum values.

To compute derived ranges and propose data types based on these ranges, provide static minimum
and maximum values for all input variables. To improve the analysis, enter as much static range
information as possible for other variables.

When you compute derived ranges, the app runs a static analysis to compute static ranges for
variables in your code. When the analysis is complete, the static ranges are displayed. You can edit
the computed results. Edited fields are shown in bold. Editing these fields does not trigger static
range analysis, but the tool uses the edited values in subsequent analyses. You can revert to the
types proposed by the app.
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• Whole Number — Whether all values assigned to the variable during simulation are integers.

The app determines whether a variable is always a whole number. You can modify this field. Edited
fields are shown in bold. Editing these fields does not trigger static range analysis, but the app
uses the edited values in subsequent analyses. You can revert to the types proposed by the app.

• The proposed fixed-point data type for the specified word (or fraction) length. Proposed data types
use the numerictype notation. For example, numerictype(1,16,12) denotes a signed fixed-
point type with a word length of 16 and a fraction length of 12. numerictype(0,16,12) denotes
an unsigned fixed-point type with a word length of 16 and a fraction length of 12.

Because the app does not apply data types to expressions, it does not display proposed types for
them. Instead, it displays their original data types.

You can also view and edit variable information in the code pane by placing your cursor over a
variable name.

You can use Ctrl+F to search for variables in the MATLAB code and on the Variables tab. The app
highlights occurrences in the code and displays only the variable with the specified name on the
Variables tab.

Viewing Information for MATLAB Classes

The app displays:

• Code for MATLAB classes and code coverage for class methods in the code window. Use the
Source Code list on the Convert to Fixed Point page to select which class or class method to
view. If you select a class method, the app highlights the method in the code window.
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• Information about MATLAB classes on the Variables tab.

Log Data for Histogram
To log data for histograms:

• On the Convert to Fixed Point page, click the Analyze arrow .
• Select Log data for histogram.
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• Click Analyze Ranges.

After simulation, to view the histogram for a variable, on the Variables tab, click the Proposed Type
field for that variable.

The histogram provides the range of the proposed data type and the percentage of simulation values
that the proposed data type covers. The bit weights are displayed along the X-axis, and the
percentage of occurrences along the Y-axis. Each bin in the histogram corresponds to a bit in the
binary word. For example, this histogram displays the range for a variable of type
numerictype(1,16,14).

You can view the effect of changing the proposed data types by:

• Dragging the edges of the bounding box in the histogram window to change the proposed data
type.
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• Selecting or clearing Signed.

To revert to the types proposed by the automatic conversion, in the histogram window, click .

Function Replacements
If your MATLAB code uses functions that do not have fixed-point support, the app lists these functions
on the Function Replacements tab. You can choose to replace unsupported functions with a custom
function replacement or with a lookup table.

You can add and remove function replacements from this list. If you enter a function replacement for
a function, the replacement function is used when you build the project. If you do not enter a
replacement, the app uses the type specified in the original MATLAB code for the function.

Note Using this table, you can replace the names of the functions but you cannot replace argument
patterns.

If code generation readiness screening is disabled, the list of unsupported functions on the Function
Replacements tab can be incomplete or incorrect. In this case, add the functions manually. See .

Validating Types
Converting the code to fixed point validates the build using the proposed fixed-point data types. If the
validation is successful, you are ready to test the numerical behavior of the fixed-point MATLAB
algorithm.

If the errors or warnings occur during validation, they are displayed on the Output tab. If errors or
warning occur:

• On the Variables tab, inspect the proposed types and manually modified types to verify that they
are valid.

• On the Function Replacements tab, verify that you have provided function replacements for
unsupported functions.
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Testing Numerics
After converting code to fixed point and validating the proposed fixed-point data types, click Test to
verify the behavior of the fixed-point MATLAB algorithm. By default, if you added a test file to define
inputs or run a simulation, the app uses this test file to test numerics. Optionally, you can add test
files and select to run more than one test file. The app compares the numerical behavior of the
generated fixed-point MATLAB code with the original floating-point MATLAB code. If you select to log
inputs and outputs for comparison plots, the app generates an additional plot for each scalar output.
This plot shows the floating-point and fixed-point results and the difference between them. For
nonscalar outputs, only the error information is shown.

After fixed-point simulation, if the numerical results do not meet the accuracy that you want, modify
fixed-point data type settings and repeat the type validation and numerical testing steps. You might
have to iterate through these steps multiple times to achieve the results that you want.

Detecting Overflows
When testing numerics, selecting Use scaled doubles to detect overflows enables overflow
detection. When this option is selected, the conversion app runs the simulation using scaled double
versions of the proposed fixed-point types. Because scaled doubles store their data in double-
precision floating-point, they carry out arithmetic in full range. They also retain their fixed-point
settings, so they are able to report when a computation goes out of the range of the fixed-point type.
For more information, see “Scaled Doubles” on page 35-16.

If the app detects overflows, on its Overflow tab, it provides:

• A list of variables and expressions that overflowed
• Information on how much each variable overflowed
• A link to the variables or expressions in the code window

If your original algorithm uses scaled doubles, the app also provides overflow information for these
expressions.

See Also

“Detect Overflows” on page 8-5
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Debug Numerical Issues in Fixed-Point Conversion Using
Variable Logging

In this section...
“Prerequisites” on page 7-23
“Convert to Fixed Point Using Default Configuration” on page 7-26
“Determine Where Numerical Issues Originated” on page 7-29
“Adjust fimath Settings” on page 7-30
“Adjust Word Length Settings” on page 7-31
“Replace Constant Functions” on page 7-32

This example shows some best practices for debugging your fixed-point code when you need more
than out of the box conversion.

Prerequisites
1 Create a local working folder, for example, c:\kalman_filter.
2 In your local working folder, create the following files.

• kalman_filter function

This is the main entry-point function for your project.

function [y] = kalman_filter(z,N0)
    %#codegen
    A = kalman_stm();
    
    % Measurement Matrix
    H = [1 0];
    
    % Process noise variance
    Q = 0;
    % Measurement noise variance
    R = N0 ;
    
    persistent x_est p_est
    if isempty(x_est)
        % Estimated state
        x_est = [0; 1];
        % Estimated error covariance
        p_est = N0 * eye(2, 2);
    end
        
    % Kalman algorithm
    % Predicted state and covariance
    x_prd = A * x_est;   
    p_prd = A * p_est * A' + Q;
    
    % Estimation
    S = H * p_prd' * H' + R;
    B = H * p_prd';
    klm_gain = matrix_solve(S,B)';
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    % Estimated state and covariance
    x_est = x_prd + klm_gain * (z - H * x_prd);
    p_est = p_prd - klm_gain * H * p_prd;
    
    % Compute the estimated measurements
    y = H * x_est;    
end

• kalman_stm function

This function is called by the kalman_filter function and computes the state transition
matrix.

function A = kalman_stm()    
    f0 = 200;
    dt = 1/1e4;
    % Kalman filter initialization
    % State transition Matrix
    A = [cos(2*pi*f0*dt), -sin(2*pi*f0*dt);
        sin(2*pi*f0*dt), cos(2*pi*f0*dt)];    
end

• matrix_solve function

This function is a more efficient implementation of a matrix left divide.

function x = matrix_solve(a,b)
    %fixed-point conversion friendly matrix solve: a * x = b
    
    % initialize x
    x = zeros(size(a,1),size(b,2));
    % compute lu decomposition of a
    [l, u] = lu_replacement(a);
    % solve x = a\b for every column of b 
    % through forward and backward substitution
    for col = 1:size(b,2)
        bcol = b(:,col);
        y = forward_substitute(l,bcol);
        x(:,col) = back_substitute(u,y);
    end
    
end

• lu_replacement function

This function is called by the matrix_solve function.

function [l,A]=lu_replacement(A)
    N=size(A,1);
    l = eye(N);
    for n=1:N-1
        piv = A(n,n);
        for k=n+1:N
            mult = divide_no_zero(A(k,n),piv);
            A(k,:) = -mult*A(n,:) + A(k,:);
            l(k,n) = mult;
        end
    end
end
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• forward_substitute function

This function is called by the matrix_solve function.

function y = forward_substitute(l,b)
    % forward substitution
    N = size(b,1);
    y = zeros(N,1);
    % forward substitution
    y(1) = divide_no_zero(b(1),l(1,1));
    for n = 2:N
        acc = 0;
        for k = 1:n-1
            acc(:) = acc + y(k)*l(n,k);
        end
        y(n) = divide_no_zero((b(n)-acc),l(n,n));
    end
    
end

• back_substitute function

This function is called by the matrix_solve function.

function x = back_substitute(u,y)
    % backwards substitution
    N = size(u,1);
    x = zeros(N,1);
    
    % backward substitution
    x(N) = divide_no_zero(y(N),u(N,N));
    
    for n = (N-1):(-1):(1)
        acc = 0;
        for k = n:(N)
            acc(:) = acc + x(k)*u(n,k);
        end
        x(n) = divide_no_zero((y(n) - acc),u(n,n));
    end
end

• divide_no_zero function

This function is called by the lu_replacement, forward_substitute and
back_substitute functions.

function y = divide_no_zero(num, den)
    % Divide and avoid division by zero
    if den == 0
        y = 0;
    else
        y = num/den;
    end
end

• kalman_filter_tb test file

This script generates a noisy sine wave, and calls the kalman_filter function to filter the
noisy signal. It then plots the signals for comparison.
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% KALMAN FILTER EXAMPLE TEST BENCH
clear all
step = ((400*pi)/1000)/10;
TIME_STEPS = 400;
X = 0:step:TIME_STEPS;
rng default;
rng(1);
Orig_Signal = sin(X);
Noisy_Signal = Orig_Signal + randn(size(X));
Clean_Signal = zeros(size(X));
for i = 1:length(X)  
Clean_Signal(i) = kalman_filter(Noisy_Signal(i), 1);
end
figure
subplot(5,1,1)
plot(X,rand(size(X)))
axis([1 TIME_STEPS 0 1.25]);
title('Noise')

% Plot Noisy Signal
subplot(5,1,2)
plot(X,Noisy_Signal)
axis([1 TIME_STEPS -4 4]);
title('Noisy Signal')

% Plot Filtered Clean Signal
subplot(5,1,3)
plot(X,Clean_Signal)
axis([1 TIME_STEPS -2 2]);
title('Filtered Signal')

% Plot Original Signal
subplot(5,1,4)
plot(X,Orig_Signal)
axis([1 TIME_STEPS -2 2]);
title('Original Signal')

% Plot Error
subplot(5,1,5)
plot(X, (Clean_Signal - Orig_Signal))
axis([1 TIME_STEPS -1 1]);
title('Error')
figure(gcf)

Convert to Fixed Point Using Default Configuration
1 From the apps gallery, open the Fixed-Point Converter app.
2 On the Select page, browse to the kalman_filter.m file and click Open.
3 Click Next. On the Define Input Types page, browse to the kalman_filter_tb file. Click

Autodefine Input Types.

The test file runs and plots the input noisy signal, the filtered signal, the ideal filtered signal, and
the difference between the filtered and the ideal filtered signal.
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4 Click Next. On the Convert to Fixed Point page, click Analyze to gather range information and
data type proposals using the default settings.

5 Click Convert to apply the proposed data types.
6 Click the Test arrow and select the Log inputs and outputs for comparison plots check box.

Click Test. The Fixed-Point Converter runs the test file kalman_filter_tb.m to test the
generated fixed-point code. Floating-point and fixed-point simulations are run, with errors
calculated for the input and output variables.

The generated plots show that the current fixed-point implementation does not produce good
results.
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The error for the output variable y is extremely high, at over 282 percent.
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Determine Where Numerical Issues Originated
Log any function input and output variables that you suspect are the cause of numerical issues to the
output arguments of the top-level function.

1 Click kalman_filter in the Source Code pane to return to the floating-point code.

When you select the Log inputs and outputs for comparison plots option during the Test
phase, the input and output variables of the top level-function, kalman_filter are
automatically logged for plotting.

2 The kalman_filter function calls the matrix_solve function, which contains calls to several
other functions. To investigate whether numerical issues are originating in the matrix_solve
function, select kalman_filter > matrix_solve in the Source Code pane.

In the Log Data column, select the function input and output variables that you want to log. In
this example, select all three, a, b, and x.
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3 Click Test.

The generated plot shows a large error for the output variable of the matrix_solve function.

Adjust fimath Settings
1 On the Convert to Fixed Point page, click Settings.
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Under fimath, set the Rounding method to Nearest. Set the Overflow action to Saturate.
2 Click Convert to apply the new settings.
3 Click the arrow next to Test and ensure that Log inputs and outputs for comparison plots is

selected. Enable logging for any function input or output variables. Click Test.

Examine the plot for top-level function output variable, y.

The new fimath settings improve the output, but some error still remains.

Adjust Word Length Settings
Adjusting the default word length improves the accuracy of the generated fixed-point design.

1 Click Settings and change the default word length to 32. Click Convert to apply the new
settings.

2 Click Test. The error for the output variable y is accumulating.
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3 Close the Fixed-Point Converter and plot window.

Replace Constant Functions
The kalman_stm function computes the state transition matrix, which is a constant. You do not need
to convert this function to fixed point. To avoid unnecessary quantization through computation,
replace this function with a double-precision constant. By replacing the function with a constant, the
state transition matrix undergoes quantization only once.

1 Click the kalman_filter function in the Source Code pane. Edit the kalman_filter
function. Replace the call to the kalman_stm function with the equivalent double constant.

A = [0.992114701314478, -0.125333233564304;...
 0.125333233564304, 0.992114701314478];

Save the changes.
2 Click Analyze to refresh the proposals.
3 Click Convert to apply the new proposals.
4 Click Test. The error on the plot for the functions output y is now on the order of 10-6, which is

acceptable for this design.
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MATLAB Language Features Supported for Automated Fixed-
Point Conversion

In this section...
“MATLAB Language Features Supported for Automated Fixed-Point Conversion” on page 7-35
“MATLAB Language Features Not Supported for Automated Fixed-Point Conversion” on page 7-36

MATLAB Language Features Supported for Automated Fixed-Point
Conversion
Fixed-Point Designer supports the following MATLAB language features in automated fixed-point
conversion:

• N-dimensional arrays
• Matrix operations, including deletion of rows and columns
• Variable-sized data (see “Generate Code for Variable-Size Data” (MATLAB Coder)). Range

computation for variable–sized data is supported via simulation mode only. Variable-sized data is
not supported for comparison plotting.

• Subscripting (see “Incompatibility with MATLAB in Matrix Indexing Operations for Code
Generation” on page 29-19)

• Complex numbers (see “Code Generation for Complex Data” on page 16-8)
• Numeric classes (see “Supported Variable Types” on page 18-13)
• Double-precision, single-precision, and integer math
• Fixed-point arithmetic (see “Code Acceleration and Code Generation from MATLAB” on page 12-

2)
• Program control statements if, switch, for, while, and break
• Arithmetic, relational, and logical operators
• Local functions
• Global variables
• Persistent variables
• Structures, including arrays of structures. Range computation for structures is supported via

simulation mode only.
• Characters

The complete set of Unicode® characters is not supported for code generation. Characters are
restricted to 8 bits of precision in generated code. Because many mathematical operations require
more than 8 bits of precision, it is recommended that you do not perform arithmetic with
characters if you intend to convert your MATLAB algorithm to fixed point.

• MATLAB classes. Range computation for MATLAB classes is supported via simulation mode only.

Automated conversion supports:

• Class properties
• Constructors
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• Methods
• Specializations

It does not support class inheritance or packages. For more information, see “Fixed-Point Code for
MATLAB Classes” on page 7-42.

• Ability to call functions (see “Resolution of Function Calls for Code Generation” on page 14-2)
• Subset of MATLAB toolbox functions (see “Functions Supported for Code Acceleration or C Code

Generation” on page 12-4).
• Subset of DSP System Toolbox™ System objects.

The DSP System Toolbox System objects supported for automated conversion are:

• dsp.BiquadFilter
• dsp.FIRDecimator
• dsp.FIRInterpolator
• dsp.FIRFilter (Direct Form and Direct Form Transposed only)
• dsp.FIRRateConverter
• dsp.VariableFractionalDelay

MATLAB Language Features Not Supported for Automated Fixed-Point
Conversion
Fixed-Point Designer does not support the following features in automated fixed-point conversion:

• Anonymous functions
• Cell arrays
• String scalars
• Objects of value classes as entry-point function inputs or outputs
• Function handles
• Java®

• Nested functions
• Recursion
• Sparse matrices
• try/catch statements
• varargin, varargout, or generation of fewer input or output arguments than an entry-point

function defines
• Dot indexing properties of fixed-point data types.

Avoid using properties of fixed-point types in the code being converted by the Fixed-Point
Converter app, and in MATLAB Function blocks being converted by the Fixed-Point Tool.
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Generated Fixed-Point Code

In this section...
“Location of Generated Fixed-Point Files” on page 7-37
“Minimizing fi-casts to Improve Code Readability” on page 7-37
“Avoiding Overflows in the Generated Fixed-Point Code” on page 7-38
“Controlling Bit Growth” on page 7-38
“Avoiding Loss of Range or Precision” on page 7-39
“Handling Non-Constant mpower Exponents” on page 7-40

Location of Generated Fixed-Point Files
By default, the fixed-point conversion process generates files in a folder named codegen/fcn_name/
fixpt in your local working folder. fcn_name is the name of the MATLAB function that you are
converting to fixed point.

File name Description
fcn_name_fixpt.m Generated fixed-point MATLAB code.

To integrate this fixed-point code into a larger
application, consider generating a MEX-function
for the function and calling this MEX-function in
place of the original MATLAB code.

fcn_name_fixpt_exVal.mat MAT-file containing:

• A structure for the input arguments.
• The name of the fixed-point file.

fcn_name_fixpt_report.html Link to the type proposal report that displays the
generated fixed-point code and the proposed type
information.

fcn_name_report.html Link to the type proposal report that displays the
original MATLAB code and the proposed type
information.

fcn_name_wrapper_fixpt.m File that converts the floating-point data values
supplied by the test file to the fixed-point types
determined for the inputs during the conversion
step. These fixed-point values are fed into the
converted fixed-point function,
fcn_name_fixpt.

Minimizing fi-casts to Improve Code Readability
The conversion process tries to reduce the number of fi-casts by analyzing the floating-point code. If
an arithmetic operation is comprised of only compile-time constants, the conversion process does not
cast the operands to fixed point individually. Instead, it casts the entire expression to fixed point.
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For example, here is the fixed-point code generated for the constant expression x = 1/sqrt(2)
when the selected word length is 14.

Original MATLAB Code Generated Fixed-Point Code
x = 1/sqrt(2); x = fi(1/sqrt(2), 0, 14, 14, fm);

fm is the local fimath.

Avoiding Overflows in the Generated Fixed-Point Code
The conversion process avoids overflows by:

• Using full-precision arithmetic unless you specify otherwise.
• Avoiding arithmetic operations that involve double and fi data types. Otherwise, if the word

length of the fi data type is not able to represent the value in the double constant expression,
overflows occur.

• Avoiding overflows when adding and subtracting non fixed-point variables and fixed-point
variables.

The fixed-point conversion process casts non-fi expressions to the corresponding fi type.

For example, consider the following MATLAB algorithm.

% A = 5;
% B = ones(300, 1)
function y = fi_plus_non_fi(A, B)
  % '1024' is non-fi, cast it
  y = A + 1024;
  % 'size(B, 1)*length(A)' is a non-fi, cast it
  y = A + size(B, 1)*length(A);
end

The generated fixed-point code is:

%#codegen
% A = 5;
% B = ones(300, 1)
function y = fi_plus_non_fi_fixpt(A, B)
  % '1024' is non-fi, cast it
  fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',...
              'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128,...
              'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);

  y = fi(A + fi(1024, 0, 11, 0, fm), 0, 11, 0, fm);
  % 'size(B, 1)*length(A)' is a non-fi, cast it
  y(:) = A + fi(size(B, fi(1, 0, 1, 0, fm))*length(A), 0, 9, 0, fm);
end

Controlling Bit Growth
The conversion process controls bit growth by using subscripted assignments, that is, assignments
that use the colon (:) operator, in the generated code. When you use subscripted assignments,
MATLAB overwrites the value of the left-hand side argument but retains the existing data type and
array size. Using subscripted assignment keeps fixed-point variables fixed point rather than
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inadvertently turning them into doubles. Maintaining the fixed-point type reduces the number of type
declarations in the generated code. Subscripted assignment also prevents bit growth which is useful
when you want to maintain a particular data type for the output.

Avoiding Loss of Range or Precision
Avoiding Loss of Range or Precision in Unsigned Subtraction Operations

When the result of the subtraction is negative, the conversion process promotes the left operand to a
signed type.

For example, consider the following MATLAB algorithm.

% A = 1;
% B = 5
function [y,z] = unsigned_subtraction(A,B)
  y = A - B;
  
  C = -20;
  z = C - B;
end

In the original code, both A and B are unsigned and the result of A-B can be negative. In the
generated fixed-point code, A is promoted to signed. In the original code, C is signed, so does not
require promotion in the generated code.

%#codegen
% A = 1;
% B = 5
function [y,z] = unsigned_subtraction_fixpt(A,B)
 
fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',...
              'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128,...
              'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);
y = fi(fi_signed(A) - B, 1, 3, 0, fm);
C = fi(-20, 1, 6, 0, fm);
z = fi(C - B, 1, 6, 0, fm);
end
 
 
function y = fi_signed(a)
coder.inline( 'always' );
if isfi( a ) && ~(issigned( a ))
  nt = numerictype( a );
  new_nt = numerictype( 1, nt.WordLength + 1, nt.FractionLength );
  y = fi( a, new_nt, fimath( a ) );
else
  y = a;
end
end

Avoiding Loss of Range When Concatenating Arrays of Fixed-Point Numbers

If you concatenate matrices using vertcat and horzcat, the conversion process uses the largest
numerictype among the expressions of a row and casts the leftmost element to that type. This type is
then used for the concatenated matrix to avoid loss of range.
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For example, consider the following MATLAB algorithm.

% A = 1, B = 100, C = 1000
function [y, z] = lb_node(A, B, C)
  %% single rows
  y = [A B C];
  %% multiple rows
  z = [A 5; A B; A C];
end

In the generated fixed-point code:

• For the expression y = [A B C], the leftmost element, A, is cast to the type of C because C has
the largest type in the row.

• For the expression [A 5; A B; A C]:

• In the first row, A is cast to the type of C because C has the largest type of the whole
expression.

• In the second row, A is cast to the type of B because B has the larger type in the row.
• In the third row, A is cast to the type of C because C has the larger type in the row.

%#codegen
% A = 1, B = 100, C = 1000
function [y, z] = lb_node_fixpt(A, B, C)
  %% single rows
  fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',...
              'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128, ...
              'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);

  y = fi([fi(A, 0, 10, 0, fm) B C], 0, 10, 0, fm);
 
  %% multiple rows
  z = fi([fi(A, 0, 10, 0, fm) 5; fi(A, 0, 7, 0, fm) B;...
          fi(A, 0, 10, 0, fm) C], 0, 10, 0, fm);
end

Handling Non-Constant mpower Exponents
If the function that you are converting has a scalar input, and the mpower exponent input is not
constant, the conversion process sets the fimath ProductMode to SpecifyPrecision in the
generated code. With this setting , the output data type can be determined at compile time.

For example, consider the following MATLAB algorithm.

% a = 1
% b = 3
function y = exp_operator(a, b)
  % exponent is a constant so no need to specify precision
  y = a^3;
  % exponent is not a constant, use 'SpecifyPrecision' for 'ProductMode'
  y = b^a;
end

In the generated fixed-point code, for the expression y = a^3 , the exponent is a constant, so there is
no need to specify precision. For the expression, y = b^a, the exponent is not constant, so the
ProductMode is set to SpecifyPrecision.
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%#codegen
% a = 1
% b = 3
function y = exp_operator_fixpt(a, b)
  % exponent is a constant so no need to specify precision
  fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',...
              'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128,...
              'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);

  y = fi(a^3, 0, 2, 0, fm);
  % exponent is not a constant, use 'SpecifyPrecision' for 'ProductMode'
  y(:) = fi(b, 'ProductMode', 'SpecifyPrecision',...
               'ProductWordLength', 2, 'ProductFractionLength', 0 )^a;
end
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Fixed-Point Code for MATLAB Classes
In this section...
“Automated Conversion Support for MATLAB Classes” on page 7-42
“Unsupported Constructs” on page 7-42
“Coding Style Best Practices” on page 7-42

Automated Conversion Support for MATLAB Classes
The automated fixed-point conversion process:

• Proposes fixed-point data types based on simulation ranges for MATLAB classes. It does not
propose data types based on derived ranges for MATLAB classes.

After simulation, the Fixed-Point Converter app:

• Function list contains class constructors, methods, and specializations.
• Code window displays the objects used in each function.
• Provides code coverage for methods.

For more information, see “Viewing Information for MATLAB Classes” on page 7-18.
• Supports class methods, properties, and specializations. For each specialization of a class,

class_name, the conversion generates a separate class_name_fixpt.m file. For every
instantiation of a class, the generated fixed-point code contains a call to the constructor of the
appropriate specialization.

• Supports classes that have get and set methods such as get.PropertyName,
set.PropertyName. These methods are called when properties are read or assigned. The set
methods can be specialized. Sometimes, in the generated fixed-point code, assignment statements
are transformed to function calls.

Unsupported Constructs
The automated conversion process does not support:

• Class inheritance.
• Packages.
• Constructors that use nargin and varargin.

Coding Style Best Practices
When you write MATLAB code that uses MATLAB classes:

• Initialize properties in the class constructor.
• Replace constant properties with static methods.

For example, consider the counter class.

classdef Counter < handle
  properties

7 Automated Fixed-Point Conversion

7-42



    Value = 0;
  end

  properties(Constant)
    MAX_VALUE = 128
  end
  
  methods
    function out = next(this)
      out = this.Count;
      if this.Value == this.MAX_VALUE
        this.Value = 0;
      else
        this.Value = this.Value + 1;
      end
    end
  end
end

To use the automated fixed-point conversion process, rewrite the class to have a static class that
initializes the constant property MAX_VALUE and a constructor that initializes the property Value.

classdef Counter < handle
  properties
    Value;
  end

  methods(Static)
    function t = MAX_VALUE()
      t = 128;
    end
  end
  
  methods
    function this = Counter()
      this.Value = 0;
    end 
    function out = next(this)
      out = this.Value;
      if this.Value == this.MAX_VALUE
        this.Value = 0;
      else
        this.Value = this.Value + 1;
      end
    end
  end
end
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Automated Fixed-Point Conversion Best Practices

In this section...
“Create a Test File” on page 7-44
“Prepare Your Algorithm for Code Acceleration or Code Generation” on page 7-45
“Check for Fixed-Point Support for Functions Used in Your Algorithm” on page 7-45
“Manage Data Types and Control Bit Growth” on page 7-46
“Convert to Fixed Point” on page 7-46
“Use the Histogram to Fine-Tune Data Type Settings” on page 7-47
“Optimize Your Algorithm” on page 7-47
“Avoid Explicit Double and Single Casts” on page 7-49

Create a Test File
A best practice for structuring your code is to separate your core algorithm from other code that you
use to test and verify the results. Create a test file to call your original MATLAB algorithm and fixed-
point versions of the algorithm. For example, as shown in the following table, you might set up some
input data to feed into your algorithm, and then, after you process that data, create some plots to
verify the results. Since you need to convert only the algorithmic portion to fixed point, it is more
efficient to structure your code so that you have a test file, in which you create your inputs, call your
algorithm, and plot the results, and one (or more) algorithmic files, in which you do the core
processing.

Original code Best Practice Modified code
% TEST INPUT
x = randn(100,1);

% ALGORITHM
y = zeros(size(x));
y(1) = x(1);
for n=2:length(x)
  y(n)=y(n-1) + x(n);
end

% VERIFY RESULTS
yExpected=cumsum(x);
plot(y-yExpected)
title('Error')

Issue

Generation of test input and
verification of results are
intermingled with the algorithm
code.

Fix

Create a test file that is separate
from your algorithm. Put the
algorithm in its own function.

Test file

% TEST INPUT
x = randn(100,1);

% ALGORITHM
y = cumulative_sum(x);

% VERIFY RESULTS
yExpected = cumsum(x);
plot(y-yExpected)
title('Error')

Algorithm in its own function

function y = cumulative_sum(x)
  y = zeros(size(x));
  y(1) = x(1);
  for n=2:length(x)
    y(n) = y(n-1) + x(n);
  end
end

You can use the test file to:
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• Verify that your floating-point algorithm behaves as you expect before you convert it to fixed point.
The floating-point algorithm behavior is the baseline against which you compare the behavior of
the fixed-point versions of your algorithm.

• Propose fixed-point data types.
• Compare the behavior of the fixed-point versions of your algorithm to the floating-point baseline.
• Help you determine initial values for static ranges.

By default, the Fixed-Point Converter app shows code coverage results. Your test files should exercise
the algorithm over its full operating range so that the simulation ranges are accurate. For example,
for a filter, realistic inputs are impulses, sums of sinusoids, and chirp signals. With these inputs, using
linear theory, you can verify that the outputs are correct. Signals that produce maximum output are
useful for verifying that your system does not overflow. The quality of the proposed fixed-point data
types depends on how well the test files cover the operating range of the algorithm with the accuracy
that you want. Reviewing code coverage results help you verify that your test file is exercising the
algorithm adequately. Review code flagged with a red code coverage bar because this code is not
executed. If the code coverage is inadequate, modify the test file or add more test files to increase
coverage. See “Code Coverage” on page 7-5.

Prepare Your Algorithm for Code Acceleration or Code Generation
The automated conversion process instruments your code and provides data type proposals to help
you convert your algorithm to fixed point.

MATLAB algorithms that you want to convert to fixed point automatically must comply with code
generation requirements and rules. To view the subset of the MATLAB language that is supported for
code generation, see “Functions and Objects Supported for C/C++ Code Generation” on page 26-2.

To help you identify unsupported functions or constructs in your MATLAB code, add the %#codegen
pragma to the top of your MATLAB file. The MATLAB Code Analyzer flags functions and constructs
that are not available in the subset of the MATLAB language supported for code generation. This
advice appears in real time as you edit your code in the MATLAB editor. For more information, see
“Check Code Using the MATLAB Code Analyzer” on page 12-74. The software provides a link to a
report that identifies calls to functions and the use of data types that are not supported for code
generation. For more information, see “Check Code Using the Code Generation Readiness Tool” on
page 12-73.

Check for Fixed-Point Support for Functions Used in Your Algorithm
The app flags unsupported function calls found in your algorithm on the Function Replacements
tab. For example, if you use the fft function, which is not supported for fixed point, the tool adds an
entry to the table on this tab and indicates that you need to specify a replacement function to use for
fixed-point operations.
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You can specify additional replacement functions. For example, functions like sin, cos,and sqrt
might support fixed point, but for better efficiency, you might want to consider an alternative
implementation like a lookup table or CORDIC-based algorithm. The app provides an option to
generate lookup table approximations for continuous and stateless single-input, single-output
functions in your original MATLAB code. See “Replacing Functions Using Lookup Table
Approximations” on page 7-50.

Manage Data Types and Control Bit Growth
The automated fixed-point conversion process automatically manages data types and controls bit
growth. It controls bit growth by using subscripted assignments, that is, assignments that use the
colon (:) operator, in the generated code. When you use subscripted assignments, MATLAB overwrites
the value of the left-hand side argument but retains the existing data type and array size. In addition
to preventing bit growth, subscripted assignment reduces the number of casts in the generated fixed-
point code and makes the code more readable.

Convert to Fixed Point
What Are Your Goals for Converting to Fixed Point?

Before you start the conversion, consider your goals for converting to fixed point. Are you
implementing your algorithm in C or HDL? What are your target constraints? The answers to these
questions determine many fixed-point properties such as the available word length, fraction length,
and math modes, as well as available math libraries.

To set up these properties, use the Advanced settings.

For more information, see “Specify Type Proposal Options” on page 8-2.

Run With Fixed-Point Types and Compare Results

Create a test file to validate that the floating-point algorithm works as expected before converting it
to fixed point. You can use the same test file to propose fixed-point data types, and to compare fixed-
point results to the floating-point baseline after the conversion. For more information, see “Running a
Simulation” on page 7-8 and “Log Data for Histogram” on page 7-19 .
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Use the Histogram to Fine-Tune Data Type Settings
To fine-tune fixed-point type settings, use the histogram. To log data for histograms, in the app, click
the Analyze arrow  and select Log data for histogram.

After simulation and static analysis:

• To view the histogram for a variable, on the Variables tab, click the Proposed Type field for that
variable.

You can view the effect of changing the proposed data types by dragging the edges of the
bounding box in the histogram window to change the proposed data type and selecting or clearing
the Signed option.

• If the values overflow and the range cannot fit the proposed type, the table shows proposed types
in red.

When the tool applies data types, it generates an html report that provides overflow information and
highlights overflows in red. Review the proposed data types.

Optimize Your Algorithm
Use fimath to Get Optimal Types for C or HDL

fimath properties define the rules for performing arithmetic operations on fi objects, including
math, rounding, and overflow properties. You can use the fimath ProductMode and SumMode
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properties to retain optimal data types for C or HDL. HDL can have arbitrary word length types in the
generated HDL code whereas C requires container types (uint8, uint16, uint32). Use the
Advanced settings, see “Specify Type Proposal Options” on page 8-2.

C

The KeepLSB setting for ProductMode and SumMode models the behavior of integer operations in
the C language, while KeepMSB models the behavior of many DSP devices. Different rounding
methods require different amounts of overhead code. Setting the RoundingMethod property to
Floor, which is equivalent to two's complement truncation, provides the most efficient rounding
implementation. Similarly, the standard method for handling overflows is to wrap using modulo
arithmetic. Other overflow handling methods create costly logic. Whenever possible, set
OverflowAction to Wrap.

MATLAB Code Best Practice Generated C Code
Code being compiled

function y = adder(a,b)
  y = a + b;
end

Note In the app, set Default
word length to 16.

Issue

With the default word length set to 16 and the
default fimath settings, additional code is
generated to implement saturation overflow,
nearest rounding, and full-precision
arithmetic.

int adder(short a, short b)
{
  int y;
  int i;
  int i1;
  int i2;
  int i3;
  i = a;
  i1 = b;
  if ((i & 65536) != 0) {
    i2 = i | -65536;
  } else {
    i2 = i & 65535;
  }

  if ((i1 & 65536) != 0) {
    i3 = i1 | -65536;
  } else {
    i3 = i1 & 65535;
  }

  i = i2 + i3;
  if ((i & 65536) != 0) {
    y = i | -65536;
  } else {
    y = i & 65535;
  }

  return y;
}

Fix

To make the generated C code more efficient,
choose fixed-point math settings that match
your processor types.

To customize fixed-point type proposals, use
the app Settings. Select fimath and then set:

int adder(short a, short b)
{
  return a + b;
}

Rounding method Floor
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MATLAB Code Best Practice Generated C Code
Overflow action Wrap
Product mode KeepLSB
Sum mode KeepLSB
Product word length 32
Sum word length 32

HDL

For HDL code generation, set:

• ProductMode and SumMode to FullPrecision
• Overflow action to Wrap
• Rounding method to Floor

Replace Built-in Functions with More Efficient Fixed-Point Implementations

Some MATLAB built-in functions can be made more efficient for fixed-point implementation. For
example, you can replace a built-in function with a Lookup table implementation, or a CORDIC
implementation, which requires only iterative shift-add operations. For more information, see
“Function Replacements” on page 7-21.

Reimplement Division Operations Where Possible

Often, division is not fully supported by hardware and can result in slow processing. When your
algorithm requires a division, consider replacing it with one of the following options:

• Use bit shifting when the denominator is a power of two. For example, bitsra(x,3) instead of
x/8.

• Multiply by the inverse when the denominator is constant. For example, x*0.2 instead of x/5.
• If the divisor is not constant, use a temporary variable for the division. Doing so results in a more
efficient data type proposal and, if overflows occur, makes it easier to see which expression is
overflowing.

Eliminate Floating-Point Variables

For more efficient code, the automated fixed-point conversion process eliminates floating-point
variables. The one exception to this is loop indices because they usually become integer types. It is
good practice to inspect the fixed-point code after conversion to verify that there are no floating-point
variables in the generated fixed-point code.

Avoid Explicit Double and Single Casts
For the automated workflow, do not use explicit double or single casts in your MATLAB algorithm to
insulate functions that do not support fixed-point data types. The automated conversion tool does not
support these casts.

Instead of using casts, supply a replacement function. For more information, see “Function
Replacements” on page 7-21.
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Replacing Functions Using Lookup Table Approximations
The Fixed-Point Designer software provides an option to generate lookup table approximations for
continuous and stateless single-input, single-output functions in your original MATLAB code. These
functions must be on the MATLAB path.

You can use this capability to handle functions that are not supported for fixed point and to replace
your own custom functions. The fixed-point conversion process infers the ranges for the function and
then uses an interpolated lookup table to replace the function. You can control the interpolation
method and number of points in the lookup table. By adjusting these settings, you can tune the
behavior of replacement function to match the behavior of the original function as closely as possible.

The fixed-point conversion process generates one lookup table approximation per call site of the
function that needs replacement.

To use lookup table approximations in the Fixed-Point Converter app, see “Replace the exp Function
with a Lookup Table” on page 8-39 and “Replace a Custom Function with a Lookup Table” on page
8-48.

To use lookup table approximations in the programmatic workflow, see coder.approximation,
“Replace the exp Function with a Lookup Table” on page 9-16, and “Replace a Custom Function with
a Lookup Table” on page 9-18.
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Custom Plot Functions
The Fixed-Point Converter app provides a default time series based plotting function. The conversion
process uses this function at the test numerics step to show the floating-point and fixed-point results
and the difference between them. However, during fixed-point conversion you might want to visualize
the numerical differences in a view that is more suitable for your application domain. For example,
plots that show eye diagrams and bit error differences are more suitable in the communications
domain and histogram difference plots are more suitable in image processing designs.

You can choose to use a custom plot function at the test numerics step. The Fixed-Point Converter
app facilitates custom plotting by providing access to the raw logged input and output data before
and after fixed-point conversion. You supply a custom plotting function to visualize the differences
between the floating-point and fixed-point results. If you specify a custom plot function, the fixed-
point conversion process calls the function for each input and output variable, passes in the name of
the variable and the function that uses it, and the results of the floating-point and fixed-point
simulations.

Your function should accept three inputs:

• A structure that holds the name of the variable and the function that uses it.

Use this information to:

• Customize plot headings and axes.
• Choose which variables to plot.
• Generate different error metrics for different output variables.

• A cell array to hold the logged floating-point values for the variable.

This cell array contains values observed during floating-point simulation of the algorithm during
the test numerics phase. You might need to reformat this raw data.

• A cell array to hold the logged values for the variable after fixed-point conversion.

This cell array contains values observed during fixed-point simulation of the converted design.

For example, function customComparisonPlot(varInfo, floatVarVals,
fixedPtVarVals).

To use a custom plot function, in the Fixed-Point Converter app, select Advanced, and then set
Custom plot function to the name of your plot function. See “Visualize Differences Between
Floating-Point and Fixed-Point Results” on page 8-53.

In the programmatic workflow, set the coder.FixPtConfig configuration object PlotFunction
property to the name of your plot function. See “Visualize Differences Between Floating-Point and
Fixed-Point Results” on page 9-20.
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Generate Fixed-Point MATLAB Code for Multiple Entry-Point
Functions

When your end goal is to generate fixed-point C/C++ library functions, generating a single C/C++
library for more than one entry-point MATLAB function allows you to:

• Create C/C++ libraries containing multiple, compiled MATLAB files to integrate with larger C/C+
+ applications. Generating C/C++ code requires a MATLAB Coder license.

• Share code efficiently between library functions.
• Communicate between library functions using shared memory.

Note If any of the entry-point functions in a project share memory (for example, persistent data), an
error will occur. In this case, you should rewrite your code to avoid invoking functions with persistent
data from multiple entry-points.

Example 7.1. Convert Two Entry-Point Functions to Fixed-Point Using the Fixed-Point
Converter App

In this example, you convert two entry-point functions, ep1 and ep2, to fixed point.

1 In a local writable folder, create the functions ep1.m and ep2.m.

function y = ep1(u) %#codegen
y = u;
end

function y = ep2(u, v) %#codegen
y = u + v;
end

2 In the same folder, create a test file, ep_tb.m, that calls both functions.

% test file for ep1 and ep2
u = 1:100;
v = 5:104;
z = ep1(u);
y = ep2(v,z);

3 From the apps gallery, open the Fixed-Point Converter app.
4 To add the first entry-point function, ep1, to the project, on the Select Source Files page,

browse to the ep1 file, and click Open.

By default, the app uses the name of the first entry-point function as the name of the project.
5 Click Add Entry-Point Function and add the second entry-point function, ep2. Click Next.
6 On the Define Input Types page, enter a test file that exercises your two entry-point functions.

Browse to select the ep_tb file. Click Autodefine Input Types.
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7 Click Next. The app generates an instrumented MEX function for your entry-point MATLAB
function. On the Convert to Fixed-Point page, click Simulate to simulate the entry-point
functions, gather range information, and get proposed data types.
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8 Click Convert.

The entry-point functions ep1 and ep2 convert to fixed point. The Output Files pane lists the
generated fixed-point and wrapper files for both entry-point functions.
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9 Click Next. The Finish Workflow page contains the project summary. The generated Fixed-Point
Conversion Report contains the reports for both entry-point functions. The app stores the
generated files in the subfolder codegen/ep1/fixpt.
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Convert Code Containing Global Data to Fixed Point
In this section...
“Workflow” on page 7-56
“Declare Global Variables” on page 7-56
“Define Global Data” on page 7-56
“Define Constant Global Data” on page 7-57

Workflow
To convert MATLAB code that uses global data to fixed-point:

1 Declare the variables as global in your code.

For more information, see “Declare Global Variables” on page 7-56
2 Before using the global data, define and initialize it.

For more information, see “Define Global Data” on page 7-56.
3 Convert code to fixed-point from the Fixed-Point Converter or using fiaccel.

The Fixed-Point Converter always synchronizes global data between MATLAB and the generated MEX
function.

Declare Global Variables
When using global data, you must first declare the global variables in your MATLAB code. This code
shows the use_globals function, which uses two global variables, AR and B.

function y = use_globals(u)
%#codegen
% Declare AR and B as global variables
global AR;
global B;
AR(1) = u + B(1);
y = AR * 2;

Define Global Data
You can define global data in the MATLAB global workspace, in a Fixed-Point Converter project, or at
the command line. If you do not initialize global data in a project or at the command line, the software
looks for the variable in the MATLAB global workspace.

Define Global Data in the MATLAB Global Workspace

To convert the use_globals function described in “Declare Global Variables” on page 7-56, you
must first define and initialize the global data.

global AR B;
AR = ones(4);
B=[1 2 3];
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Define Global Data in a Fixed-Point Converter Project

1 On the Define Input Types page, after selecting and running a test file, select Yes next to Does
this code use global variables.

By default, the Fixed-Point Converter names the first global variable in a project g.
2 Enter the names of the global variables used in your code. After adding a global variable, specify

its type.
3 Click Add global to enter more global variables.

Note If you do not specify the type, you must create a variable with the same name in the global
workspace.

Define Global Data at the Command Line

To define global data at the command line, use the fiaccel -globals option. For example, to
convert the use_globals function described in “Declare Global Variables” on page 7-56 to fixed-
point, specify two global inputs, AR and B, at the command line. Use the -args option to specify that
the input u is a real, scalar double.

fiaccel -float2fixed cfg -global {'AR',ones(4),'B',[1 2 3]} use_globals -args {0}

Alternatively, specify the type and initial value with the -globals flag using the format -globals
{'g', {type, initial_value}}.

To provide initial values for variable-size global data, specify the type and initial value with the -
globals flag using the format -globals {'g', {type, initial_value}}. For example, to
specify a global variable g that has an initial value [1 1] and upper bound [2 2], enter:

fiaccel -float2fixed cfg -global {'g', {coder.typeof(0, [2 2],1),[1 1]}} myfunction

For a detailed explanation of the syntax, see coder.typeof.

Define Constant Global Data
If you know that the value of a global variable does not change at run time, you can reduce overhead
in the fixed-point code by specifying that the global variable has a constant value. You cannot write to
the constant global variable.

Define Constant Global Data in the Fixed-Point Converter

1 On the Define Input Types page, after selecting and running a test file, select Yes next to Does
this code use global variables.

2 Enter the name of the global variables used in your code.
3 Click the field to the right of the global variable.
4 Select Define Constant Value.
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5 In the field to the right of the constant global variable, enter a MATLAB expression.

Define Constant Global Data at the Command Line

To specify that a global variable is constant using the fiaccel command, use the -globals option
with the coder.Constant class.

1 Define a fixed-point conversion configuration object.

cfg = coder.config('fixpt');
2 Use coder.Constant to specify that a global variable has a constant value. For example, this

code specifies that the global variable g has an initial value 4 and that global variable gc has the
constant value 42.

global_values = {'g', 4, 'gc', coder.Constant(42)};
3 Convert the code to fixed-point using the -globals option. For example, convert myfunction to

fixed-point, specifying that the global variables are defined in the cell array global_values.

fiaccel -float2fixed cfg -global global_values myfunction

Constant Global Data in a Code Generation Report

The code generation report provides this information about a constant global variable:
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• Type of Global on the Variables tab.
• Highlighted variable name in the Function pane.

See Also

Related Examples
• “Convert Code Containing Global Variables to Fixed-Point” on page 7-60
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Convert Code Containing Global Variables to Fixed-Point
This example shows how to convert a MATLAB algorithm containing global variables to fixed point
using the Fixed-Point Converter app.

1 In a local writable folder, create the function use_globals.m.

function y = use_globals(u)
%#codegen
% Declare AR and B as global variables
global AR;
global B;
AR(1) = u + B(1);
y = AR * 2;

2 In the same folder, create a test file, use_globals_tb.m that calls the function.

u = 55;
global AR B;
AR = ones(4);
B=[1 2 3];
y = use_globals(u);

3 On the MATLAB toolstrip, in the Apps tab, under Code Generation, click the Fixed-Point
Converter app icon.

4 To add the entry-point function, use_globals.m to the project, on the Select Source Files
page, browse to the file, and click Open. Click Next.

5 On the Define Input Types page, add use_globals_tb.m as the test file. Click Autodefine
Input Types.

The app determines from the test file that the input type of the input u is double(1x1).
6 Select Yes next to Does this code use global variables. By default, the Fixed-Point Converter

app names the first global variable in a project g.
7 Type in the names of the global variables in your code. In the field to the right of the global

variable AR, specify its type as double(4x4).
8 The global variable B is not assigned in the use_globals function. Define this variable as a

global constant by clicking the field to the right of the constant and selecting Define Constant
Value. Type in the value of B as it is defined in the test file, [1 2 3]. The app indicates that B
has the value[1 2 3]. The app indicates that AR is not initialized.
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9 Click Next. The app generates an instrumented MEX function for your entry-point MATLAB
function. On the Convert to Fixed-Point page, click Simulate to simulate the function, gather
range information, and get proposed data types.

10 Click Convert to accept the proposed data types and convert the function to fixed-point.

In the generated fixed-point code, the global variable AR is now AR_g.

The wrapper function contains three global variables: AR, AR_g, and B, where AR_g is set equal
to a fi-casted AR, and AR is set equal to a double casted AR_g. The global variable B does not have
a separate variable in the fixed-point code because it is a constant.
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function y = use_globals_fixpt(u)
%#codegen
% Declare AR and B as global variables
fm = get_fimath();

global AR_g;
global B;
AR_g(1) = fi(u + B(1), 0, 6, 0, fm);
y = fi(AR_g * fi(2, 0, 2, 0, fm), 0, 7, 0, fm);
end

function fm = get_fimath()
    fm = fimath('RoundingMethod', 'Floor',...
 'OverflowAction', 'Wrap', 'ProductMode', 'FullPrecision',...
 'MaxProductWordLength', 128, 'SumMode', 'FullPrecision',...
 'MaxSumWordLength', 128);
end
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See Also

More About
• “Convert Code Containing Global Data to Fixed Point” on page 7-56
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Convert Code Containing Structures to Fixed Point
This example shows how to convert a MATLAB algorithm containing structures to fixed point using
the Fixed-Point Converter app.

1 In a local writable folder, create the functions struct_fcn.m

function [out, y] = struct_fcn(in)
    % create a nested struct
    z = struct('prop1', struct('subprop1', 0, 'subprop2', [3 4 45]));
    % copy over the struct
    y = z;
    y.prop1.subprop1 = y.prop1.subprop1 + in;
    out = y.prop1.subprop1;
end

2 In the same folder, create a test file, struct_fcn_tb.m, that calls the function.

for ii = 1:10
    struct_fcn(ii);
end

3 From the apps gallery, open the Fixed-Point Converter app.
4 On the Select Source Files page, browse to the struct_fcn.m file, and click Open.
5 Click Next. On the Define Input Types page, enter the test file that exercises the struct_fcn

function. Browse to select the struct_fcn_tb.m file. Click Autodefine Input Types.
6 Click Next. The app generates an instrumented MEX function for your entry-point MATLAB

function. On the Convert to Fixed-Point page, click Simulate to simulate the function, gather
range information, and propose data types.

When the names, number, and types of fields of two or more structures match, the Fixed-Point
Converter app proposes a unified type. In this example, the range of z.prop1.subprop1 is
[0,0], while the range of y.prop1.subprop1 is [0,10]. The app proposes a data type of
numerictype(0,4,0) for both z.prop1.subprop1 and y.prop1.subprop1 based on the
union of the ranges of the two fields.
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7 Click Convert.

The Fixed-Point Converter converts the function containing the structures to fixed point and
generates the struct_fcn_fixpt.m file.
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Data Type Issues in Generated Code
Within the fixed-point conversion report, you have the option to highlight MATLAB code that results
in double, single, or expensive fixed-point operations. Consider enabling these checks when trying to
achieve a strict single, or fixed-point design.

These checks are disabled by default.

Enable the Highlight Option in the Fixed-Point Converter App
1 On the Convert to Fixed Point page, to open the Settings dialog box, click the Settings arrow

.
2 Under Plotting and Reporting, set Highlight potential data type issues to Yes.

When conversion is complete, open the fixed-point conversion report to view the highlighting. Click
View report in the Type Validation Output tab.

Enable the Highlight Option at the Command Line
1 Create a fixed-point code configuration object:

cfg = coder.config('fixpt');
2 Set the HighlightPotentialDataTypeIssues property of the configuration object to true.

cfg.HighlightPotentialDataTypeIssues = true;

Stowaway Doubles
When trying to achieve a strict-single or fixed-point design, manual inspection of code can be time-
consuming and error prone. This check highlights all expressions that result in a double operation.

Stowaway Singles
This check highlights all expressions that result in a single operation.

Expensive Fixed-Point Operations
The expensive fixed-point operations check identifies optimization opportunities for fixed-point code.
It highlights expressions in the MATLAB code that require cumbersome multiplication or division,
expensive rounding, expensive comparison, or multiword operations. For more information on
optimizing generated fixed-point code, see “Tips for Making Generated Code More Efficient” on page
49-9.

Cumbersome Operations

Cumbersome operations most often occur due to insufficient range of output. Avoid inputs to a
multiply or divide operation that has word lengths larger than the base integer type of your
processor. Operations with larger word lengths can be handled in software, but this approach
requires much more code and is much slower.
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Expensive Rounding

Traditional handwritten code, especially for control applications, almost always uses "no effort"
rounding. For example, for unsigned integers and two's complement signed integers, shifting right
and dropping the bits is equivalent to rounding to floor. To get results comparable to, or better than,
what you expect from traditional handwritten code, use the floor rounding method. This check
identifies expensive rounding operations in multiplication and division.

Expensive Comparison Operations

Comparison operations generate extra code when a casting operation is required to do the
comparison. For example, when comparing an unsigned integer to a signed integer, one of the inputs
must first be cast to the signedness of the other before the comparison operation can be performed.
Consider optimizing the data types of the input arguments so that a cast is not required in the
generated code.

Multiword Operations

Multiword operations can be inefficient on hardware. When an operation has an input or output data
type larger than the largest word size of your processor, the generated code contains multiword
operations. You can avoid multiword operations in the generated code by specifying local fimath
properties for variables. You can also manually specify input and output word lengths of operations
that generate multiword code.
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System Objects Supported by Fixed-Point Converter App
Use the Fixed-Point Converter app to automatically propose and apply data types for commonly used
system objects. The proposed data types are based on simulation data from the System object™.

Automated conversion is available for these DSP System Toolbox System Objects:

• dsp.BiquadFilter
• dsp.FIRDecimator
• dsp.FIRInterpolator
• dsp.FIRFilter (Direct Form and Direct Form Transposed only)
• dsp.FIRRateConverter
• dsp.VariableFractionalDelay

The Fixed-Point Converter app can display simulation minimum and maximum values, whole number
information, and histogram data.

• You cannot propose data types for these System objects based on static range data.
• You must configure the System object to use 'Custom' fixed-point settings.
• The app applies the proposed data types only if the input signal is floating point, not fixed-point.

The app treats scaled doubles as fixed-point. The scaled doubles workflow for System objects is
the same as that for regular variables.

• The app ignores the Default word length setting in the Settings menu. The app also ignores
specified rounding and overflow modes. Data-type proposals are based on the settings of the
System object.

See Also

Related Examples
• “Convert dsp.FIRFilter Object to Fixed-Point Using the Fixed-Point Converter App” on page 7-

70
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Convert dsp.FIRFilter Object to Fixed-Point Using the Fixed-
Point Converter App

Convert a dsp.FIRFilter System object, which filters a high-frequency sinusoid signal, to fixed-
point using the Fixed-Point Converter app. This example requires Fixed-Point Designer and DSP
System Toolbox licenses.

Create DSP Filter Function and Test Bench
Create a myFIRFilter function from a dsp.FIRFilter System object.

By default, System objects are configured to use full-precision fixed-point arithmetic. To gather range
data and get data type proposals from the Fixed-Point Converter app, configure the System object to
use ‘Custom’ settings.

Save the function to a local writable folder.

function output = myFIRFilter(input, num)
    
    persistent lowpassFIR;
    if isempty(lowpassFIR)
        lowpassFIR  = dsp.FIRFilter('NumeratorSource', 'Input port', ...
            'FullPrecisionOverride', false, ...
            'ProductDataType', 'Full precision', ... % default
            'AccumulatorDataType', 'Custom', ...
            'CustomAccumulatorDataType', numerictype(1,16,4), ...
            'OutputDataType', 'Custom', ...
            'CustomOutputDataType', numerictype(1,8,2));
    end
    output = lowpassFIR(input, num);
    
end

Create a test bench, myFIRFilter_tb, for the filter. The test bench generates a signal that gathers
range information for conversion. Save the test bench.

% Test bench for myFIRFilter
% Remove high-frequency sinusoid using an FIR filter.

% Initialize
f1 = 1000;
f2 = 3000;
Fs = 8000;
Fcutoff = 2000;

% Generate input
SR = dsp.SineWave('Frequency',[f1,f2],'SampleRate',Fs,...
    'SamplesPerFrame',1024);

% Filter coefficients
num = fir1(130,Fcutoff/(Fs/2));

% Visualize input and output spectra
plot = spectrumAnalyzer('SampleRate',Fs,...
    'PlotAsTwoSidedSpectrum',false,...
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    'ShowLegend',true,'YLimits',[-120 30],...
    'Title','Input Signal (Channel 1) Output Signal (Channel 2)');

% Stream
for k = 1:100
    input = sum(SR(),2); % Add the two sinusoids together
    filteredOutput = myFIRFilter(input, num); % Filter
    plot([input,filteredOutput]); % Visualize
end

Convert the Function to Fixed-Point
1 Open the Fixed-Point Converter app.

• MATLAB Toolstrip: On the Apps tab, under Code Generation, click the app icon.
• MATLAB command prompt: Enter

fixedPointConverter
2 To add the entry-point function myFIRFilter to the project, browse to the file myFIRFilter.m,

and then click Open.

By default, the app saves information and settings for this project in the current folder in a file
named myFirFilter.prj.

3 Click Next to go to the Define Input Types step.

The app screens myFIRFilter.m for code violations and fixed-point conversion readiness issues.
The app does not find issues in myFIRFilter.m.
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4 On the Define Input Types page, to add myFIRFilter_tb as a test file, browse to
myFIRFilter_tb.m, and then click Autodefine Input Types.

The app determines from the test file that the type of input is double(1024 x 1) and the type
of num is double(1 x 131).

5 Click Next to go to the Convert to Fixed Point step.
6 On the Convert to Fixed Point page, click Analyze to collect range information.
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The Variables tab displays the collected range information and type proposals. Manually edit the
data type proposals as needed.
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7 Click Convert to apply the proposed data types to the function.

The Fixed-Point Converter app applies the proposed data types and generates a fixed-point
function, myFIRFilter_fixpt.
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%#codegen
function output = myFIRFilter_fixpt(input, num) 
    fm = get_fimath();

    persistent lowpassFIR;
    if isempty(lowpassFIR)
        lowpassFIR  = dsp.FIRFilter('NumeratorSource', 'Input port', ...
            'FullPrecisionOverride', false, ...
            'ProductDataType', 'Full precision', ... % default
            'AccumulatorDataType', 'Custom', ...
            'CustomAccumulatorDataType', numerictype(1, 16, 14), ...
            'OutputDataType', 'Custom', ...
            'CustomOutputDataType', numerictype(1, 8, 6));
    end
    output = fi(lowpassFIR(input, num), 1, 16, 14, fm);
end

function fm = get_fimath()
    fm = fimath('RoundingMethod', 'Floor',...
         'OverflowAction', 'Wrap',...
         'ProductMode','FullPrecision',...
         'MaxProductWordLength', 128,...
         'SumMode','FullPrecision',...
         'MaxSumWordLength', 128);
end
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8 Click Next to see the project summary details and links to the fixed-point MATLAB code and
conversion report.

See Also

More About
• “System Objects Supported by Fixed-Point Converter App” on page 7-69
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Automated Conversion Using Fixed-
Point Converter App

• “Specify Type Proposal Options” on page 8-2
• “Detect Overflows” on page 8-5
• “Propose Data Types Based on Simulation Ranges” on page 8-13
• “Propose Data Types Based on Derived Ranges” on page 8-24
• “View and Modify Variable Information” on page 8-36
• “Replace the exp Function with a Lookup Table” on page 8-39
• “Convert Fixed-Point Conversion Project to MATLAB Scripts” on page 8-46
• “Replace a Custom Function with a Lookup Table” on page 8-48
• “Visualize Differences Between Floating-Point and Fixed-Point Results” on page 8-53
• “Enable Plotting Using the Simulation Data Inspector” on page 8-63
• “Add Global Variables by Using the App” on page 8-64
• “Automatically Define Input Types by Using the App” on page 8-65
• “Define Constant Input Parameters Using the App” on page 8-66
• “Define or Edit Input Parameter Type by Using the App” on page 8-67
• “Define Input Parameter by Example by Using the App” on page 8-74
• “Specify Global Variable Type and Initial Value Using the App” on page 8-81
• “Specify Properties of Entry-Point Function Inputs Using the App” on page 8-84
• “Detect Unexecuted and Constant-Folded Code” on page 8-85
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Specify Type Proposal Options
To view type proposal options, in the Fixed-Point Converter app, on the Convert to Fixed Point
page, click the Settings arrow .

The following options are available.

Basic Type Proposal Settings Values Description
Fixed-point type proposal mode Propose fraction lengths for

specified word length
Use the specified word length
for data type proposals and
propose the minimum fraction
lengths to avoid overflows.

Propose word lengths for
specified fraction length
(default)

Use the specified fraction length
for data type proposals and
propose the minimum word
lengths to avoid overflows.

Default word length 16 (default) Default word length to use when
Fixed-point type proposal
mode is set to Propose
fraction lengths for
specified word lengths

Default fraction length 4 (default) Default fraction length to use
when Fixed-point type
proposal mode is set to
Propose word lengths for
specified fraction
lengths

Advanced Type Proposal Settings Values Description
When proposing types

Note Manually-entered static ranges always
take precedence over simulation ranges.

ignore simulation
ranges

Propose data types based on derived
ranges.

ignore derived ranges Propose data types based on simulation
ranges.

use all collected data
(default)

Propose data types based on both
simulation and derived ranges.

Propose target container types Yes Propose data type with the smallest
word length that can represent the
range and is suitable for C code
generation ( 8,16,32, 64 … ). For
example, for a variable with range
[0..7], propose a word length of 8
rather than 3.

No (default) Propose data types with the minimum
word length needed to represent the
value.
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Advanced Type Proposal Settings Values Description
Optimize whole numbers No Do not use integer scaling for variables

that were whole numbers during
simulation.

Yes (default) Use integer scaling for variables that
were whole numbers during simulation.

Signedness Automatic (default) Proposes signed and unsigned data
types depending on the range
information for each variable.

Signed Propose signed data types.
Unsigned Propose unsigned data types.

Safety margin for sim min/max (%) 0 (default) Specify safety factor for simulation
minimum and maximum values.

The simulation minimum and maximum
values are adjusted by the percentage
designated by this parameter, allowing
you to specify a range different from
that obtained from the simulation run.
For example, a value of 55 specifies that
you want a range at least 55 percent
larger. A value of -15 specifies that a
range up to 15 percent smaller is
acceptable.

Search paths '' (default) Add paths to the list of paths to search
for MATLAB files. Separate list items
with a semicolon.

fimath Settings Values Description
Rounding method Ceiling Specify the fimath properties

for the generated fixed-point
data types.

The default fixed-point math
properties use the Floor
rounding and Wrap overflow.
These settings generate the
most efficient code but might
cause problems with overflow.

After code generation, if
required, modify these settings
to optimize the generated code,
or example, avoid overflow or
eliminate bias, and then rerun
the verification.

Convergent
Floor (default)
Nearest
Round
Zero

Overflow action Saturate
Wrap (default)

Product mode FullPrecision (default)
KeepLSB
KeepMSB
SpecifyPrecision

Sum mode FullPrecision (default)
KeepLSB
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fimath Settings Values Description
KeepMSB For more information on

fimath properties, see “fimath
Object Properties” on page 3-4.SpecifyPrecision

Generated File Settings Value Description
Generated fixed-point file name
suffix

_fixpt (default) Specify the suffix to add to the
generated fixed-point file
names.

Plotting and Reporting
Settings

Values Description

Custom plot function '' (default) Specify the name of a custom
plot function to use for
comparison plots.

Plot with Simulation Data
Inspector

No (default) Specify whether to use the
Simulation Data Inspector for
comparison plots.

Yes

Highlight potential data type
issues

No (default) Specify whether to highlight
potential data types in the
generated html report. If this
option is turned on, the report
highlights single-precision,
double-precision, and expensive
fixed-point operation usage in
your MATLAB code.

Yes
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Detect Overflows
This example shows how to detect overflows using the Fixed-Point Converter app. At the numerical
testing stage in the conversion process, you choose to simulate the fixed-point code using scaled
doubles. The app then reports which expressions in the generated code produce values that overflow
the fixed-point data type.

Prerequisites

This example requires the following products:

• MATLAB
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\overflow.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB command line,

enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))
3 Copy the overflow.m and overflow_test.m files to your local working folder.

It is a best practice is to create a separate test script to do pre- and post-processing, such as:

• Loading inputs.
• Setting up input values.
• Outputting test results.

For more information, see “Create a Test File” on page 11-3.

Type Name Description
Function code overflow.m Entry-point MATLAB function
Test file overflow_test.m MATLAB script that tests

overflow.m

The overflow Function

function y = overflow(b,x,reset)
    if nargin<3, reset = true; end
    persistent z p
    if isempty(z) || reset
        p = 0;
        z = zeros(size(b));
    end
    [y,z,p] = fir_filter(b,x,z,p);
end
function [y,z,p] = fir_filter(b,x,z,p)
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    y = zeros(size(x));
    nx = length(x);
    nb = length(b);
    for n = 1:nx
        p=p+1; if p>nb, p=1; end
        z(p) = x(n);        
        acc = 0;
        k = p;
        for j=1:nb
            acc = acc + b(j)*z(k);
            k=k-1; if k<1, k=nb; end
        end        
        y(n) = acc;
    end
end

The overflow_test Function

You use this test file to define input types for b, x, and reset, and, later, to verify the fixed-point
version of the algorithm.

function overflow_test
    % The filter coefficients were computed using the FIR1 function from
    % Signal Processing Toolbox.
    %   b = fir1(11,0.25);
    b = [-0.004465461051254
         -0.004324228005260
         +0.012676739550326
         +0.074351188907780
         +0.172173206073645
         +0.249588554524763
         +0.249588554524763
         +0.172173206073645
         +0.074351188907780
         +0.012676739550326
         -0.004324228005260
         -0.004465461051254]';
    
    % Input signal
    nx = 256;
    t = linspace(0,10*pi,nx)';

    % Impulse
    x_impulse = zeros(nx,1); x_impulse(1) = 1;

    % Max Gain
    % The maximum gain of a filter will occur when the inputs line up with the
    % signs of the filter's impulse response.
    x_max_gain = sign(b)';
    x_max_gain = repmat(x_max_gain,ceil(nx/length(b)),1);
    x_max_gain = x_max_gain(1:nx);

    % Sums of sines
    f0=0.1; f1=2;
    x_sines = sin(2*pi*t*f0) + 0.1*sin(2*pi*t*f1);

    % Chirp
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    f_chirp = 1/16;                  % Target frequency
    x_chirp = sin(pi*f_chirp*t.^2);  % Linear chirp

    x = [x_impulse, x_max_gain, x_sines, x_chirp];
    titles = {'Impulse', 'Max gain', 'Sum of sines', 'Chirp'};
    y = zeros(size(x));

    for i=1:size(x,2)
        reset = true;
        y(:,i) = overflow(b,x(:,i),reset);
    end

    test_plot(1,titles,t,x,y)

end
function test_plot(fig,titles,t,x,y1)
    figure(fig)
    clf
    sub_plot = 1;
    font_size = 10;
    for i=1:size(x,2)
        subplot(4,1,sub_plot)
        sub_plot = sub_plot+1;
        plot(t,x(:,i),'c',t,y1(:,i),'k')
        axis('tight')
        xlabel('t','FontSize',font_size);
        title(titles{i},'FontSize',font_size);
        ax = gca;
        ax.FontSize = 10;
    end
    figure(gcf)
end

Open the Fixed-Point Converter App

1 Navigate to the work folder that contains the file for this example.
2 On the MATLAB Toolstrip Apps tab, under Code Generation, click the app icon.
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Select Source Files

1 To add the entry-point function overflow to the project, browse to the file overflow.m, and
then click Open. By default, the app saves information and settings for this project in the current
folder in a file named overflow.prj.

2 Click Next to go to the Define Input Types step.

The app screens overflow.m for code violations and fixed-point conversion readiness issues.
The app does not find issues in overflow.m.

Define Input Types

1 On the Define Input Types page, to add overflow_test as a test file, browse to
overflow_test.m, and then click Open.

2 Click Autodefine Input Types.

The test file runs. The app determines from the test file that the input type of b is
double(1x12), x is double(256x1), and reset is logical(1x1).
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3 Click Next to go to the Convert to Fixed Point step.

Convert to Fixed Point

1 The app generates an instrumented MEX function for your entry-point MATLAB function. The app
displays compiled information — type, size, and complexity — for variables in your code. For
more information, see “View and Modify Variable Information” on page 8-36.
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On the Function Replacements tab the app displays functions that are not supported for fixed-
point conversion. See “Running a Simulation” on page 7-8.

2 To view the fimath settings, click the Settings arrow . Set the fimath Product mode and
Sum mode to KeepLSB. These settings model the behavior of integer operations in the C
language.
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3 Click Analyze.

The test file, overflow_test, runs. The app displays simulation minimum and maximum ranges
on the Variables tab. Using the simulation range data, the software proposes fixed-point types
for each variable based on the default type proposal settings, and displays them in the Proposed
Type column.

4 To convert the floating-point algorithm to fixed point, click Convert.

The software validates the proposed types and generates a fixed-point version of the entry-point
function.

If errors and warnings occur during validation, the app displays them on the Output tab. See
“Validating Types” on page 7-21.

Test Numerics and Check for Overflows
1 Click the Test arrow . Verify that the test file is overflow_test.m. Select Use scaled

doubles to detect overflows, and then click Test.

The app runs the test file that you used to define input types to test the fixed-point MATLAB code.
Because you selected to detect overflows, it also runs the simulation using scaled double versions
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of the proposed fixed-point types. Scaled doubles store their data in double-precision floating-
point, so they carry out arithmetic in full range. Because they retain their fixed-point settings,
they can report when a computation goes out of the range of the fixed-point type.

The simulation runs. The app detects an overflow. The app reports the overflow on the Overflow
tab. To highlight the expression that overflowed, click the overflow.

2 Determine whether it was the sum or the multiplication that overflowed.

In the fimath settings, set Product mode to FullPrecision, and then repeat the conversion
and test the fixed-point code again.

The overflow still occurs, indicating that it is the addition in the expression that is overflowing.
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Propose Data Types Based on Simulation Ranges
This example shows how to propose fixed-point data types based on simulation range data using the
Fixed-Point Converter app.

Prerequisites

This example requires the following products:

• MATLAB
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\ex_2ndOrder_filter.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB command line,

enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples')) 
3 Copy the ex_2ndOrder_filter.m and ex_2ndOrder_filter_test.m files to your local

working folder.

It is a best practice is to create a separate test script to do pre- and post-processing, such as:

• Loading inputs.
• Setting up input values.
• Outputting test results.

See “Create a Test File” on page 11-3.

Type Name Description
Function code ex_2ndOrder_filter.m Entry-point MATLAB function
Test file ex_2ndOrder_filter_test.m MATLAB script that tests

ex_2ndOrder_filter.m

The ex_2ndOrder_filter Function

function y = ex_2ndOrder_filter(x) %#codegen
  persistent z
  if isempty(z)
      z = zeros(2,1);
  end
  % [b,a] = butter(2, 0.25)
  b = [0.0976310729378175,  0.195262145875635,  0.0976310729378175];
  a = [1, -0.942809041582063,  0.3333333333333333];

 
  y = zeros(size(x));
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  for i = 1:length(x)
      y(i) = b(1)*x(i) + z(1);
      z(1) = b(2)*x(i) + z(2) - a(2) * y(i);
      z(2) = b(3)*x(i)        - a(3) * y(i);
  end
end

The ex_2ndOrder_filter_test Script

The test script runs the ex_2ndOrder_filter function with three input signals: chirp, step, and
impulse to cover the full intended operating range of the system. The script then plots the outputs.

% ex_2ndOrder_filter_test
%
% Define representative inputs
N = 256;                   % Number of points
t = linspace(0,1,N);       % Time vector from 0 to 1 second
f1 = N/2;                  % Target frequency of chirp set to Nyquist
x_chirp = sin(pi*f1*t.^2); % Linear chirp from 0 to Fs/2 Hz in 1 second
x_step = ones(1,N);        % Step
x_impulse = zeros(1,N);    % Impulse
x_impulse(1) = 1;

% Run the function under test
x = [x_chirp;x_step;x_impulse];
y = zeros(size(x));
for i = 1:size(x,1)
  y(i,:) = ex_2ndOrder_filter(x(i,:));
end

% Plot the results
titles = {'Chirp','Step','Impulse'}
clf
for i = 1:size(x,1)
  subplot(size(x,1),1,i)
  plot(t,x(i,:),t,y(i,:))
  title(titles{i})
  legend('Input','Output')
end
xlabel('Time (s)')
figure(gcf)

disp('Test complete.')

Open the Fixed-Point Converter App

1 Navigate to the work folder that contains the file for this example.
2 On the MATLAB Toolstrip Apps tab, under Code Generation, click the app icon.
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Select Source Files

1 To add the entry-point function ex_2ndOrder_filter to the project, browse to the file
ex_2ndOrder_filter.m, and then click Open. By default, the app saves information and
settings for this project in the current folder in a file named ex_2ndOrder_filter.prj.

2 Click Next to go to the Define Input Types step.

The app screens ex_2ndOrder_filter.m for code violations and fixed-point conversion
readiness issues. The app does not find issues in ex_2ndOrder_filter.m.

Define Input Types

1 On the Define Input Types page, to add ex_2ndOrder_filter_test as a test file, browse to
ex_2ndOrder_filter_test, and then click Open.

2 Click Autodefine Input Types.

The test file runs and displays the outputs of the filter for each of the input signals.
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The app determines from the test file that the input type of x is double(1x256).

3 Click Next to go to the Convert to Fixed Point step.
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Convert to Fixed Point

1 The app generates an instrumented MEX function for your entry-point MATLAB function. The app
displays compiled information—type, size, and complexity—for variables in your code. See “View
and Modify Variable Information” on page 8-36.

On the Function Replacements tab, the app displays functions that are not supported for fixed-
point conversion. See “Running a Simulation” on page 7-8.

2 Click the Analyze arrow . Verify that Analyze ranges using simulation is selected and that
the test bench file is ex_2ndOrder_filter_test. You can add test files and select to run more
than one test file during the simulation. If you run multiple test files, the app merges the
simulation results.

3 Select Log data for histogram.

By default, the Show code coverage option is selected. This option provides code coverage
information that helps you verify that your test file is testing your algorithm over the intended
operating range.
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4 Click Analyze.

The simulation runs and the app displays a color-coded code coverage bar to the left of the
MATLAB code. Review this information to verify that the test file is testing the algorithm
adequately. The dark green line to the left of the code indicates that the code runs every time the
algorithm executes. The orange bar indicates that the code next to it executes only once. This
behavior is expected for this example because the code initializes a persistent variable. If your
test file does not cover all of your code, update the test or add more test files.

If a value has ... next to it, the value is rounded. Pause over the ... to view the actual value.

The app displays simulation minimum and maximum ranges on the Variables tab. Using the
simulation range data, the software proposes fixed-point types for each variable based on the
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default type proposal settings, and displays them in the Proposed Type column. The app enables
the Convert option.

Note You can manually enter static ranges. These manually entered ranges take precedence
over simulation ranges. The app uses the manually entered ranges to propose data types. You can
also modify and lock the proposed type.

5 Examine the proposed types and verify that they cover the full simulation range. To view logged
histogram data for a variable, click its Proposed Type field.

To modify the proposed data types, either enter the required type into the Proposed Type field
or use the histogram controls. For more information about the histogram, see “Log Data for
Histogram” on page 7-19.

6 To convert the floating-point algorithm to fixed point, click Convert.

During the fixed-point conversion process, the software validates the proposed types and
generates the following files in the codegen\ex_2ndOrder_filter\fixpt folder in your local
working folder.

• ex_2ndOrder_filter_fixpt.m — the fixed-point version of ex_2ndOrder_filter.m.
• ex_2ndOrder_filter_wrapper_fixpt.m — this file converts the floating-point data values

supplied by the test file to the fixed-point types determined for the inputs during conversion.
These fixed-point values are fed into the converted fixed-point design,
ex_2ndOrder_filter_fixpt.m.

• ex_2ndOrder_filter_fixpt_report.html — this report shows the generated fixed-point
code and the fixed-point instrumentation results.

• ex_2ndOrder_filter_report.html — this report shows the original algorithm and the
fixed-point instrumentation results.

• ex_2ndOrder_filter_fixpt_args.mat — MAT-file containing a structure for the input
arguments, a structure for the output arguments and the name of the fixed-point file.

If errors or warnings occur during validation, you see them on the Output tab. See “Validating
Types” on page 7-21.

7 In the Output Files list, select ex_2ndOrder_filter_fixpt.m. The app displays the
generated fixed-point code.
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8 Click the Test arrow . Select Log inputs and outputs for comparison plots, and then click
Test.

To test the fixed-point MATLAB code, the app runs the test file that you used to define input
types. Optionally, you can add test files and select to run more than one test file to test numerics.
The software runs both a floating-point and a fixed-point simulation and then calculates the
errors for the output variable y. Because you selected to log inputs and outputs for comparison
plots, the app generates a plot for each input and output. The app docks these plots in a single
figure window.
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The app also reports error information on the Verification Output tab. The maximum error is
less than 0.03%. For this example, this margin of error is acceptable.

If the difference is not acceptable, modify the fixed-point data types or your original algorithm.
For more information, see “Testing Numerics” on page 7-22.

9 On the Verification Output tab, the app provides a link to a report that shows the generated
fixed-point code and the proposed type information.
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10 Click Next to go to the Finish Workflow page.

On the Finish Workflow page, the app displays a project summary and links to generated output
files.

Integrate Fixed-Point Code

To integrate the fixed-point version of the code into system-level simulations, generate a MEX
function to accelerate the fixed-point algorithm. Call this MEX function instead of the original
MATLAB algorithm.

1 Copy ex_2ndOrder_filter_fixpt.m to your local working folder.
2 Generate a MEX function for ex_2ndOrder_filter_fixpt.m. Look at the get_fimath

function in the ex_2ndOrder_filter_fixpt.m file to get the fimath, and use the type
proposal report to get fixed-point data type for input x.
fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap', 'ProductMode', 'FullPrecision',...
            'MaxProductWordLength', 128, 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);
fiaccel ex_2ndOrder_filter_fixpt -args {fi( 0, 1, 16, 14, fm )}

fiaccel generates a MEX function, ex_2ndOrder_filter_fixpt_mex, in the current folder.
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3 You can now call this MEX function in place of the original MATLAB algorithm.
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Propose Data Types Based on Derived Ranges
This example shows how to propose fixed-point data types based on static ranges using the Fixed-
Point Converter app. When you propose data types based on derived ranges you, do not have to
provide test files that exercise your algorithm over its full operating range. Running such test files
often takes a long time. You can save time by deriving ranges instead.

Note Derived range analysis is not supported for non-scalar variables.

Prerequisites

This example requires the following products:

• MATLAB
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\dti.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB command line,

enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples')) 
3 Copy the dti.m and dti_test.m files to your local working folder.

It is a best practice is to create a separate test script to do pre- and post-processing, such as:

• Loading inputs.
• Setting up input values.
• Outputting test results.

Type Name Description
Function code dti.m Entry-point MATLAB function
Test file dti_test.m MATLAB script that tests dti.m

The dti Function

The dti function implements a Discrete Time Integrator in MATLAB.

function [y, clip_status] = dti(u_in) %#codegen
% Discrete Time Integrator in MATLAB
%  
% Forward Euler method, also known as Forward Rectangular, or left-hand
% approximation.  The resulting expression for the output of the block at
% step 'n' is y(n) = y(n-1) + K * u(n-1)
%
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init_val = 1;  
gain_val = 1;
limit_upper = 500;
limit_lower = -500;

% variable to hold state between consecutive calls to this block
persistent u_state;
if isempty(u_state)
    u_state = init_val+1;
end 

% Compute Output
if (u_state > limit_upper)
    y = limit_upper;
    clip_status = -2;
elseif (u_state >= limit_upper)
    y = limit_upper;
    clip_status = -1;
elseif (u_state < limit_lower)
    y = limit_lower;
    clip_status = 2;
elseif (u_state <= limit_lower)
    y = limit_lower;
    clip_status = 1;   
else        
    y = u_state;
    clip_status = 0;
end

% Update State
tprod = gain_val * u_in;
u_state = y + tprod;

The dti_test Function

The test script runs the dti function with a sine wave input. The script then plots the input and
output signals.

% dti_test
% cleanup
clear dti

% input signal
x_in = sin(2.*pi.*(0:0.001:2)).';

pause(10);

len = length(x_in);
y_out = zeros(1,len);
is_clipped_out = zeros(1,len);

for ii=1:len
    data = x_in(ii);
    % call to the dti function
    init_val = 0;
    gain_val = 1;
    upper_limit = 500;
    lower_limit = -500;
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    % call to the design that does DTI
    [y_out(ii), is_clipped_out(ii)] = dti(data);
    
end

figure('Name', [mfilename, '_plot']);
subplot(2,1,1)
plot(1:len,x_in)
xlabel('Time')
ylabel('Amplitude')
title('Input Signal (Sin)')

subplot(2,1,2)
plot(1:len,y_out)
xlabel('Time')
ylabel('Amplitude')
title('Output Signal (DTI)')

disp('Test complete.');

Open the Fixed-Point Converter App

1 Navigate to the work folder that contains the file for this example.
2 On the MATLAB Toolstrip Apps tab, under Code Generation, click the app icon.
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Select Source Files

1 To add the entry-point function dti to the project, browse to the file dti.m, and then click Open.
By default, the app saves information and settings for this project in the current folder in a file
named dti.prj.

2 Click Next to go to the Define Input Types step.

The app screens dti.m for code violations and fixed-point conversion readiness issues. The app
does not find issues in dti.m.

Define Input Types

1 On the Define Input Types page, to add dti_test as a test file, browse to dti_test.m, and
then click Open.

2 Click Autodefine Input Types.

The test file runs. The app determines from the test file that the input type of u_in is
double(1x1).
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3 Click Next to go to the Convert to Fixed Point step.

Convert to Fixed Point

1 The app generates an instrumented MEX function for your entry-point MATLAB function. The app
displays compiled information—type, size, and complexity—for variables in your code. For more
information, see “View and Modify Variable Information” on page 8-36.
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If functions are not supported for fixed-point conversion, the app displays them on the Function
Replacements tab.

2 Click the Analyze arrow .

a Select Analyze ranges using derived range analysis.
b Clear the Analyze ranges using simulation check box.

Design ranges are required to use derived range analysis.

3 On the Convert to Fixed Point page, on the Variables tab, for input u_in, select Static Min
and set it to -1. Set Static Max to 1.
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To compute derived range information, at a minimum you must specify static minimum and
maximum values or proposed data types for all input variables.

Note If you manually enter static ranges, these manually entered ranges take precedence over
simulation ranges. The app uses the manually entered ranges to propose data types. You can also
modify and lock the proposed type.

4 Click Analyze.

Range analysis computes the derived ranges and displays them in the Variables tab. Using these
derived ranges, the analysis proposes fixed-point types for each variable based on the default
type proposal settings. The app displays them in the Proposed Type column.

In the dti function, the clip_status output has a minimum value of -2 and a maximum of 2.

% Compute Output
if (u_state > limit_upper)
    y = limit_upper;
    clip_status = -2;
elseif (u_state >= limit_upper)
    y = limit_upper;
    clip_status = -1;
elseif (u_state < limit_lower)
    y = limit_lower;
    clip_status = 2;
elseif (u_state <= limit_lower)
    y = limit_lower;
    clip_status = 1;   
else        
    y = u_state;
    clip_status = 0;
end

When you derive ranges, the app analyzes the function and computes these minimum and
maximum values for clip_status.
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The app provides a Quick derived range analysis option and the option to specify a timeout in
case the analysis takes a long time. See “Computing Derived Ranges” on page 7-9.

5 To convert the floating-point algorithm to fixed point, click Convert.

During the fixed-point conversion process, the software validates the proposed types and
generates the following files in the codegen\dti\fixpt folder in your local working folder:

• dti_fixpt.m — the fixed-point version of dti.m.
• dti_wrapper_fixpt.m — this file converts the floating-point data values supplied by the

test file to the fixed-point types determined for the inputs during conversion. The app feeds
these fixed-point values into the converted fixed-point design, dti_fixpt.m.

• dti_fixpt_report.html — this report shows the generated fixed-point code and the fixed-
point instrumentation results.

• dti_report.html — this report shows the original algorithm and the fixed-point
instrumentation results.
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• dti_fixpt_args.mat — MAT-file containing a structure for the input arguments, a
structure for the output arguments and the name of the fixed-point file.

If errors or warnings occur during validation, they show on the Output tab. See “Validating
Types” on page 7-21.

6 In the Output Files list, select dti_fixpt.m. The app displays the generated fixed-point code.
7 Use the Simulation Data Inspector to plot the floating-point and fixed-point results.

a Click the Settings arrow .
b Expand the Plotting and Reporting settings and set Plot with Simulation Data

Inspector to Yes.

c Click the Test arrow . Select Log inputs and outputs for comparison plots. Click Test.

The app runs the test file that you used to define input types to test the fixed-point MATLAB
code. Optionally, you can add test files and select to run more than one test file to test
numerics. The software runs both a floating-point and a fixed-point simulation and then
calculates the errors for the output variable y. Because you selected to log inputs and
outputs for comparison plots and to use the Simulation Data Inspector for these plots, the
Simulation Data Inspector opens.
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d You can use the Simulation Data Inspector to view floating-point and fixed-point run
information and compare results. For example, to compare the floating-point and fixed-point
values for the output y, select y. Click Compare. Set Baseline to the original run and
Compare to to the converter run. Click Compare.

The Simulation Data Inspector displays a plot of the baseline floating-point run against the
fixed-point run and the difference between them.
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8 On the Verification Output tab, the app provides a link to the Fixed_Point Report.

To open the report, click the dti_fixpt_report.html link.
9 Click Next to go to the Finish Workflow page.

On the Finish Workflow page, the app displays a project summary and links to generated output
files.

Integrate Fixed-Point Code

To integrate the fixed-point version of the code into system-level simulations, generate a MEX
function to accelerate the fixed-point algorithm. Call this MEX function instead of the original
MATLAB algorithm.

1 Copy dti_fixpt.m to your local working folder.
2 To get the fimath properties for the input argument, look at the get_fimath function in

dti_fixpt.m.
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function fm = get_fimath()
    fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap', 'ProductMode', 'FullPrecision',...
 'MaxProductWordLength', 128, 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);
end

3 To get the fixed-point data type for input u_in, look at the type proposal report.
4 Generate a MEX function for dti_fixpt.m.

fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap', 'ProductMode', 'FullPrecision',...
            'MaxProductWordLength', 128, 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);
fiaccel dti_fixpt -args {fi( 0, 1, 16, 14, fm )}

fiaccel generates a MEX function, dti_fixpt_mex, in the current folder.
5 You can now call this MEX function in place of the original MATLAB algorithm.
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View and Modify Variable Information

View Variable Information
On the Convert to Fixed Point page of the Fixed-Point Converter app, you can view information
about the variables in the MATLAB functions. To view information about the variables for the function
that you selected in the Source Code pane, use the Variables tab or pause over a variable in the
code window. For more information, see “Viewing Variables” on page 7-17.

You can view the variable information:

• Variable

Variable name. Variables are classified and sorted as inputs, outputs, persistent, or local variables.
• Type

The original size, type, and complexity of each variable.
• Sim Min

The minimum value assigned to the variable during simulation.
• Sim Max

The maximum value assigned to the variable during simulation.

To search for a variable in the MATLAB code window and on the Variables tab, use Ctrl+F.

Modify Variable Information
If you modify variable information, the app highlights the modified values using bold text. You can
modify the following fields:

• Static Min

You can enter a value for Static Min into the field or promote Sim Min information. See
“Promote Sim Min and Sim Max Values” on page 8-37.

Editing this field does not trigger static range analysis, but the app uses the edited values in
subsequent analyses.

• Static Max

You can enter a value for Static Max into the field or promote Sim Max information. See
“Promote Sim Min and Sim Max Values” on page 8-37.

Editing this field does not trigger static range analysis, but the app uses the edited values in
subsequent analyses.

• Whole Number

The app uses simulation data to determine whether the values assigned to a variable during
simulation were always integers. You can manually override this field.

Editing this field does not trigger static range analysis, but the app uses the edited value in
subsequent analyses.
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• Proposed Type

You can modify the signedness, word length, and fraction length settings individually:

• On the Variables tab, modify the value in the ProposedType field.

• In the code window, select a variable, and then modify the Proposed Type field.

If you selected to log data for a histogram, the histogram dynamically updates to reflect the
modifications to the proposed type. You can also modify the proposed type in the histogram, see
“Log Data for Histogram” on page 7-19.

Revert Changes
• To clear results and revert edited values, right-click the Variables tab and select Reset entire

table.
• To revert the type of a selected variable to the type computed by the app, right-click the field and

select Undo changes.
• To revert changes to variables, right-click the field and select Undo changes for all

variables.
• To clear a static range value, right-click an edited field and select Clear this static range.
• To clear manually entered static range values, right-click anywhere on the Variables tab and

select Clear all manually entered static ranges.

Promote Sim Min and Sim Max Values
With the Fixed-Point Converter app, you can promote simulation minimum and maximum values to
static minimum and maximum values. This capability is useful if you have not specified static ranges
and you have simulated the model with inputs that cover the full intended operating range.
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To copy:

• A simulation range for a selected variable, select a variable, right-click, and then select Copy sim
range.

• Simulation ranges for top-level inputs, right-click the Static Min or Static Max column, and then
select Copy sim ranges for all top-level inputs.

• Simulation ranges for persistent variables, right-click the Static Min or Static Max column, and
then select Copy sim ranges for all persistent variables.
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Replace the exp Function with a Lookup Table
This example shows how to replace the exp function with a lookup table approximation in fixed-point
code generated using the Fixed-Point Converter app.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”.

Create Algorithm and Test Files

1 Create a MATLAB function, my_fcn.m, that calls the exp function.

function y = my_fcn(x)
    y = exp(x);
end

2 Create a test file, my_fcn_test.m, that uses my_fcn.m.

close all

x = linspace(-10,10,1e3);
for itr = 1e3:-1:1
    y(itr) = my_fcn( x(itr) );
end
plot( x, y );

Open the Fixed-Point Converter App

1 Navigate to the work folder that contains the file for this example.
2 On the MATLAB Toolstrip Apps tab, under Code Generation, click the app icon.
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Select Source Files

1 To add the entry-point function my_fcn to the project, browse to the file my_fcn.m, and then
click Open. By default, the app saves information and settings for this project in the current
folder in a file named my_fcn.prj.

2 Click Next to go to the Define Input Types step.

The app screens my_fcn.m for code violations and fixed-point conversion readiness issues. The
app opens the Review Code Generation Readiness page.

Review Code Generation Readiness

1 Click Review Issues. The app indicates that the exp function is not supported for fixed-point
conversion. In a later step, you specify a lookup table replacement for this function.
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2 Click Next to go to the Define Input Types step.

Define Input Types

1 Add my_fcn_test as a test file and then click Autodefine Input Types.

The test file runs. The app determines from the test file that x is a scalar double.
2 Click Next to go to the Convert to Fixed Point step.

Replace exp Function with Lookup Table

1 Select the Function Replacements tab.

The app indicates that you must replace the exp function.
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2 On the Function Replacements tab, right-click the exp function and select Lookup Table.

8 Automated Conversion Using Fixed-Point Converter App

8-42



The app moves the exp function to the list of functions that it will replace with a Lookup Table.
By default, the lookup table uses linear interpolation and 1000 points. Design Min and Design
Max are set to Auto which means that the app uses the design minimum and maximum values
that it detects by either running a simulation or computing derived ranges.

3 Click the Analyze arrow , select Log data for histogram, and verify that the test file is
my_fcn_test.

4 Click Analyze.

The simulation runs. On the Variables tab, the app displays simulation minimum and maximum
ranges. Using the simulation range data, the software proposes fixed-point types for each
variable based on the default type proposal settings, and displays them in the Proposed Type
column. The app enables the Convert option.

5 Examine the proposed types and verify that they cover the full simulation range. To view logged
histogram data for a variable, click its Proposed Type field. The histogram provides range
information and the percentage of simulation range covered by the proposed data type.
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Convert to Fixed Point

1 Click Convert.

The app validates the proposed types, and generates a fixed-point version of the entry-point
function, my_fcn_fixpt.m.

2 In the Output Files list, select my_fcn_fixpt.m.

The conversion process generates a lookup table approximation, replacement_exp, for the exp
function.

8 Automated Conversion Using Fixed-Point Converter App

8-44



The generated fixed-point function, my_fcn_fixpt.m, calls this approximation instead of calling
exp. The fixed-point conversion process infers the ranges for the function and then uses an
interpolated lookup table to replace the function. By default, the lookup table uses linear
interpolation, 1000 points, and the minimum and maximum values detected by running the test
file.

function y = my_fcn_fixpt(x)
    fm = get_fimath();

    y = fi(replacement_exp(x), 0, 16, 1, fm);
end

You can now test the generated fixed-point code and compare the results against the original
MATLAB function. If the behavior of the generated fixed-point code does not match the behavior
of the original code closely enough, modify the interpolation method or number of points used in
the lookup table. Then, regenerate the code.

See Also

More About
• “Replacing Functions Using Lookup Table Approximations” on page 7-50
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Convert Fixed-Point Conversion Project to MATLAB Scripts
This example shows how to convert a Fixed-Point Converter app project to a MATLAB script. You can
use the -tocode option of the fixedPointConverter command to create a script for fixed-point
conversion. You can use the script to repeat the project workflow in a command-line workflow. Before
you convert the project to a script, you must complete the Test step of the fixed-point conversion
process.

Prerequisites

This example uses the following files:

• Project file ex_2ndOrder_filter.prj
• Entry-point file ex_2ndOrder_filter.m
• Test bench file ex_2ndOrder_filter_test.m
• Generated fixed-point MATLAB file ex_2ndOrder_filter_fixpt.m

To obtain these files, complete the example “Propose Data Types Based on Simulation Ranges” on
page 8-13, including the Test step.

Generate the Scripts

1 Change to the folder that contains the project file ex_2ndOrder_filter.prj.
2 Use the -tocode option of the fixedPointConverter command to convert the project to a

script. Use the -script option to specify the file name for the script.

fixedPointConverter -tocode ex_2ndOrder_filter -script ex_2ndOrder_filter_script.m

The fixedPointConverter command generates a script in the current folder.
ex_2ndOrder_filter_script.m contains the MATLAB commands to:

• Create a floating-point to fixed-point conversion configuration object that has the same fixed-
point conversion settings as the project.

• Run the fiaccel command to convert the MATLAB function ex_2ndOrder_filter to the
fixed-point MATLAB function ex_2ndOrder_filter_fixpt.

The fiaccel command overwrites existing files that have the same name as the generated
script. If you omit the -script option, the fiaccel command returns the script in the
Command Window.

Run Script That Generates Fixed-Point MATLAB Code

If you want to regenerate the fixed-point function, use the generated script.

1 Make sure that the current folder contains the entry-point function ex_2ndOrder_filter.m
and the test bench file ex_2ndOrder_filter_test.m.

2 Run the script.

 ex_2ndOrder_filter_script
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The script generates ex_2ndOrder_filter_fixpt.m in the folder codegen
\ex_2ndOrder_filter\fixpt. The variables cfg and ARGS appear in the base workspace.

See Also
coder.FixPtConfig | fiaccel

Related Examples
• “Propose Data Types Based on Simulation Ranges” on page 8-13
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Replace a Custom Function with a Lookup Table
This example shows how to replace a custom function with a lookup table approximation function
using the Fixed-Point Converter app.

Prerequisites

This example requires the following products:

• MATLAB
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”.

Create Algorithm and Test Files

In a local, writable folder:

1 Create a MATLAB function, custom_fcn.m which is the function that you want to replace.

function y = custom_fcn(x)
    y = 1./(1+exp(-x));
end

2 Create a wrapper function, call_custom_fcn.m, that calls custom_fcn.m.

function y = call_custom_fcn(x)
    y = custom_fcn(x);
end

3 Create a test file, custom_test.m, that uses call_custom_fcn.

close all
clear all

x = linspace(-10,10,1e3);
for itr = 1e3:-1:1
   y(itr) = call_custom_fcn( x(itr) );
end
plot( x, y );

Open the Fixed-Point Converter App

1 Navigate to the work folder that contains the file for this example.
2 On the MATLAB Toolstrip Apps tab, under Code Generation, click the app icon.
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Select Source Files

1 To add the entry-point function call_custom_fcn to the project, browse to the file
call_custom_fcn.m, and then click Open. By default, the app saves information and settings
for this project in the current folder in a file named call_custom_fcn.prj.

2 Click Next to go to the Define Input Types step.

The app screens call_custom_fcn.m for code violations and fixed-point conversion issues. The
app opens the Review Code Generation Readiness page.

Review Code Generation Readiness

1 Click Review Issues. The app indicates that the exp function is not supported for fixed-point
conversion. You can ignore this warning because you are going to replace custom_fcn, which is
the function that calls exp.
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2 Click Next to go to the Define Input Types step.

Define Input Types

1 Add custom_test as a test file and then click Autodefine Input Types.

The test file runs. The app determines from the test file that x is a scalar double.
2 Click Next to go to the Convert to Fixed Point step.

Replace custom_fcn with Lookup Table

1 Select the Function Replacements tab.

The app indicates that you must replace the exp function.

8 Automated Conversion Using Fixed-Point Converter App

8-50



2 Enter the name of the function to replace, custom_fcn, select Lookup Table, and then click
.

The app adds custom_fcn to the list of functions that it will replace with a Lookup Table. By
default, the lookup table uses linear interpolation and 1000 points. The app sets Design Min and
Design Max to Auto which means that app uses the design minimum and maximum values that
it detects by either running a simulation or computing derived ranges.

3 Click the Analyze arrow , select Log data for histogram, and verify that the test file is
call_custom_test.

4 Click Analyze.

The simulation runs. The app displays simulation minimum and maximum ranges on the
Variables tab. Using the simulation range data, the software proposes fixed-point types for each
variable based on the default type proposal settings, and displays them in the Proposed Type
column. The Convert option is now enabled.

5 Examine the proposed types and verify that they cover the full simulation range. To view logged
histogram data for a variable, click its Proposed Type field. The histogram provides range
information and the percentage of simulation range covered by the proposed data type.
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Convert to Fixed Point

1 Click Convert.

The app validates the proposed types and generates a fixed-point version of the entry-point
function, call_custom_fcn_fixpt.m.

2 In the Output Files list, select call_custom_fcn_fixpt.m.

The conversion process generates a lookup table approximation, replacement_custom_fcn,
for the custom_fcn function. The fixed-point conversion process infers the ranges for the
function and then uses an interpolated lookup table to replace the function. By default, the
lookup table uses linear interpolation, 1000 points, and the minimum and maximum values
detected by running the test file.

The generated fixed-point function, call_custom_fcn_fixpt.m, calls this approximation
instead of calling custom_fcn.

function y = call_custom_fcn_fixpt(x)
    fm = get_fimath();

    y = fi(replacement_custom_fcn(x), 0, 16, 16, fm);
end

You can now test the generated fixed-point code and compare the results against the original
MATLAB function. If the behavior of the generated fixed-point code does not match the behavior
of the original code closely enough, modify the interpolation method or number of points used in
the lookup table and then regenerate code.

See Also

More About
• “Replacing Functions Using Lookup Table Approximations” on page 7-50
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Visualize Differences Between Floating-Point and Fixed-Point
Results

This example shows how to configure the Fixed-Point Converter app to use a custom plot function to
compare the behavior of the generated fixed-point code against the behavior of the original floating-
point MATLAB code.

By default, when the Log inputs and outputs for comparison plots option is enabled, the
conversion process uses a time series based plotting function to show the floating-point and fixed-
point results and the difference between them. However, during fixed-point conversion you might
want to visualize the numerical differences in a view that is more suitable for your application
domain. This example shows how to customize plotting and produce scatter plots at the test numerics
step of the fixed-point conversion.

Prerequisites

This example requires the following products:

• MATLAB
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\custom_plot.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB command line,

enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples')) 
3 Copy the myFilter.m, myFilterTest.m, plotDiff.m, and filterData.mat files to your

local working folder.

It is a best practice is to create a separate test script to do pre- and post-processing, such as:

• Loading inputs.
• Setting up input values.
• Outputting test results.

For more information, see “Create a Test File” on page 11-3.

Type Name Description
Function code myFilter.m Entry-point MATLAB function
Test file myFilterTest.m MATLAB script that tests

myFilter.m
Plotting function plotDiff.m Custom plot function
MAT-file filterData.mat Data to filter.
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The myFilter Function

function [y, ho] = myFilter(in)

persistent b h;
if isempty(b)
  b = complex(zeros(1,16));
  h = complex(zeros(1,16));
  h(8) = 1;
end

b = [in, b(1:end-1)];
y = b*h.';

errf = 1-sqrt(real(y)*real(y) + imag(y)*imag(y));
update = 0.001*conj(b)*y*errf;

h = h + update;
h(8) = 1;
ho = h;

end

The myFilterTest File

% load data
data = load('filterData.mat');
d = data.symbols;

for idx = 1:4000
 y = myFilter(d(idx));
end

The plotDiff Function

% varInfo - structure with information about the variable. It has the following fields
%            i) name
%            ii) functionName
% floatVals - cell array of logged original values for the 'varInfo.name' variable
% fixedVals - cell array of logged values for the 'varInfo.name' variable after Fixed-Point conversion.
function plotDiff(varInfo, floatVals, fixedVals)
    varName = varInfo.name;
    fcnName = varInfo.functionName;

    % escape the '_'s because plot titles treat these as subscripts
    escapedVarName = regexprep(varName,'_','\\_');
    escapedFcnName = regexprep(fcnName,'_','\\_');
    
    % flatten the values
    flatFloatVals = floatVals(1:end);
    flatFixedVals = fixedVals(1:end);

    % build Titles
    floatTitle = [ escapedFcnName ' > ' 'float : ' escapedVarName ];
    fixedTitle = [ escapedFcnName ' > ' 'fixed : ' escapedVarName ];
    
    data = load('filterData.mat');
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    switch varName
        case 'y'
            x_vec = data.symbols;
            
            figure('Name', 'Comparison plot', 'NumberTitle', 'off');
            
            % plot floating point values
            y_vec = flatFloatVals;
            subplot(1, 2, 1);
            plotScatter(x_vec, y_vec, 100, floatTitle);
            
            % plot fixed point values
            y_vec = flatFixedVals;
            subplot(1, 2, 2);
            plotScatter(x_vec, y_vec, 100, fixedTitle);

        otherwise
            % Plot only output 'y' for this example, skip the rest
    end

end

function plotScatter(x_vec, y_vec, n, figTitle)
    % plot the last n samples
    x_plot = x_vec(end-n+1:end);
    y_plot = y_vec(end-n+1:end);
    
    hold on
    scatter(real(x_plot),imag(x_plot), 'bo');    

    hold on
    scatter(real(y_plot),imag(y_plot), 'rx');
    
    title(figTitle);
end

Open the Fixed-Point Converter App

1 Navigate to the folder that contains the files for this example.
2 On the MATLAB Toolstrip Apps tab, under Code Generation, click the app icon.
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Select Source Files

1 To add the entry-point function myFilter to the project, browse to the file myFilter.m, and
then click Open.

By default, the app saves information and settings for this project in the current folder in a file
named myFilter.prj.

2 Click Next to go to the Define Input Types step.

The app screens myFilter.m for code violations and fixed-point conversion readiness issues.
The app does not find issues in myFilter.m.

Define Input Types

1 On the Define Input Types page, to add myFilterTest as a test file, browse to
myFilterTest.m, and then click Open.

2 Click Autodefine Input Types.

The app determines from the test file that the input type of in is complex(double(1x1)).

8 Automated Conversion Using Fixed-Point Converter App

8-56



3 Click Next to go to the Convert to Fixed Point step.

Convert to Fixed Point

1 The app generates an instrumented MEX function for your entry-point MATLAB function. The app
displays compiled information for variables in your code. For more information, see “View and
Modify Variable Information” on page 8-36.
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2 To open the settings dialog box, click the Settings arrow .

a Verify that Default word length is set to 16.
b Under Advanced, set Signedness to Signed
c Under Plotting and Reporting, set Custom plot function to plotDiff.

3 Click the Analyze arrow . Verify that the test file is myFilterTest.
4 Click Analyze.

The test file, myFilterTest, runs and the app displays simulation minimum and maximum
ranges on the Variables tab. Using the simulation range data, the software proposes fixed-point
types for each variable based on the default type proposal settings, and displays them in the
Proposed Type column.

8 Automated Conversion Using Fixed-Point Converter App

8-58



5 To convert the floating-point algorithm to fixed point, click Convert.

The software validates the proposed types and generates a fixed-point version of the entry-point
function.
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Test Numerics and View Comparison Plots

1 Click Test arrow , select Log inputs and outputs for comparison plots, and then click
Test.

The app runs the test file that you used to define input types to test the fixed-point MATLAB code.
Because you selected to log inputs and outputs for comparison plots and to use the custom
plotting function, plotDiff.m, for these plots, the app uses this function to generate the
comparison plot. The plot shows that the fixed-point results do not closely match the floating-
point results.
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2 In the settings, increase the DefaultWordLength to 24 and then convert to fixed point again.

The app converts myFilter.m to fixed point and proposes fixed-point data types using the new
default word length.

3 Run the test numerics step again.

The increased word length improves the results. This time, the plot shows that the fixed-point
results match the floating-point results.
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See Also

More About
• “Custom Plot Functions” on page 7-51
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Enable Plotting Using the Simulation Data Inspector
You can use the Simulation Data Inspector with the Fixed-Point Converter app to inspect and
compare floating-point and fixed-point logged input and output data.

1 On the Convert to Fixed Point page,

Click the Settings arrow .
2 Expand the Plotting and Reporting settings and set Plot with Simulation Data Inspector to

Yes.

3 Click the Test arrow . Select Log inputs and outputs for comparison plots, and then click
Test.

For an example, see “Propose Data Types Based on Derived Ranges” on page 8-24.
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Add Global Variables by Using the App
To add global variables to the project:

1 On the Define Input Types page, automatically define input types or click Let me enter input
or global types directly.

The app displays a table of entry-point inputs.
2 To add a global variable, click Add global.

By default, the app names the first global variable in a project g, and subsequent global variables
g1, g2, and so on.

3 Under Global variables, enter a name for the global variable.
4 After adding a global variable, but before generating code, specify its type and initial value.

Otherwise, you must create a variable with the same name in the global workspace. See “Specify
Global Variable Type and Initial Value Using the App” on page 8-81.
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Automatically Define Input Types by Using the App
If you specify a test file that calls the project entry-point functions, the Fixed-Point Converter app can
infer the input argument types by running the test file. If a test file calls an entry-point function
multiple times with different size inputs, the app takes the union of the inputs. The app infers that the
inputs are variable size, with an upper bound equal to the size of the largest input.

Before using the app to automatically define function input argument types, you must add at least one
entry-point file to your project. You must also specify code that calls your entry-point functions with
the expected input types. It is a best practice to provide a test file that calls your entry-point
functions. The test file can be either a MATLAB function or a script. The test file must call the entry-
point function at least once.

To automatically define input types:

1 On the Define Input Types page, specify a test file. Alternatively, you can enter code directly.
2 Click Autodefine Input Types.

The app runs the test file and infers the types for entry-point input arguments. The app displays
the inferred types.

Note If you automatically define the input types, the entry-point functions must be in a writable
folder.

If your test file does not call an entry-point function with different size inputs, the resulting type
dimensions are fixed-size. After you define the input types, you can specify and apply rules for making
type dimensions variable-size when they meet a size threshold. See “Make Dimensions Variable-Size
When They Meet Size Threshold” (MATLAB Coder).
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Define Constant Input Parameters Using the App
1 On the Define Input Types page, click Let me enter input or global types directly.
2 Click the field to the right of the input parameter name.
3 Select Define Constant.
4 In the field to the right of the parameter name, enter the value of the constant or a MATLAB

expression that represents the constant.

The app uses the value of the specified MATLAB expression as a compile-time constant.
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Define or Edit Input Parameter Type by Using the App
In this section...
“Define or Edit an Input Parameter Type” on page 8-67
“Specify a String Scalar Input Parameter” on page 8-68
“Specify an Enumerated Type Input Parameter” on page 8-68
“Specify a Fixed-Point Input Parameter” on page 8-69
“Specify a Structure Input Parameter” on page 8-69
“Specify a Cell Array Input Parameter” on page 8-70

Define or Edit an Input Parameter Type
The following procedure shows you how to define or edit double, single, int64, int32, int16,
int8, uint64, uint32, uint16, uint8, logical, and char types.

For more information about defining other types, see the information in this table.

Input Type Link
A string scalar (1-by-1 string array) “Specify a String Scalar Input Parameter” on

page 8-68
A structure (struct) “Specify a Structure Input Parameter” on page 8-

69
A cell array (cell (Homogeneous) or cell
(Heterogeneous))

“Specify a Cell Array Input Parameter” on page 8-
70

A fixed-point data type (embedded.fi) “Specify a Fixed-Point Input Parameter” on page
8-69

An input by example (Define by Example) “Define Input Parameter by Example by Using the
App” on page 8-74

A constant (Define Constant) “Define Constant Input Parameters Using the
App” on page 8-66

1 Click the field to the right of the input parameter name.
2 Optionally, for numeric types, to make the parameter a complex type, select the Complex

number check box.
3 Select the input type.

The app displays the selected type. It displays and the size options.
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4 From the list, select whether your input is a scalar, a 1 x n vector, a m x 1 vector, or a m x n
matrix. By default, if you do not select a size option, the app defines inputs as scalars.

5 Optionally, if your input is not scalar, enter sizes m and n. You can specify:

• Fixed size, for example, 10.
• Variable size, up to a specified limit, by using the : prefix. For example, to specify that your

input can vary in size up to 10, enter :10.
• Unbounded variable size by entering :Inf.

You can edit the size of each dimension.

Specify a String Scalar Input Parameter
To specify that an input is a string scalar:

1 On the Define Input Types page, click Let me enter input or global types directly.
2 Click the field to the right of the input parameter that you want to define.
3 Select string. Then select 1x1 scalar.

The type is a 1-by-1 string array (string scalar) that contains a character vector.

4 To specify the size of the character vector, click the field to the right of the string array element
{1}. Select char. Then, select 1xn vector and enter the size.

5 To make the string variable-size, click the second dimension.

• To specify that the second dimension is unbounded, select :Inf.
• To specify that the second dimension has an upper bound, enter the upper bound, for example

8. Then, select :8.

Specify an Enumerated Type Input Parameter
To specify that an input uses the enumerated type MyColors:
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1 Suppose that the enumeration MyColors is on the MATLAB path.

classdef MyColors < int32
    enumeration
        green(1),
        red(2),
    end
end

2 On the Define Input Types page, click Let me enter input or global types directly.
3 In the field to the right of the input parameter, enter MyColors.

Specify a Fixed-Point Input Parameter
To specify fixed-point inputs, Fixed-Point Designer software must be installed.

1 On the Define Input Types page, click Let me enter input or global types directly.
2 Click the field to the right of the input parameter that you want to define.
3 Select embedded.fi.
4 Select the size. If you do not specify the size, the size defaults to 1x1.
5 Specify the input parameter numerictype and fimath properties.

If you do not specify a local fimath, the app uses the default fimath. See “Default fimath Usage to
Share Arithmetic Rules” on page 3-17.

To modify the numerictype or fimath properties, open the properties dialog box. To open the

properties dialog box, click to the right of the fixed-point type definition. Optionally, click .

Specify a Structure Input Parameter
When a primary input is a structure, the app treats each field as a separate input. Therefore, you
must specify properties for all fields of a primary structure input in the order that they appear in the
structure definition:

• For each field of an input structure, specify class, size, and complexity.
• For each field that is a fixed-point class, also specify numerictype, and fimath.

Specify Structures by Type

1 On the Define Input Types page, click Let me enter input or global types directly.
2 Click the field to the right of the input parameter that you want to define.
3 Select struct.

The app displays the selected type, struct. The app displays the size options.
4 Specify that your structure is a scalar, 1 x n vector, m x 1 vector, or m x n matrix. By default,

if you do not select a size option, the app defines inputs as scalars.
5 If your input is not scalar, enter sizes for each dimension. Click the dimension. Enter the size.

Select from the size options. For example, for size 10:

• To specify fixed size, select 10.
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• To specify variable size with an upper bound of 10, select :10.
• To specify unbounded variable size, select :Inf.

6 Add fields to the structure. Specify the class, size, and complexity of the fields. See “Add a Field
to a Structure” on page 8-70.

Rename a Field in a Structure

Select the name field of the structure that you want to rename. Enter the new name.

Add a Field to a Structure

1
To the right of the structure, click 

2 Enter the field name. Specify the class, size, and complexity of the field.

Insert a Field into a Structure

1 Select the structure field below which you want to add another field.
2 Right-click the structure field.
3 Select Insert Field Below.

The app adds the field after the field that you selected.
4 Enter the field name. Specify the class, size, and complexity of the field.

Remove a Field from a Structure

1 Right-click the field that you want to remove.
2 Select Remove Field.

Specify a Cell Array Input Parameter

Note The Fixed-Point Converter app does not support cell arrays.

For code generation, cell arrays are homogeneous or heterogeneous. . A homogeneous cell array is
represented as an array in the generated code. All elements have the same properties. A
heterogeneous cell array is represented as a structure in the generated code. Elements can have
different properties.

Specify a Homogeneous Cell Array

1 On the Define Input Types page, click Let me enter input or global types directly.
2 Click the field to the right of the input parameter that you want to define.
3 Select cell (Homogeneous).

The app displays the selected type, cell. The app displays the size options.
4 From the list, select whether your input is a scalar, a 1 x n vector, a m x 1 vector, or a m x n

matrix. By default, if you do not select a size option, the app defines inputs as scalars.
5 If your input is not scalar, enter sizes for each dimension. Click the dimension. Enter the size.

Select from the size options. For example, for size 10:
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• To specify fixed size, select 10.
• To specify variable size with an upper bound of 10, select :10.
• To specify unbounded variable size, select :Inf.

Below the cell array variable, a colon inside curly braces {:} indicates that the cell array
elements have the same properties (class, size, and complexity).

6 To specify the class, size, and complexity of the elements in the cell array, click the field to the
right of {:}.

Specify a Heterogeneous Cell Array

1 On the Define Input Types page, click Let me enter input or global types directly.
2 Click the field to the right of the input parameter that you want to define.
3 Select cell (Heterogeneous).

The app displays the selected type, cell. The app displays the size options.
4 Specify that your structure is a scalar, 1 x n vector, m x 1 vector, or m x n matrix. By default,

if you do not select a size option, the app defines inputs as scalars.
5 Optionally, if your input is not scalar, enter sizes m and n. A heterogeneous cell array is fixed size.

The app lists the cell array elements. It uses indexing notation to specify each element. For
example, {1,2} indicates the element in row 1, column 2.

6 Specify the class, size, and complexity for each cell array element.
7 Optionally, add elements. See “Add an Element to a Heterogeneous Cell Array” on page 8-73

Set Structure Properties for a Heterogeneous Cell Array

A heterogeneous cell array is represented as a structure in the generated code. You can specify the
properties for the structure that represents the cell array.

1 Click to the right of the cell array definition. Optionally click .
2 In the dialog box, specify properties for the structure in the generated code.

Property Description
C type definition name Name for the structure type in the generated

code.
Type definition is externally defined Default: No — type definition is not externally

defined.

If you select Yes to declare an externally
defined structure, the app does not generate
the definition of the structure type. You must
provide it in a custom include file.

Dependency: C type definition name
enables this option.
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Property Description
C type definition header file Name of the header file that contains the

external definition of the structure, for
example, "mystruct.h". Specify the path to
the file using the Additional include
directories parameter on the project
settings dialog box Custom Code tab.

By default, the generated code contains
#include statements for custom header
files after the standard header files. If a
standard header file refers to the custom
structure type, then the compilation fails. If
you specify the C type definition header file,
the app includes that header file exactly at
the point where it is required.

Dependency: When Type definition is
externally defined is set to Yes, this
option is enabled.

Data alignment boundary The run-time memory alignment of
structures of this type in bytes.

Alignment must be either -1 or a power of 2
that is no more than 128.

Default: 0

Dependency: When Type definition is
externally defined is set to Yes, this
option is enabled.

Change Classification as Homogeneous or Heterogeneous

To change the classification as homogeneous or heterogeneous, right-click the variable. Select
Homogeneous or Heterogeneous.

The app clears the definitions of the elements.
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Change the Size of the Cell Array

1 In the definition of the cell array, click a dimension. Specify the size.
2 For a homogeneous cell array, specify whether the dimension is variable size and whether the

dimension is bounded or unbounded. Alternatively, right-click the variable. Select Bounded
(fixed-size), Bounded (variable-size), or Unbounded

3 For a heterogeneous cell array, the app adds elements so that the cell array has the specified size
and shape.

Add an Element to a Heterogeneous Cell Array

1 In the definition of the cell array, click a dimension. Specify the size. For example, enter 1 for the
first dimension and 4 for the second dimension.

The app adds elements so that the cell array has the specified size and shape. For example for a
1x4 heterogeneous cell array, the app lists four elements: {1,1}, {1,2}, {1,3}, and {1,4}.

2 Specify the properties of the new elements.
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Define Input Parameter by Example by Using the App
In this section...
“Define an Input Parameter by Example” on page 8-74
“Specify Input Parameters by Example” on page 8-75
“Specify a String Scalar Input Parameter by Example” on page 8-76
“Specify a Structure Type Input Parameter by Example” on page 8-76
“Specify a Cell Array Type Input Parameter by Example” on page 8-77
“Specify an Enumerated Type Input Parameter by Example” on page 8-78
“Specify a Fixed-Point Input Parameter by Example” on page 8-79
“Specify an Input from an Entry-Point Function Output Type” on page 8-80

Define an Input Parameter by Example
1 On the Define Input Types page, click Let me enter input or global types directly.
2 Click the field to the right of the input parameter that you want to define.

3 Select Define by Example.
4 In the field to the right of the parameter, enter a MATLAB expression. The variable has the class,

size, and complexity of the value of the expression.

Alternatively, you can select a variable from the list of workspace variables that displays.
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Specify Input Parameters by Example
This example shows how to specify a 1-by-4 vector of unsigned 16-bit integers.

1 On the Define Input Types page, click Let me enter input or global types directly.
2 Click the field to the right of the input parameter that you want to define.
3 Select Define by Example.
4 In the field to the right of the parameter, enter:

zeros(1,4,'uint16')

The input type is uint16(1x4).
5 Optionally, after you specify the input type, you can specify that the input is variable size. For

example, select the second dimension.

6 To specify that the second dimension is variable size with an upper bound of 4, select :4.
Alternatively, to specify that the second dimension is unbounded, select :Inf.

Alternatively, you can specify that the input is variable size by using the coder.newtype function.
Enter the MATLAB expression:

coder.newtype('uint16',[1 4],[0 1])

Note  To specify that an input is a double-precision scalar, enter 0.
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Specify a String Scalar Input Parameter by Example
This example shows how to specify a string scalar type by providing an example string.

1 On the Define Input Types page, click Let me enter input or global types directly.
2 Click the field to the right of the input parameter that you want to define.
3 Select Define by Example.
4 In the field to the right of the parameter, enter:

"mystring"

The input parameter is a 1-by-1 string array (string scalar) that contains a 1-by-8 character
vector.

5 To make the string variable-size, click the second dimension.

• To specify that the second dimension is unbounded, select :Inf.
• To specify that the second dimension has an upper bound, enter the upper bound, for example

8. Then, select :8.

Specify a Structure Type Input Parameter by Example
This example shows how to specify a structure with two fields, a and b. The input type of a is scalar
double. The input type of b is scalar char.

1 On the Define Input Types page, click Let me enter input or global types directly.
2 Click the field to the right of the input parameter that you want to define.
3 Select Define by Example.
4 In the field to the right of the parameter, enter:

struct('a', 1, 'b', 'x')

The type of the input parameter is struct(1x1). The type of field a is double(1x1). The type
of field b is char(1x1)

5 For an array of structures, to specify the size of each dimension, click the dimension and specify
the size. For example, enter 4 for the first dimension.

6 To specify that the second dimension is variable size with an upper bound of 4, select :4.
Alternatively, to specify that the second dimension is unbounded select :Inf.

Alternatively, specify the size of the array of structures in the struct function call. For example,
struct('a', { 1 2}, 'b', {'x', 'y'}) specifies a 1x2 array of structures with fields a and b.
The type of field a is double(1x1). The type of field b is char(1x1).

To modify the type definition, see “Specify a Structure Input Parameter” (MATLAB Coder).
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Specify a Cell Array Type Input Parameter by Example

Note The Fixed-Point Converter app does not support cell arrays.

This example shows how to specify a cell array input by example. When you define a cell array by
example, the app determines whether the cell array is homogeneous or heterogeneous. . If you want
to control whether the cell array is homogeneous or heterogeneous, specify the cell array by type.
See “Specify a Cell Array Input Parameter” (MATLAB Coder).

1 On the Define Input Types page, click Let me enter input or global types directly.
2 Click the field to the right of the input parameter that you want to define.
3 Select Define by Example.
4 In the field to the right of the parameter, enter an example cell array.

• If all cell array elements have the same properties, the cell array is homogeneous. For
example, enter:

{1 2 3}

The input is a 1x3 cell array. The type of each element is double(1x1).

The colon inside curly braces{:} indicates that all elements have the same properties.
• If elements of the cell array have different classes, the cell array is heterogeneous. For

example, enter:

{'a', 1}

The input is a 1x2 cell array. For a heterogeneous cell array, the app lists each element. The
type of the first element is char(1x1). The type of the second element is double(1x1).

• For some example cell arrays. the classification as homogeneous or heterogeneous is
ambiguous. For these cell arrays, the app uses heuristics to determine whether the cell array
is homogeneous or heterogeneous. For example, for the example cell array, enter:

{1 [2 3]}

The elements have the same class, but different sizes. The app determines that the input is a
1x2 heterogeneous cell array. The type of the first element is double(1x1). The type of the
second element is double(1x2).
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However, the example cell array, {1 [2 3]}, can also be a homogeneous cell array whose
elements are 1x:2 double. If you want this cell array to be homogeneous, do one of the
following:

• Specify the cell array input by type. Specify that the input is a homogeneous cell array.
Specify that the elements are 1x:2 double. See “Specify a Cell Array Input Parameter”
(MATLAB Coder).

• Right-click the variable. Select Homogeneous. Specify that the elements are 1x:2 double.

If you use coder.typeof to specify that the example cell array is variable size, the app
makes the cell array homogeneous. For example, for the example input, enter:

coder.typeof({1 [2 3]}, [1 3], [0 1])

The app determines that the input is a 1x:3 homogeneous cell array whose elements are 1x:2
double.

To modify the type definition, see “Specify a Cell Array Input Parameter” (MATLAB Coder).

Specify an Enumerated Type Input Parameter by Example
This example shows how to specify that an input uses the enumerated type MyColors.

Suppose that MyColors.m is on the MATLAB path.

classdef MyColors < int32
    enumeration
        green(1),
        red(2),
    end
end

To specify that an input has the enumerated type MyColors:

1 On the Define Input Types page, click Let me enter input or global types directly.
2 Click the field to the right of the input parameter that you want to define.
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3 Select Define by Example.
4 In the field to the right of the parameter, enter the MATLAB expression:

MyColors.red

Specify a Fixed-Point Input Parameter by Example
To specify fixed-point inputs, Fixed-Point Designer software must be installed.

This example shows how to specify a signed fixed-point type with a word length of eight bits, and a
fraction length of three bits.

1 On the Define Input Types page, click Let me enter input or global types directly.
2 Click the field to the right of the input parameter that you want to define.
3 Select Define by Example.
4 In the field to the right of the parameter, enter:

fi(10, 1, 8, 3) 

The app sets the type of input u to fi(1x1). By default, if you do not specify a local fimath, the
app uses the default fimath. See “fimath for Sharing Arithmetic Rules” on page 3-17.

Optionally, modify the fixed-point properties or the size of the input. See “Specify a Fixed-Point
Input Parameter” on page 8-69 and “Define or Edit Input Parameter Type by Using the App” on
page 8-67.
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Specify an Input from an Entry-Point Function Output Type
When generating code for multiple entry-point functions, you can use the output type from one entry-
point function as the input type to another entry-point function. For more information, see “Pass an
Entry-Point Function Output as an Input” (MATLAB Coder).

1 On the Define Input Types page, click Let me enter input or global types directly.
2 Click the field to the right of the input parameter that you want to define and select Use Output.

3 Select the name of the entry-point function and the corresponding output parameter from which
to define the input type.
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Specify Global Variable Type and Initial Value Using the App
In this section...
“Why Specify a Type Definition for Global Variables?” on page 8-81
“Specify a Global Variable Type” on page 8-81
“Define a Global Variable by Example” on page 8-81
“Define or Edit Global Variable Type” on page 8-82
“Define Global Variable Initial Value” on page 8-82
“Define Global Variable Constant Value” on page 8-83
“Remove Global Variables” on page 8-83

Why Specify a Type Definition for Global Variables?
If you use global variables in your MATLAB algorithm, before building the project, you must add a
global type definition and initial value for each global variable. If you do not initialize the global data,
the app looks for the variable in the MATLAB global workspace. If the variable does not exist, the app
generates an error.

For MEX functions, if you use global data, you must also specify whether to synchronize this data
between MATLAB and the MEX function.

Specify a Global Variable Type
1 Specify the type of each global variable using one of the following methods:

• Define by example on page 8-81
• Define type on page 8-82

2 Define an initial value on page 8-82 for each global variable.

If you do not provide a type definition and initial value for a global variable, create a variable with the
same name and suitable class, size, complexity, and value in the MATLAB workspace.

Define a Global Variable by Example
1 Click the field to the right of the global variable that you want to define.
2 Select Define by Example.
3 In the field to the right of the global name, enter a MATLAB expression that has the required

class, size, and complexity. MATLAB Coder software uses the class, size, and complexity of the
value of this expression as the type for the global variable.

4 Optionally, change the size of the global variable. Click the dimension that you want to change
and enter the size, for example, 10.
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You can specify:

• Fixed size. In this example, select 10.
• Variable size, up to a specified limit, by using the : prefix. In this example, to specify that your

input can vary in size up to 10, select :10.
• Unbounded variable size by selecting :Inf.

Define or Edit Global Variable Type
1 Click the field to the right of the global variable that you want to define.
2 Optionally, for numeric types, select Complex to make the parameter a complex type. By default,

inputs are real.
3 Select the type for the global variable. For example, double.

By default, the global variable is a scalar.
4 Optionally, change the size of the global variable. Click the dimension that you want to change

and enter the size, for example, 10.

You can specify:

• Fixed size. In this example, select 10.
• Variable size, up to a specified limit, by using the : prefix. In this example, to specify that your

input can vary in size up to 10, select :10.
• Unbounded variable size by selecting :Inf.

Define Global Variable Initial Value
• “Define Initial Value Before Defining Type” on page 8-83
• “Define Initial Value After Defining Type” on page 8-83
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Define Initial Value Before Defining Type

1 Click the field to the right of the global variable.
2 Select Define Initial Value.
3 Enter a MATLAB expression. MATLAB Coder software uses the value of the specified MATLAB

expression as the value of the global variable. Because you did not define the type of the global
variable before you defined its initial value, MATLAB Coder uses the initial value type as the
global variable type.

The project shows that the global variable is initialized.

If you change the type of a global variable after defining its initial value, you must redefine the
initial value.

Define Initial Value After Defining Type

• Click the type field of a predefined global variable.
• Select Define Initial Value.
• Enter a MATLAB expression. MATLAB Coder software uses the value of the specified MATLAB

expression as the value of the global variable.

The project shows that the global variable is initialized.

Define Global Variable Constant Value
1 Click the field to the right of the global variable.
2 Select Define Constant Value.
3 In the field to the right of the global variable, enter a MATLAB expression.

Remove Global Variables
1 Right-click the global variable.
2 From the menu, select Remove Global.
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Specify Properties of Entry-Point Function Inputs Using the
App

Why Specify Input Properties?
Fixed-Point Designer must determine the properties of all variables in the MATLAB files. To infer
variable properties in MATLAB files, Fixed-Point Designer must identify the properties of the inputs to
the primary function, also known as the top-level or entry-point function. Therefore, if your primary
function has inputs, you must specify the properties of these inputs to Fixed-Point Designer. If your
primary function has no input parameters, you do not need to specify properties of inputs to local
functions or external functions called by the primary function.

Unless you use the tilde (~) character to specify unused function inputs, you must specify the same
number and order of inputs as the MATLAB function . If you use the tilde character, the inputs default
to real, scalar doubles.

See Also

• “Properties to Specify” on page 31-2

Specify an Input Definition Using the App
Specify an input definition using one of the following methods:

• Autodefine Input Types on page 8-65
• Define Type on page 8-67
• Define by Example on page 8-74
• Define Constant on page 8-66
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Detect Unexecuted and Constant-Folded Code
During the simulation of your test file, the Fixed-Point Converter app detects unexecuted code or
code that is constant folded. Code that is not executed by the test bench may be unreachable code or
dead code. The app uses the code coverage information when translating your code from floating-
point MATLAB code to fixed-point MATLAB code. Reviewing code coverage results helps you to verify
that your test file is exercising the algorithm adequately.

The app inserts inline comments in the fixed-point code to mark the unexecuted and untranslated
regions. It includes the code coverage information in the generated fixed-point conversion HTML
report. The app editor displays a color-coded bar to the left of the code. This table describes the color
coding.

Coverage Bar
Color

Indicates

Green One of the following situations:

• The entry-point function executes multiple times and the code executes more
than one time.

• The entry-point function executes one time and the code executes one time.

Different shades of green indicate different ranges of line execution counts. The
darkest shade of green indicates the highest range.

Orange The entry-point function executes multiple times, but the code executes one
time.

Red Code does not execute.

What Is Unexecuted Code?
Unexecuted code is code that is not executed by the test bench during simulation. Unexecuted code
can result from these scenarios:

• Defensive code containing intended corner cases that are not reached
• Human error in the code, resulting in code that cannot be reached by any execution path,

sometimes referred to as unreachable code or dead code
• Inadequate test bench range which does not provide inputs that execute all paths in the code
• Constant folding

Detect Unexecuted Code
This example shows how to detect code in your algorithm that is not executed by the test bench by
using the Fixed-Point Converter .

1 In a local writable folder, create the function myFunction.m.

function y = myFunction(u,v)
    %#codegen
    for i = 1:length(u)
        if u(i) > v(i)
            y=bar(u,v);
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        else
            tmp = u;
            v = tmp;
            y = baz(u,v);
        end
    end
end

function y = bar(u,v)
    y = u+v;
end

function y = baz(u,v)
    y = u-v;
end

2 In the same folder, create a test file, myFunction_tb.

u = 1:100;
v = 101:200;

myFunction(u,v);
3 From the apps gallery, open the Fixed-Point Converter .
4 On the Select Source Files page, browse to the myFunction file, and click Open.
5 Click Next. On the Define Input Types page, browse to select the test file that you created,

myFunction_tb. Click Autodefine Input Types.
6 Click Next. On the Convert to Fixed-Point page, click Analyze to simulate the entry-point

functions, gather range information, and get proposed data types.

The color-coded bar on the left side of the edit window indicates whether the code executes. The
code in the first condition of the if-statement does not execute during simulation because u is
never greater than v. The bar function never executes because the if-statement never executes.
These parts of the algorithm are marked with a red bar, indicating that they are not executed by
the test bench.
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7 To apply the proposed data types to the function, click Convert .

The Fixed-Point Converter generates a fixed-point function, myFunction_fixpt. The generated
fixed-point code contains comments around the pieces of code identified as not being executed by
the test bench. The Validation Results pane proposes that you use a more thorough test bench.
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When the Fixed-Point Converter detects unexecuted code, consider editing your test file so that
your algorithm is exercised over its full range. If your test file already reflects the full range of
the input variables, consider editing your algorithm to eliminate the unreachable code.

8 Close the Fixed-Point Converter .

Fix Unexecuted Code
1 Edit the test file myFunction_tb.m to include a wider range of inputs.

u = 1:100;
v = -50:2:149;

myFunction(u,v);
2 Reopen the Fixed-Point Converter app.
3 Using the same function and the edited test file, go through the conversion process again.
4 After you click Analyze, this time the code coverage bar shows that all parts of the algorithm

execute with the new test file input ranges.
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To finish the conversion process and convert the function to fixed point, click Convert.
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Automated Conversion Using
Programmatic Workflow

• “Propose Data Types Based on Simulation Ranges” on page 9-2
• “Propose Data Types Based on Derived Ranges” on page 9-6
• “Detect Overflows” on page 9-12
• “Replace the exp Function with a Lookup Table” on page 9-16
• “Replace a Custom Function with a Lookup Table” on page 9-18
• “Visualize Differences Between Floating-Point and Fixed-Point Results” on page 9-20
• “Enable Plotting Using the Simulation Data Inspector” on page 9-25
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Propose Data Types Based on Simulation Ranges
This example shows how to propose fixed-point data types based on simulation range data using the
fiaccel function.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\ex_2ndOrder_filter.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB command line,

enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples')) 
3 Copy the ex_2ndOrder_filter.m and ex_2ndOrder_filter_test.m files to your local

working folder.

It is best practice to create a separate test script to do all the pre- and post-processing such as
loading inputs, setting up input values, calling the function under test, and outputting test
results.

Type Name Description
Function code ex_2ndOrder_filter.m Entry-point MATLAB function
Test file ex_2ndOrder_filter_test.m MATLAB script that tests

ex_2ndOrder_filter.m

The ex_2ndOrder_filter Function

function y = ex_2ndOrder_filter(x) %#codegen
  persistent z
  if isempty(z)
      z = zeros(2,1);
  end
  % [b,a] = butter(2, 0.25)
  b = [0.0976310729378175,  0.195262145875635,  0.0976310729378175];
  a = [1, -0.942809041582063,  0.3333333333333333];

 
  y = zeros(size(x));
  for i = 1:length(x)
      y(i) = b(1)*x(i) + z(1);
      z(1) = b(2)*x(i) + z(2) - a(2) * y(i);
      z(2) = b(3)*x(i)        - a(3) * y(i);
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  end
end

The ex_2ndOrder_filter_test Script

The test script runs the ex_2ndOrder_filter function with three input signals: chirp, step, and
impulse to cover the full intended operating range of the system. The script then plots the outputs.

% ex_2ndOrder_filter_test
%
% Define representative inputs
N = 256;                   % Number of points
t = linspace(0,1,N);       % Time vector from 0 to 1 second
f1 = N/2;                  % Target frequency of chirp set to Nyquist
x_chirp = sin(pi*f1*t.^2); % Linear chirp from 0 to Fs/2 Hz in 1 second
x_step = ones(1,N);        % Step
x_impulse = zeros(1,N);    % Impulse
x_impulse(1) = 1;

% Run the function under test
x = [x_chirp;x_step;x_impulse];
y = zeros(size(x));
for i = 1:size(x,1)
  y(i,:) = ex_2ndOrder_filter(x(i,:));
end

% Plot the results
titles = {'Chirp','Step','Impulse'}
clf
for i = 1:size(x,1)
  subplot(size(x,1),1,i)
  plot(t,x(i,:),t,y(i,:))
  title(titles{i})
  legend('Input','Output')
end
xlabel('Time (s)')
figure(gcf)

disp('Test complete.')

Set Up the Fixed-Point Configuration Object

Create a fixed-point configuration object and configure the test file name.

cfg = coder.config('fixpt');
cfg.TestBenchName = 'ex_2ndOrder_filter_test';

Collect Simulation Ranges and Generate Fixed-Point Code

Use the fiaccel function to convert the floating-point MATLAB function, ex_2ndOrder_filter, to
fixed-point MATLAB code. Set the default word length for the fixed-point data types to 16.

cfg.ComputeSimulationRanges = true;
cfg.DefaultWordLength = 16;

% Derive ranges  and generate fixed-point code
fiaccel -float2fixed cfg ex_2ndOrder_filter
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fiaccel analyzes the floating-point code. Because you did not specify the input types for the
ex_2ndOrder_filter function, the conversion process infers types by simulating the test file. The
conversion process then derives ranges for variables in the algorithm. It uses these derived ranges to
propose fixed-point types for these variables. When the conversion is complete, it generates a type
proposal report.

View Range Information

Click the link to the type proposal report for the ex_2ndOrder_filter function,
ex_2ndOrder_filter_report.html.

The report opens in a web browser.

View Generated Fixed-Point MATLAB Code

fiaccel generates a fixed-point version of the ex_2ndOrder_filter.m function,
ex_2ndOrder_filter_fixpt.m, and a wrapper function that calls ex_2ndOrder_filter_fixpt.
These files are generated in the codegen\ex_2ndOrder_filter\fixpt folder in your local
working folder.

function y = ex_2ndOrder_filter_fixpt(x) %#codegen
  fm = get_fimath();
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  persistent z
  if isempty(z)
      z = fi(zeros(2,1), 1, 16, 15, fm);
  end
  % [b,a] = butter(2, 0.25)
  b = fi([0.0976310729378175,  0.195262145875635,...
  0.0976310729378175], 0, 16, 18, fm);
  a = fi([                 1, -0.942809041582063,...
  0.3333333333333333], 1, 16, 14, fm);

 
  y = fi(zeros(size(x)), 1, 16, 14, fm);
  for i=1:length(x)
      y(i) = b(1)*x(i) + z(1);
      z(1) = fi_signed(b(2)*x(i) + z(2)) - a(2) * y(i);
      z(2) = fi_signed(b(3)*x(i))        - a(3) * y(i);
  end
end

function y = fi_signed(a)
    coder.inline( 'always' );
    if isfi( a ) && ~(issigned( a ))
        nt = numerictype( a );
        new_nt = numerictype( 1, nt.WordLength + 1, nt.FractionLength );
        y = fi( a, new_nt, fimath( a ) );
    else
        y = a;
    end
end

function fm = get_fimath()
    fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap', 'ProductMode',...
 'FullPrecision', 'MaxProductWordLength', 128, 'SumMode', 'FullPrecision',...
 'MaxSumWordLength', 128);
end
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Propose Data Types Based on Derived Ranges
This example shows how to propose fixed-point data types based on static ranges using the fiaccel
function. The advantage of proposing data types based on derived ranges is that you do not have to
provide test files that exercise your algorithm over its full operating range. Running such test files
often takes a very long time so you can save time by deriving ranges instead.

Note Derived range analysis is not supported for non-scalar variables.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\dti.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB command line,

enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples')) 
3 Copy the dti.m and dti_test.m files to your local working folder.

It is best practice to create a separate test script to do all the pre- and post-processing such as
loading inputs, setting up input values, calling the function under test, and outputting test
results.

Type Name Description
Function code dti.m Entry-point MATLAB function
Test file dti_test.m MATLAB script that tests dti.m

The dti Function

The dti function implements a Discrete Time Integrator in MATLAB.

function [y, clip_status] = dti(u_in) %#codegen
% Discrete Time Integrator in MATLAB
%  
% Forward Euler method, also known as Forward Rectangular, or left-hand
% approximation.  The resulting expression for the output of the block at
% step 'n' is y(n) = y(n-1) + K * u(n-1)
%
init_val = 1;  
gain_val = 1;
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limit_upper = 500;
limit_lower = -500;

% variable to hold state between consecutive calls to this block
persistent u_state
if isempty(u_state)
    u_state = init_val+1;
end 

% Compute Output
if (u_state > limit_upper)
    y = limit_upper;
    clip_status = -2;
elseif (u_state >= limit_upper)
    y = limit_upper;
    clip_status = -1;
elseif (u_state < limit_lower)
    y = limit_lower;
    clip_status = 2;
elseif (u_state <= limit_lower)
    y = limit_lower;
    clip_status = 1;   
else        
    y = u_state;
    clip_status = 0;
end

% Update State
tprod = gain_val * u_in;
u_state = y + tprod;

function b = subFunction(a)
b = a*a;

The dti_test Function

The test script runs the dti function with a sine wave input. The script then plots the input and
output signals.

% dti_test
% cleanup
clear dti

% input signal
x_in = sin(2.*pi.*(0:0.001:2)).';

pause(10)

len = length(x_in);
y_out = zeros(1,len);
is_clipped_out = zeros(1,len);

for ii=1:len
    data = x_in(ii);
    % call to the dti function
    init_val = 0;
    gain_val = 1;
    upper_limit = 500;
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    lower_limit = -500;
    
    % call to the design that does DTI
    [y_out(ii), is_clipped_out(ii)] = dti(data);
    
end

figure('Name', [mfilename, '_plot'])
subplot(2,1,1)
plot(1:len,x_in)
xlabel('Time')
ylabel('Amplitude')
title('Input Signal (Sin)')

subplot(2,1,2)
plot(1:len,y_out)
xlabel('Time')
ylabel('Amplitude')
title('Output Signal (DTI)')

disp('Test complete.')

Set Up the Fixed-Point Configuration Object

Create a fixed-point configuration object and configure the test file name.

fixptcfg = coder.config('fixpt');
fixptcfg.TestBenchName = 'dti_test';

Specify Design Ranges

Specify design range information for the dti function input parameter u_in.

fixptcfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0)

Enable Plotting Using the Simulation Data Inspector

Select to run the test file to verify the generated fixed-point MATLAB code. Log inputs and outputs for
comparison plotting and select to use the Simulation Data Inspector to plot the results.

fixptcfg.TestNumerics = true;
fixptcfg.LogIOForComparisonPlotting = true;
fixptcfg.PlotWithSimulationDataInspector = true;

Derive Ranges and Generate Fixed-Point Code

Use the fiaccel function to convert the floating-point MATLAB function, dti, to fixed-point
MATLAB code. Set the default word length for the fixed-point data types to 16.

fixptcfg.ComputeDerivedRanges = true;
fixptcfg.ComputeSimulationRanges = false;
fixptcfg.DefaultWordLength = 16;

% Derive ranges  and generate fixed-point code
fiaccel -float2fixed fixptcfg dti

fiaccel analyzes the floating-point code. Because you did not specify the input types for the dti
function, the conversion process infers types by simulating the test file. The conversion process then
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derives ranges for variables in the algorithm. It uses these derived ranges to propose fixed-point
types for these variables. When the conversion is complete, it generates a type proposal report.

View Derived Range Information

Click the link to the type proposal report for the dti function, dti_report.html.

The report opens in a web browser.

View Generated Fixed-Point MATLAB Code

fiaccel generates a fixed-point version of the dti function, dti_fxpt.m, and a wrapper function
that calls dti_fxpt. These files are generated in the codegen\dti\fixpt folder in your local
working folder.

function [y, clip_status] = dti_fixpt(u_in) %#codegen
% Discrete Time Integrator in MATLAB
%  
% Forward Euler method, also known as Forward Rectangular, or left-hand
% approximation.  The resulting expression for the output of the block at
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% step 'n' is y(n) = y(n-1) + K * u(n-1)
%
fm = get_fimath();

init_val = fi(1, 0, 1, 0, fm);  
gain_val = fi(1, 0, 1, 0, fm);
limit_upper = fi(500, 0, 9, 0, fm);
limit_lower = fi(-500, 1, 10, 0, fm);

% variable to hold state between consecutive calls to this block
persistent u_state;
if isempty(u_state)
    u_state = fi(init_val+fi(1, 0, 1, 0, fm), 1, 16, 6, fm);
end 

% Compute Output
if (u_state > limit_upper)
    y = fi(limit_upper, 1, 16, 6, fm);
    clip_status = fi(-2, 1, 16, 13, fm);
elseif (u_state >= limit_upper)
    y = fi(limit_upper, 1, 16, 6, fm);
    clip_status = fi(-1, 1, 16, 13, fm);
elseif (u_state < limit_lower)
    y = fi(limit_lower, 1, 16, 6, fm);
    clip_status = fi(2, 1, 16, 13, fm);
elseif (u_state <= limit_lower)
    y = fi(limit_lower, 1, 16, 6, fm);
    clip_status = fi(1, 1, 16, 13, fm);   
else        
    y = fi(u_state, 1, 16, 6, fm);
    clip_status = fi(0, 1, 16, 13, fm);
end

% Update State
tprod = fi(gain_val * u_in, 1, 16, 14, fm);
u_state(:) = y + tprod;
end

function fm = get_fimath()
    fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap', 'ProductMode',...
 'FullPrecision', 'MaxProductWordLength', 128, 'SumMode', 'FullPrecision',...
 'MaxSumWordLength', 128);
end

Compare Floating-Point and Fixed-Point Runs

Because you selected to log inputs and outputs for comparison plots and to use the Simulation Data
Inspector for these plots, the Simulation Data Inspector opens.

You can use the Simulation Data Inspector to view floating-point and fixed-point run information and
compare results. For example, to compare the floating-point and fixed-point values for the output y,
on the Compare tab, select y, and then click Compare Runs.

The Simulation Data Inspector displays a plot of the baseline floating-point run against the fixed-point
run and the difference between them.
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Detect Overflows
This example shows how to detect overflows using the fiaccel function. At the numerical testing
stage in the conversion process, the tool simulates the fixed-point code using scaled doubles. It then
reports which expressions in the generated code produce values that would overflow the fixed-point
data type.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\overflow.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB command line,

enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples')) 
3 Copy the overflow.m and overflow_test.m files to your local working folder.

It is best practice to create a separate test script to do all the pre- and post-processing such as
loading inputs, setting up input values, calling the function under test, and outputting test
results.

Type Name Description
Function code overflow.m Entry-point MATLAB function
Test file overflow_test.m MATLAB script that tests

overflow.m

The overflow Function

function y = overflow(b,x,reset)
    if nargin<3, reset = true; end
    persistent z p
    if isempty(z) || reset
        p = 0;
        z = zeros(size(b));
    end
    [y,z,p] = fir_filter(b,x,z,p);
end
function [y,z,p] = fir_filter(b,x,z,p)
    y = zeros(size(x));
    nx = length(x);
    nb = length(b);
    for n = 1:nx
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        p=p+1; if p>nb, p=1; end
        z(p) = x(n);        
        acc = 0;
        k = p;
        for j=1:nb
            acc = acc + b(j)*z(k);
            k=k-1; if k<1, k=nb; end
        end        
        y(n) = acc;
    end
end

The overflow_test Function

function overflow_test
    % The filter coefficients were computed using the FIR1 function from
    % Signal Processing Toolbox.
    %   b = fir1(11,0.25);
    b = [-0.004465461051254
         -0.004324228005260
         +0.012676739550326
         +0.074351188907780
         +0.172173206073645
         +0.249588554524763
         +0.249588554524763
         +0.172173206073645
         +0.074351188907780
         +0.012676739550326
         -0.004324228005260
         -0.004465461051254]';
    
    % Input signal
    nx = 256;
    t = linspace(0,10*pi,nx)';

    % Impulse
    x_impulse = zeros(nx,1); x_impulse(1) = 1;

    % Max Gain
    % The maximum gain of a filter will occur when the inputs line up with the
    % signs of the filter's impulse response.
    x_max_gain = sign(b)';
    x_max_gain = repmat(x_max_gain,ceil(nx/length(b)),1);
    x_max_gain = x_max_gain(1:nx);

    % Sums of sines
    f0=0.1; f1=2;
    x_sines = sin(2*pi*t*f0) + 0.1*sin(2*pi*t*f1);

    % Chirp
    f_chirp = 1/16;                  % Target frequency
    x_chirp = sin(pi*f_chirp*t.^2);  % Linear chirp

    x = [x_impulse, x_max_gain, x_sines, x_chirp];
    titles = {'Impulse', 'Max gain', 'Sum of sines', 'Chirp'};
    y = zeros(size(x));
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    for i=1:size(x,2)
        reset = true;
        y(:,i) = overflow(b,x(:,i),reset);
    end

    test_plot(1,titles,t,x,y)

end
function test_plot(fig,titles,t,x,y1)
    figure(fig)
    clf
    sub_plot = 1;
    font_size = 10;
    for i=1:size(x,2)
        subplot(4,1,sub_plot)
        sub_plot = sub_plot+1;
        plot(t,x(:,i),'c',t,y1(:,i),'k')
        axis('tight')
        xlabel('t','FontSize',font_size);
        title(titles{i},'FontSize',font_size);
        ax = gca;
        ax.FontSize = 10;
    end
    figure(gcf)
end

Set Up Configuration Object
1 Create a coder.FixptConfig object, fixptcfg, with default settings.

fixptcfg = coder.config('fixpt');
2 Set the test bench name. In this example, the test bench function name is overflow_test.

fixptcfg.TestBenchName = 'overflow_test';
3 Set the default word length to 16.

fixptcfg.DefaultWordLength = 16;

Enable Overflow Detection
fixptcfg.TestNumerics = true;
fixptcfg.DetectFixptOverflows = true;

Set fimath Options

Set the fimath Product mode and Sum mode to KeepLSB. These settings models the behavior of
integer operations in the C language.
fixptcfg.fimath = ... 
'fimath( ''RoundingMethod'', ''Floor'', ''OverflowAction'', ''Wrap'', ...
         ''ProductMode'', ''KeepLSB'', ''SumMode'', ''KeepLSB'')';

Convert to Fixed Point

Convert the floating-point MATLAB function, overflow, to fixed-point MATLAB code. You do not
need to specify input types for the fiaccel command because it infers the types from the test file.

fiaccel -float2fixed fixptcfg overflow

The numerics testing phase reports an overflow.
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Overflow error in expression 'acc + b( j )*z( k )'. Percentage of Current Range = 104%.

Review Results

Determine if the addition or the multiplication in this expression overflowed. Set the fimath
ProductMode to FullPrecision so that the multiplication will not overflow, and then run the
fiaccel command again.
fixptcfg.fimath = ... 
'fimath(''RoundingMethod'',''Floor'',''OverflowAction'',''Wrap'',...
        ''ProductMode'',''FullPrecision'',''SumMode'',''KeepLSB'')';
fiaccel  -float2fixed fixptcfg overflow

The numerics testing phase still reports an overflow, indicating that it is the addition in the
expression that is overflowing.
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Replace the exp Function with a Lookup Table
This example shows how to replace the exp function with a lookup table approximation in the
generated fixed-point code using the fiaccel function.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”.

Create Algorithm and Test Files

1 Create a MATLAB function, my_fcn.m, that calls the exp function.

function y = my_fcn(x)
  y = exp(x);
end

2 Create a test file, my_fcn_test.m, that uses my_fcn.m.

close all

x = linspace(-10,10,1e3);
for itr = 1e3:-1:1
   y(itr) = my_fcn( x(itr) );
end
plot( x, y );

Configure Approximation

Create a function replacement configuration object to approximate the exp function, using the
default settings of linear interpolation and 1000 points in the lookup table.

q = coder.approximation('exp');

Set Up Configuration Object

Create a coder.FixptConfig object, fixptcfg. Specify the test file name and enable numerics
testing. Associate the function replacement configuration object with the fixed-point configuration
object.

fixptcfg = coder.config('fixpt');
fixptcfg.TestBenchName = 'my_fcn_test';
fixptcfg.TestNumerics = true;
fixptcfg.DefaultWordLength = 16;
fixptcfg.addApproximation(q);

Convert to Fixed Point

Generate fixed-point MATLAB code.
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fiaccel -float2fixed fixptcfg my_fcn

View Generated Fixed-Point Code

To view the generated fixed-point code, click the link to my_fcn_fixpt.

The generated code contains a lookup table approximation, replacement_exp, for the exp function.
The fixed-point conversion process infers the ranges for the function and then uses an interpolated
lookup table to replace the function. By default, the lookup table uses linear interpolation, 1000
points, and the minimum and maximum values detected by running the test file.

The generated fixed-point function, my_fcn_fixpt, calls this approximation instead of calling exp.

function y = my_fcn_fixpt(x)
  fm = get_fimath();

  y = fi(replacement_exp(x), 0, 16, 1, fm);
end

You can now test the generated fixed-point code and compare the results against the original
MATLAB function. If the behavior of the generated fixed-point code does not match the behavior of
the original code closely enough, modify the interpolation method or number of points used in the
lookup table and then regenerate code.

See Also

More About
• “Replacing Functions Using Lookup Table Approximations” on page 7-50
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Replace a Custom Function with a Lookup Table
This example shows how to replace a custom function with a lookup table approximation function
using the fiaccel function.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”.

Create a MATLAB function, custom_fcn.m. This is the function that you want to replace.

function y = custom_fcn(x)
  y = 1./(1+exp(-x));
end

Create a wrapper function that calls custom_fcn.m.

function y = call_custom_fcn(x)
  y = custom_fcn(x);
end

Create a test file, custom_test.m, that uses call_custom_fcn.m.

close all

x = linspace(-10,10,1e3);
for itr = 1e3:-1:1
   y(itr) = call_custom_fcn( x(itr) );
end
plot( x, y );

Create a function replacement configuration object to approximate custom_fcn. Specify the function
handle of the custom function and set the number of points to use in the lookup table to 50.

q = coder.approximation('Function','custom_fcn',...
                        'CandidateFunction',@custom_fcn, 'NumberOfPoints',50);

Create a coder.FixptConfig object, fixptcfg. Specify the test file name and enable numerics
testing. Associate the function replacement configuration object with the fixed-point configuration
object.

fixptcfg = coder.config('fixpt');
fixptcfg.TestBenchName = 'custom_test';
fixptcfg.TestNumerics = true;
fixptcfg.addApproximation(q);

Generate fixed-point MATLAB code.

fiaccel -float2fixed fixptcfg call_custom_fcn
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fiaccel generates fixed-point MATLAB code in call_custom_fcn_fixpt.m.

To view the generated fixed-point code, click the link to call_custom_fcn_fixpt.

The generated code contains a lookup table approximation, replacement_custom_fcn, for the
custom_fcn function. The fixed-point conversion process infers the ranges for the function and then
uses an interpolated lookup table to replace the function. The lookup table uses 50 points as
specified. By default, it uses linear interpolation and the minimum and maximum values detected by
running the test file.

The generated fixed-point function, call_custom_fcn_fixpt, calls this approximation instead of
calling custom_fcn.

function y = call_custom_fcn_fixpt(x)
  fm = get_fimath();

  y = fi(replacement_custom_fcn(x), 0, 14, 14, fm);
end

You can now test the generated fixed-point code and compare the results against the original
MATLAB function. If the behavior of the generated fixed-point code does not match the behavior of
the original code closely enough, modify the interpolation method or number of points used in the
lookup table and then regenerate code.

See Also

More About
• “Replacing Functions Using Lookup Table Approximations” on page 7-50
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Visualize Differences Between Floating-Point and Fixed-Point
Results

This example shows how to configure the fiaccel function to use a custom plot function to compare
the behavior of the generated fixed-point code against the behavior of the original floating-point
MATLAB code.

By default, when the LogIOForComparisonPlotting option is enabled, the conversion process
uses a time series based plotting function to show the floating-point and fixed-point results and the
difference between them. However, during fixed-point conversion you might want to visualize the
numerical differences in a view that is more suitable for your application domain. This example shows
how to customize plotting and produce scatter plots at the test numerics step of the fixed-point
conversion.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\custom_plot.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB command line,

enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples')) 
3 Copy the myFilter.m, myFilterTest.m, plotDiff.m, and filterData.mat files to your

local working folder.

It is best practice to create a separate test script to do all the pre- and post-processing such as
loading inputs, setting up input values, calling the function under test, and outputting test
results.

Type Name Description
Function code myFilter.m Entry-point MATLAB function
Test file myFilterTest.m MATLAB script that tests

myFilter.m
Plotting function plotDiff.m Custom plot function
MAT-file filterData.mat Data to filter.

The myFilter Function

function [y, ho] = myFilter(in)
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persistent b h;
if isempty(b)
  b = complex(zeros(1,16));
  h = complex(zeros(1,16));
  h(8) = 1;
end

b = [in, b(1:end-1)];
y = b*h.';

errf = 1-sqrt(real(y)*real(y) + imag(y)*imag(y));
update = 0.001*conj(b)*y*errf;

h = h + update;
h(8) = 1;
ho = h;

end

The myFilterTest File

% load data
data = load('filterData.mat');
d = data.symbols;

for idx = 1:4000
    y = myFilter(d(idx));
end

The plotDiff Function

% varInfo - structure with information about the variable. It has the following fields
%            i) name
%            ii) functionName
% floatVals - cell array of logged original values for the 'varInfo.name' variable
% fixedVals - cell array of logged values for the 'varInfo.name' variable after Fixed-Point conversion.
function plotDiff(varInfo, floatVals, fixedVals)
    varName = varInfo.name;
    fcnName = varInfo.functionName;

    % escape the '_'s because plot titles treat these as subscripts
    escapedVarName = regexprep(varName,'_','\\_');
    escapedFcnName = regexprep(fcnName,'_','\\_');
    
    % flatten the values
    flatFloatVals = floatVals(1:end);
    flatFixedVals = fixedVals(1:end);

    % build Titles
    floatTitle = [ escapedFcnName ' > ' 'float : ' escapedVarName ];
    fixedTitle = [ escapedFcnName ' > ' 'fixed : ' escapedVarName ];
    
    data = load('filterData.mat');
    
    switch varName
        case 'y'
            x_vec = data.symbols;
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            figure('Name', 'Comparison plot', 'NumberTitle', 'off');
            
            % plot floating point values
            y_vec = flatFloatVals;
            subplot(1, 2, 1);
            plotScatter(x_vec, y_vec, 100, floatTitle);
            
            % plot fixed point values
            y_vec = flatFixedVals;
            subplot(1, 2, 2);
            plotScatter(x_vec, y_vec, 100, fixedTitle);

        otherwise
            % Plot only output 'y' for this example, skip the rest
    end

end

function plotScatter(x_vec, y_vec, n, figTitle)
    % plot the last n samples
    x_plot = x_vec(end-n+1:end);
    y_plot = y_vec(end-n+1:end);
    
    hold on
    scatter(real(x_plot),imag(x_plot), 'bo');    

    hold on
    scatter(real(y_plot),imag(y_plot), 'rx');
    
    title(figTitle);
end

Set Up Configuration Object

1 Create a coder.FixptConfig object.

fxptcfg = coder.config('fixpt');
2 Specify the test file name and custom plot function name. Enable logging and numerics testing.

fxptcfg.TestBenchName = 'myFilterTest';
fxptcfg.PlotFunction = 'plotDiff';
fxptcfg.TestNumerics = true; 
fxptcfg.LogIOForComparisonPlotting = true;
fxptcfg.DefaultWordLength = 16;

Convert to Fixed Point

Convert the floating-point MATLAB function, myFilter, to fixed-point MATLAB code. You do not
need to specify input types for the fiaccel command because it infers the types from the test file.

fiaccel -args {complex(0, 0)} -float2fixed fxptcfg myFilter

The conversion process generates fixed-point code using a default word length of 16 and then runs a
fixed-point simulation by running the myFilterTest.m function and calling the fixed-point version of
myFilter.m.
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Because you selected to log inputs and outputs for comparison plots and to use the custom plotting
function, plotDiff.m, for these plots, the conversion process uses this function to generate the
comparison plot.

The plot shows that the fixed-point results do not closely match the floating-point results.

Increase the word length to 24 and then convert to fixed point again.

fxptcfg.DefaultWordLength = 24;
fiaccel -args {complex(0, 0)} -float2fixed fxptcfg myFilter

The increased word length improved the results. This time, the plot shows that the fixed-point results
match the floating-point results.
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See Also

More About
• “Custom Plot Functions” on page 7-51
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Enable Plotting Using the Simulation Data Inspector
You can use the Simulation Data Inspector to inspect and compare floating-point and fixed-point input
and output data logged using the fiaccel function. At the MATLAB command line:

1 Create a fixed-point configuration object and configure the test file name.

fixptcfg = coder.config('fixpt');
fixptcfg.TestBenchName = 'dti_test';

2 Select to run the test file to verify the generated fixed-point MATLAB code. Log inputs and
outputs for comparison plotting and select to use the Simulation Data Inspector to plot the
results.

fixptcfg.TestNumerics = true;
fixptcfg.LogIOForComparisonPlotting = true;
fixptcfg.PlotWithSimulationDataInspector = true;

3 Generate fixed-point MATLAB code using fiaccel.

fiaccel -float2fixed fixptcfg dti

For an example, see “Propose Data Types Based on Derived Ranges” on page 9-6.
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Single-Precision Conversion

• “Generate Single-Precision MATLAB Code” on page 10-2
• “MATLAB Language Features Supported for Single-Precision Conversion” on page 10-8
• “Single-Precision Conversion Best Practices” on page 10-10
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Generate Single-Precision MATLAB Code
This example shows how to generate single-precision MATLAB code from double-precision MATLAB
code.

Prerequisites
To complete this example, install the following products:

• MATLAB
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”.

Create a Folder and Copy Relevant Files
1 Create a local working folder, for example, c:\ex_2ndOrder_filter.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB command line,

enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples')) 
3 Copy the ex_2ndOrder_filter.m and ex_2ndOrder_filter_test.m files to your local

working folder.

Type Name Description
Function code ex_2ndOrder_filter.m Entry-point MATLAB function
Test file ex_2ndOrder_filter_test.m MATLAB script that tests

ex_2ndOrder_filter.m

The ex_2ndOrder_filter Function

function y = ex_2ndOrder_filter(x) %#codegen
  persistent z
  if isempty(z)
      z = zeros(2,1);
  end
  % [b,a] = butter(2, 0.25)
  b = [0.0976310729378175,  0.195262145875635,  0.0976310729378175];
  a = [1, -0.942809041582063,  0.3333333333333333];

 
  y = zeros(size(x));
  for i = 1:length(x)
      y(i) = b(1)*x(i) + z(1);
      z(1) = b(2)*x(i) + z(2) - a(2) * y(i);
      z(2) = b(3)*x(i)        - a(3) * y(i);
  end
end
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The ex_2ndOrder_filter_test Script

It is a best practice to create a separate test script for preprocessing and postprocessing such as:

• Setting up input values.
• Calling the function under test.
• Outputting the test results.

To cover the full intended operating range of the system, the test script runs the
ex_2ndOrder_filter function with three input signals: chirp, step, and impulse. The script
then plots the outputs.

% ex_2ndOrder_filter_test
%
% Define representative inputs
N = 256;                   % Number of points
t = linspace(0,1,N);       % Time vector from 0 to 1 second
f1 = N/2;                  % Target frequency of chirp set to Nyquist
x_chirp = sin(pi*f1*t.^2); % Linear chirp from 0 to Fs/2 Hz in 1 second
x_step = ones(1,N);        % Step
x_impulse = zeros(1,N);    % Impulse
x_impulse(1) = 1;

% Run the function under test
x = [x_chirp;x_step;x_impulse];
y = zeros(size(x));
for i = 1:size(x,1)
  y(i,:) = ex_2ndOrder_filter(x(i,:));
end

% Plot the results
titles = {'Chirp','Step','Impulse'}
clf
for i = 1:size(x,1)
  subplot(size(x,1),1,i)
  plot(t,x(i,:),t,y(i,:))
  title(titles{i})
  legend('Input','Output')
end
xlabel('Time (s)')
figure(gcf)

disp('Test complete.')

Set Up the Single-Precision Configuration Object
Create a single-precision configuration object. Specify the test file name. Verify the single-precision
code using the test file. Plot the error between the double-precision code and single-precision code.
Use the default values for the other properties.

scfg = coder.config('single');
scfg.TestBenchName = 'ex_2ndOrder_filter_test';
scfg.TestNumerics = true;
scfg.LogIOForComparisonPlotting = true;
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Generate Single-Precision MATLAB Code
To convert the double-precision MATLAB function, ex_2ndOrder_filter, to single-precision
MATLAB code, use the convertToSingle

convertToSingle -config scfg ex_2ndOrder_filter

convertToSingle analyzes the double-precision code. The conversion process infers types by
running the test file because you did not specify the input types for the ex_2ndOrder_filter
function. The conversion process selects single-precision types for the double-precision variables. It
selects int32 for index variables. When the conversion is complete, convertToSingle generates a
type proposal report.

View the Type Proposal Report
To see the types that the conversion process selected for the variables, open the type proposal report
for the ex_2ndOrder_filter function. Click the link ex_2ndOrder_filter_report.html.

The report opens in a web browser. The conversion process converted:

• Double-precision variables to single.
• The index i to int32. The conversion process casts index and dimension variables to int32.
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View Generated Single-Precision MATLAB Code
To view the report for the generation of the single-precision MATLAB code, in the Command Window:

1 Scroll to the Generate Single-Precision Code step. Click the View report link.
2 In the MATLAB Source pane, click ex_2ndOrder_filter_single.

The code generation report displays the single-precision MATLAB code for ex_2ndOrder_filter.

View Potential Data Type Issues
When you generate single-precision code, convertTosingle enables highlighting of potential data
type issues in code generation reports. If convertTosingle cannot remove a double-precision
operation, the report highlights the MATLAB expression that results in the operation. Click the Code
Insights tab. The absence of potential data type issues indicates that no double-precision operations
remain.

 Generate Single-Precision MATLAB Code

10-5



Compare the Double-Precision and Single-Precision Variables
You can see the comparison plots for the input x and output y because you selected to log inputs and
outputs for comparison plots .
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See Also
coder.SingleConfig | coder.config | convertToSingle

More About
• “Single-Precision Conversion Best Practices” on page 10-10
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MATLAB Language Features Supported for Single-Precision
Conversion

In this section...
“MATLAB Language Features Supported for Single-Precision Conversion” on page 10-8
“MATLAB Language Features Not Supported for Single-Precision Conversion” on page 10-9

MATLAB Language Features Supported for Single-Precision
Conversion
Single-precision conversion supports the following MATLAB language features:

• N-dimensional arrays.
• Matrix operations, including deletion of rows and columns.
• Variable-size data. Comparison plotting does not support variable-size data.
• Subscripting (see “Incompatibility with MATLAB in Matrix Indexing Operations for Code

Generation” on page 29-19).
• Complex numbers (see “Code Generation for Complex Data” on page 16-8).
• Numeric classes (see “Supported Variable Types” on page 18-13).
• Program control statements if, switch, for, while, and break.
• Arithmetic, relational, and logical operators.
• Local functions.
• Global variables.
• Persistent variables.
• Structures.
• Characters.

Single-precision conversion does not support the complete set of Unicode characters. Characters
are restricted to 8 bits of precision in generated code. Many mathematical operations require
more than 8 bits of precision. If you intend to convert your MATLAB algorithm to single precision,
it is a best practice not to perform arithmetic with characters.

• MATLAB classes. Single-precision conversion supports:

• Class properties
• Constructors
• Methods
• Specializations

It does not support class inheritance or packages.

Single-precision conversion using codegen with the -singleC option does not support classes
when the properties have default values. Property values must be initialized in the constructor.
Constant properties cannot be initialized to double precision data types.

• Function calls (see “Resolution of Function Calls for Code Generation” on page 14-2)
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MATLAB Language Features Not Supported for Single-Precision
Conversion
Single-precision conversion does not support the following features:

• Anonymous functions
• Cell arrays
• String scalars
• Objects of value classes as entry-point function inputs or outputs
• Function handles
• Java
• Nested functions
• Recursion
• Sparse matrices
• try/catch statements
• varargin and varargout, or generation of fewer input or output arguments than an entry-point

function defines

 MATLAB Language Features Supported for Single-Precision Conversion

10-9



Single-Precision Conversion Best Practices

In this section...
“Use Integers for Index Variables” on page 10-10
“Limit Use of assert Statements” on page 10-10
“Initialize MATLAB Class Properties in Constructor” on page 10-10
“Provide a Test File That Calls Your MATLAB Function” on page 10-10
“Prepare Your Code for Code Generation” on page 10-11
“Use the -args Option to Specify Input Properties” on page 10-11
“Test Numerics and Log I/O Data” on page 10-11

Use Integers for Index Variables
In MATLAB code that you want to convert to single precision, it is a best practice to use integers for
index variables. However, if the code does not use integers for index variables, when possible
convertToSingle tries to detect the index variables and select int32 types for them.

Limit Use of assert Statements
• Do not use assert statements to define the properties of input arguments.
• Do not use assert statements to test the type of a variable. For example, do not use

assert(isa(a, 'double'))

Initialize MATLAB Class Properties in Constructor
Do not initialize MATLAB class properties in the properties block. Instead, use the constructor to
initialize the class properties.

Provide a Test File That Calls Your MATLAB Function
Separate your core algorithm from other code that you use to test and verify the results. Create a test
file that calls your double-precision MATLAB algorithm. You can use the test file to:

• Automatically define properties of the top-level function inputs.
• Verify that the double-precision algorithm behaves as you expect. The double-precision behavior is

the baseline against which you compare the behavior of the single-precision versions of your
algorithm.

• Compare the behavior of the single-precision version of your algorithm to the double-precision
baseline.

For best results, the test file must exercise the algorithm over its full operating range.
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Prepare Your Code for Code Generation
MATLAB code that you want to convert to single precision must comply with code generation
requirements. See “MATLAB Language Features Supported for C/C++ Code Generation” on page 19-
23.

To help you identify unsupported functions or constructs in your MATLAB code, add the %#codegen
pragma to the top of your MATLAB file. When you edit your code in the MATLAB editor, the MATLAB
Code Analyzer flags functions and constructs that are not supported for code generation. See “Check
Code Using the MATLAB Code Analyzer” on page 12-74. When you use the MATLAB Coder app, the
app screens your code for code generation readiness. At the function line, you can use the Code
Generation Readiness Tool. See “Check Code Using the Code Generation Readiness Tool” on page 12-
73.

Use the -args Option to Specify Input Properties
When you generate single-precision MATLAB code, if you specify a test file, you do not have to specify
argument properties with the -args option. In this case, the code generator runs the test file to
determine the properties of the input types. However, running the test file can slow the code
generation. It is a best practice to pass the properties to the -args option so that convertToSingle
does not run the test file to determine the argument properties. If you have a MATLAB Coder license,
you can use coder.getArgTypes to determine the argument properties. For example:

types = coder.getArgTypes('myfun_test', 'myfun');
scfg = coder.config('single');
convertToSingle -config scfg -args types myfun

Test Numerics and Log I/O Data
When you use the convertToSingle function to generate single-precision MATLAB code, enable
numerics testing and I/O data logging for comparison plots. To use numerics testing, you must
provide a test file that calls your MATLAB function. To enable numerics testing and I/O data logging,
create a coder.SingleConfig object. Set the TestBenchName, TestNumerics, and
LogIOForComparisonPlotting properties. For example:

scfg = coder.config('single');
scfg.TestBenchName = 'mytest';
scfg.TestNumerics = true;
scfg.LogIOForComparisonPlotting = true;

See Also
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Fixed-Point Conversion — Manual
Conversion

• “Manual Fixed-Point Conversion Workflow” on page 11-2
• “Manual Fixed-Point Conversion Best Practices” on page 11-3
• “Fixed-Point Design Exploration in Parallel” on page 11-15
• “Real-Time Image Acquisition, Image Processing, and Fixed-Point Blob Analysis for Target Practice

Analysis” on page 11-20
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Manual Fixed-Point Conversion Workflow
1 Implement your algorithm in MATLAB.
2 Write a test file that calls your original MATLAB algorithm to validate the behavior of your

algorithm.

Create a test file to validate that the algorithm works as expected in floating point before
converting it to fixed point. Use the same test file to propose fixed-point data types. After the
conversion, use this test file to compare fixed-point results to the floating-point baseline.

3 Prepare algorithm for instrumentation.
4 Write an entry-point function.

For instrumentation and code generation, it is convenient to have an entry-point function that
calls the function to be converted to fixed point. You can cast the function inputs to different data
types, and add calls to different variations of the algorithm for comparison. By using an entry-
point function, you can run both fixed-point and floating-point variants of your algorithm. You can
also run different variants of fixed-point. This approach allows you to iterate on your code more
quickly to arrive at the optimal fixed-point design.

5 Build instrumented MEX for original MATLAB algorithm.
6 Run your original MATLAB algorithm to log min/max data. View this data in the instrumentation

report.
7 Separate data types from algorithm.

Convert functions to use types tables and update entry-point function.
8 Validate modified function.

a Create fixed-point types table based on proposed data types.
b Build MEX function.
c Run and compare MEX function behavior against baseline.

9 Use proposed fixed-point data types.

Create fixed-point types table based on proposed data types, build mex, run, and then compare
against baseline.

10 Optionally, if have a MATLAB Coder license, generate code.

Start by testing native C-types.
11 Iterate, tune algorithm.

For example, tune the algorithm to avoid overflow or eliminate bias.
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Manual Fixed-Point Conversion Best Practices
In this section...
“Create a Test File” on page 11-3
“Prepare Your Algorithm for Code Acceleration or Code Generation” on page 11-4
“Check for Fixed-Point Support for Functions Used in Your Algorithm” on page 11-5
“Manage Data Types and Control Bit Growth” on page 11-6
“Separate Data Type Definitions from Algorithm” on page 11-6
“Convert to Fixed Point” on page 11-7
“Optimize Data Types” on page 11-9
“Optimize Your Algorithm” on page 11-12

Fixed-Point Designer software helps you design and convert your algorithms to fixed point. Whether
you are simply designing fixed-point algorithms in MATLAB or using Fixed-Point Designer in
conjunction with MathWorks code generation products, these best practices help you get from
generic MATLAB code to an efficient fixed-point implementation. These best practices are also
covered in this webinar: Manual Fixed-Point Conversion Best Practices Webinar

Create a Test File
A best practice for structuring your code is to separate your core algorithm from other code that you
use to test and verify the results. Create a test file to call your original MATLAB algorithm and fixed-
point versions of the algorithm. For example, as shown in the following table, you might set up some
input data to feed into your algorithm, and then, after you process that data, create some plots to
verify the results. Since you need to convert only the algorithmic portion to fixed-point, it is more
efficient to structure your code so that you have a test file, in which you create your inputs, call your
algorithm, and plot the results, and one (or more) algorithmic files, in which you do the core
processing.
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Original code Best Practice Modified code
% TEST INPUT
x = randn(100,1);

% ALGORITHM
y = zeros(size(x));
y(1) = x(1);
for n=2:length(x)
  y(n)=y(n-1) + x(n);
end

% VERIFY RESULTS
yExpected=cumsum(x);
plot(y-yExpected)
title('Error')

Issue

Generation of test input and
verification of results are
intermingled with the algorithm
code.

Fix

Create a test file that is separate
from your algorithm. Put the
algorithm in its own function.

Test file

% TEST INPUT
x = randn(100,1);

% ALGORITHM
y = cumulative_sum(x);

% VERIFY RESULTS
yExpected = cumsum(x);
plot(y-yExpected)
title('Error')

Algorithm in its own function

function y = cumulative_sum(x)
  y = zeros(size(x));
  y(1) = x(1);
  for n=2:length(x)
    y(n) = y(n-1) + x(n);
  end
end

You can use the test file to:

• Verify that your floating-point algorithm behaves as you expect before you convert it to fixed point.
The floating-point algorithm behavior is the baseline against which you compare the behavior of
the fixed-point versions of your algorithm.

• Propose fixed-point data types.
• Compare the behavior of the fixed-point versions of your algorithm to the floating-point baseline.

Your test files should exercise the algorithm over its full operating range so that the simulation
ranges are accurate. For example, for a filter, realistic inputs are impulses, sums of sinusoids, and
chirp signals. With these inputs, using linear theory, you can verify that the outputs are correct.
Signals that produce maximum output are useful for verifying that your system does not overflow. The
quality of the proposed fixed-point data types depends on how well the test files cover the operating
range of the algorithm with the accuracy that you want.

Prepare Your Algorithm for Code Acceleration or Code Generation
Using Fixed-Point Designer, you can:

• Instrument your code and provide data type proposals to help you convert your algorithm to fixed
point, using the following functions:

• buildInstrumentedMex, which generates compiled C code that includes logging
instrumentation.

• showInstrumentationResults, which shows the results logged by the instrumented,
compiled C code.

• clearInstrumentationResults, which clears the logged instrumentation results from
memory.
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• Accelerate your fixed-point algorithms by creating a MEX file using the fiaccel function.

Any MATLAB algorithms that you want to instrument using buildInstrumentedMex and any fixed-
point algorithms that you want to accelerate using fiaccel must comply with code generation
requirements and rules. To view the subset of the MATLAB language that is supported for code
generation, see “Functions and Objects Supported for C/C++ Code Generation” on page 26-2.

To help you identify unsupported functions or constructs in your MATLAB code, use one of the
following tools.

• Add the %#codegen pragma to the top of your MATLAB file. The MATLAB code analyzer flags
functions and constructs that are not available in the subset of the MATLAB language supported
for code generation. This advice appears in real-time as you edit your code in the MATLAB editor.

For more information, see “Check Code Using the MATLAB Code Analyzer” on page 12-74.
• Use the Code Generation Readiness tool to generate a static report on your code. The report
identifies calls to functions and the use of data types that are not supported for code generation.
To generate a report for a function, myFunction1, at the command line, enter
coder.screener('myFunction1').

For more information, see “Check Code Using the Code Generation Readiness Tool” on page 12-
73.

Check for Fixed-Point Support for Functions Used in Your Algorithm
Before you start your fixed-point conversion, identify which functions used in your algorithm are not
supported for fixed point. Consider how you might replace them or otherwise modify your
implementation to be more optimized for embedded targets. For example, you might need to find (or
write your own) replacements for functions like log2, fft, and exp. Other functions like sin, cos,
and sqrt may support fixed point, but for better efficiency, you may want to consider an alternative
implementation like a lookup table or CORDIC-based algorithm.

If you cannot find a replacement immediately, you can continue converting the rest of your algorithm
to fixed point by simply insulating any functions that don’t support fixed-point with a cast to double at
the input, and a cast back to a fixed-point type at the output.

Original Code Best Practice Modified Code
y = 1/exp(x); Issue

The exp() function is not defined
for fixed-point inputs.

Fix

Cast the input to double until you
have a replacement. In this case, 1/
exp(x) is more suitable for fixed-
point growth than exp(x), so
replace the whole expression with a
1/exp function, possibly as a
lookup table.

y = 1/exp(double(x));
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Manage Data Types and Control Bit Growth
The (:)= syntax is known as subscripted assignment. When you use this syntax, MATLAB overwrites
the value of the left-hand side argument, but retains the existing data type and array size. This is
particularly important in keeping fixed-point variables fixed point (as opposed to inadvertently
turning them into doubles), and for preventing bit growth when you want to maintain a particular
data type for the output.

Original Code Best Practice Modified Code
acc = 0;
for n = 1:numel(x)
  acc = acc + x(n);
end

Issue

acc = acc + x(n)overwrites acc
with acc + x(n). When you are
using all double types, this behavior
is fine. However, when you
introduce fixed-point data types in
your code, if acc is overwritten, the
data type of acc might change.

Fix

To preserve the original data type of
acc, assign into acc using
acc(:)=. Using subscripted
assignment casts the right-hand-
side value into the same data type
as acc and prevents bit growth.

acc = 0;
for n = 1:numel(x)
  acc(:) = acc + x(n);
end

For more information, see “Controlling Bit Growth”.

Separate Data Type Definitions from Algorithm
For instrumentation and code generation, create an entry-point function that calls the function that
you want to convert to fixed point. You can then cast the function inputs to different data types. You
can add calls to different variations of the function for comparison. By using an entry-point function,
you can run both fixed-point and floating-point variants of your algorithm. You can also run different
variants of fixed-point. This approach allows you to iterate on your code more quickly to arrive at the
optimal fixed-point design.

This method of fixed-point conversion makes it easier for you to compare several different fixed-point
implementations, and also allows you to easily retarget your algorithm to a different device.

To separate data type definitions from your algorithm:

1 When a variable is first defined, use cast(x,'like',y) or zeros(m,n,'like',y) to cast it to
your desired data type.

2 Create a table of data type definitions, starting with original data types used in your code. Before
converting to fixed point, create a data type table that uses all single data types to find type
mismatches and other problems.

3 Run your code connected to each table and look at the results to verify the connection.
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Original Code Best Practice Modified Code
% Algorithm
n = 128;
y = zeros(size(n));

Issue

The default data type in
MATLAB is double-precision
floating-point.

Fix

1 Use
cast(...,'like',...)
and
zeros(...'like',...)
to programmatically specify
types that are defined in a
separate table.

2 Create an original types
table, usually in a separate
function.

3 Add single data types to
your table to help verify the
connection with your code.

% Algorithm
T = mytypes('double');
n = cast(128,'like',T.n);
y = zeros(size(n),'like',T.y);

function T = mytypes(dt)
  switch(dt)
    case 'double'
      T.n = double([]);
      T.y = double([]);
      
    case 'single'
      T.n = single([]);
      T.y = single([]);
  end
end

Separating data type specifications from algorithm code enables you to:

• Reuse your algorithm code with different data types.
• Keep your algorithm uncluttered with data type specifications and switch statements for different

data types.
• Improve readability of your algorithm code.
• Switch between fixed-point and floating-point data types to compare baselines.
• Switch between variations of fixed-point settings without changing the algorithm code.

Convert to Fixed Point
What Are Your Goals for Converting to Fixed Point?

Before you start the conversion, consider your goals for converting to fixed point. Are you
implementing your algorithm in C or HDL? What are your target constraints? The answers to these
questions determine many fixed-point properties such as the available word length, fraction length,
and math modes, as well as available math libraries.

Build and Run an Instrumented MEX Function

Build and run an instrumented MEX function to get fixed-point types proposals using the
buildInstrumentedMex and showInstrumentationResults functions. Test files should exercise
your algorithm over its full operating range. The quality of the proposed fixed-point data types
depends on how well the test file covers the operating range of the algorithm with the accuracy that
you want. A simple set of test vectors may not exercise the full range of types, so use the proposals as
a guideline for choosing an initial set of fixed-point types, and use your best judgement and
experience in adjusting the types. If loop indices are used only as index variables, they are
automatically converted to integer types, so you do not have to explicitly convert them to fixed point.
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Algorithm Code Test File
function [y,z] = myfilter(b,x,z)
  y = zeros(size(x));
  for n = 1:length(x)
    z(:) = [x(n); z(1:end-1)];
    y(n) = b * z;
  end
end

% Test inputs
b = fir1(11,0.25);
t = linspace(0,10*pi,256)';
x = sin((pi/16)*t.^2);  % Linear chirp
z = zeros(size(b'));

% Build
buildInstrumentedMex myfilter ...
  -args {b,x,z} -histogram

% Run
[y,z] = myfilter_mex(b,x,z);

% Show
showInstrumentationResults myfilter_mex ...
  -defaultDT numerictype(1,16) -proposeFL

Create a Types Table

Create a types table using a structure with prototypes for the variables. The proposed types are
computed from the simulation runs. A long simulation run with a wide range of expected data
produces better proposals. You can use the proposed types or use your knowledge of the algorithm
and implementation constraints to improve the proposals.

Because the data types, not the values, are used, specify the prototype values as empty ([]).
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In some cases, it might be more efficient to leave some parts of the code in floating point. For
example, when there is high dynamic range or that part of the code is sensitive to round-off errors.

Algorithm Code
function [y,z]=myfilter(b,x,z,T)
  y = zeros(size(x),'like',T.y);
  for n = 1:length(x)
    z(:) = [x(n); z(1:end-1)];
    y(n) = b * z;
  end
end

Types Tables
function T = mytypes(dt)
  switch dt
    case 'double'
      T.b = double([]);
      T.x = double([]);
      T.y = double([]);

     case 'fixed16'
      T.b = fi([],true,16,15);
      T.x = fi([],true,16,15);
      T.y = fi([],true,16,14);
  end
end

Test File
% Test inputs
b = fir1(11,0.25);
t = linspace(0,10*pi,256)';
x = sin((pi/16)*t.^2); 
% Linear chirp

% Cast inputs
T=mytypes('fixed16');
b=cast(b,'like',T.b);
x=cast(x,'like',T.x);
z=zeros(size(b'),'like',T.x);

% Run
[y,z] = myfilter(b,x,z,T);

Run With Fixed-Point Types and Compare Results

Create a test file to validate that the floating-point algorithm works as expected before converting it
to fixed point. You can use the same test file to propose fixed-point data types, and to compare fixed-
point results to the floating-point baseline after the conversion.

Optimize Data Types
Use Scaled Doubles

Use scaled doubles to detect potential overflows. Scaled doubles are a hybrid between floating-point
and fixed-point numbers. Fixed-Point Designer stores them as doubles with the scaling, sign, and
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word length information retained. To use scaled doubles, you can use the data type override (DTO)
property or you can set the 'DataType' property to 'ScaledDouble' in the fi or numerictype
constructor.

To... Use... Example
Set data type
override locally

numerictype
DataType property

T.a = fi([],1,16,13,'DataType', 'ScaledDouble');
a = cast(pi, 'like', T.a)

a =
    3.1416

   DataTypeMode: Scaled double: binary point scaling
           Signedness: Signed
         WordLength: 16
     FractionLength: 13

Set data type
override globally

fipref
DataTypeOverride
property

fipref('DataTypeOverride','ScaledDoubles')
T.a = fi([],1,16,13);

a =
  3.1416

  DataTypeMode:Scaled double: binary point scaling
    Signedness: Signed
    WordLength:16
FractionLength:13

For more information, see “Scaled Doubles” on page 35-16.

Use the Histogram to Fine-Tune Data Type Settings

To fine-tune fixed-point type settings, run the buildInstrumentedMex function with the –
histogram flag and then run the generated MEX function with your desired test inputs. When you
use the showInstrumentationResults to display the code generation report, the report displays a
Histogram icon. Click the icon to open the NumericTypeScope and view the distribution of values
observed in your simulation for the selected variable.

Overflows indicated in red in the Code Generation Report show in the "outside range" bin in the
NumericTypeScope. Launch the NumericTypeScope for an associated variable or expression by
clicking on the histogram view icon .

Explore Design Tradeoffs

Once you have your first set of fixed-point data types, you can then add different variations of fixed-
point values to your types table. You can modify and iterate to avoid overflows, adjust fraction
lengths, and change rounding methods to eliminate bias.

Algorithm Code
function [y,z] = myfilter(b,x,z,T)
  y = zeros(size(x),'like',T.y);
  for n = 1:length(x)
    z(:) = [x(n); z(1:end-1)];
    y(n) = b * z;
  end
end
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Types Tables
function T = mytypes(dt)
  switch dt
    case 'double'
      T.b = double([]);
      T.x = double([]);
      T.y = double([]);

    case 'fixed8'
      T.b = fi([],true,8,7);
      T.x = fi([],true,8,7);
      T.y = fi([],true,8,6);

    case 'fixed16'
      T.b = fi([],true,16,15);
      T.x = fi([],true,16,15);
      T.y = fi([],true,16,14);
  end
end
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Test File
function mytest
  % Test inputs
  b = fir1(11,0.25);
  t = linspace(0,10*pi,256)';
  x = sin((pi/16)*t.^2);  % Linear chirp
  
  % Run
  y0  = entrypoint('double',b,x);
  y8  = entrypoint('fixed8',b,x);
  y16 = entrypoint('fixed16',b,x);
  
  % Plot
  subplot(3,1,1)
  plot(t,x,'c',t,y0,'k')
  legend('Input','Baseline output')
  title('Baseline')
         
  subplot(3,2,3)
  plot(t,y8,'k')
  title('8-bit fixed-point output')
  subplot(3,2,4)
  plot(t,y0-double(y8),'r')
  title('8-bit fixed-point error')

  subplot(3,2,5)
  plot(t,y16,'k')
  title('16-bit fixed-point output')
  xlabel('Time (s)')
  subplot(3,2,6)
  plot(t,y0-double(y16),'r')
  title('16-bit fixed-point error')
  xlabel('Time (s)')
end

function [y,z] = entrypoint(dt,b,x)
  T = mytypes(dt);
  b = cast(b,'like',T.b);
  x = cast(x,'like',T.x);
  z = zeros(size(b'),'like',T.x);
  [y,z] = myfilter(b,x,z,T);
end

Optimize Your Algorithm
Use fimath to Get Natural Types for C or HDL

fimath properties define the rules for performing arithmetic operations on fi objects, including
math, rounding, and overflow properties. You can use the fimath ProductMode and SumMode
properties to retain natural data types for C and HDL. The KeepLSB setting for ProductMode and
SumMode models the behavior of integer operations in the C language, while KeepMSB models the
behavior of many DSP devices. Different rounding methods require different amounts of overhead
code. Setting the RoundingMethod property to Floor, which is equivalent to two's complement
truncation, provides the most efficient rounding implementation. Similarly, the standard method for
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handling overflows is to wrap using modulo arithmetic. Other overflow handling methods create
costly logic. Whenever possible, set the OverflowAction to Wrap.

MATLAB Code Best Practice Generated C Code
% Code being compiled

function y = adder(a,b)
  y = a + b;
end

With types defined with
default fimath settings:

T.a = fi([],1,16,0);
T.b = fi([],1,16,0);

a = cast(0,'like',T.a);
b = cast(0,'like',T.b);

Issue

Additional code is generated
to implement saturation
overflow, nearest rounding,
and full-precision
arithmetic.

int adder(short a, short b)
{
  int y;
  int i;
  int i1;
  int i2;
  int i3;
  i = a;
  i1 = b;
  if ((i & 65536) != 0) {
    i2 = i | -65536;
  } else {
    i2 = i & 65535;
  }

  if ((i1 & 65536) != 0) {
    i3 = i1 | -65536;
  } else {
    i3 = i1 & 65535;
  }

  i = i2 + i3;
  if ((i & 65536) != 0) {
    y = i | -65536;
  } else {
    y = i & 65535;
  }

  return y;
}

Code being compiled

function y = adder(a,b)
  y = a + b;
end

With types defined with fimath settings
that match your processor types:

F = fimath(...
 'RoundingMethod','Floor', ...
 'OverflowAction','Wrap', ...
 'ProductMode','KeepLSB', ...
 'ProductWordLength',32, ...
 'SumMode','KeepLSB', ...
 'SumWordLength',32);

T.a = fi([],1,16,0,F);
T.b = fi([],1,16,0,F);
a = cast(0,'like',T.a);
b = cast(0,'like',T.b);

Fix

To make the generated code
more efficient, choose fixed-
point math settings that
match your processor types.

int adder(short a, short b)
{
  return a + b;
}
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Replace Built-in Functions With More Efficient Fixed-Point Implementations

Some MATLAB built-in functions can be made more efficient for fixed-point implementation. For
example, you can replace a built-in function with a Lookup table implementation, or a CORDIC
implementation, which requires only iterative shift-add operations.

Re-implement Division Operations Where Possible

Often, division is not fully supported by hardware and can result in slow processing. When your
algorithm requires a division, consider replacing it with one of the following options:

• Use bit shifting when the denominator is a power of two. For example, bitsra(x,3) instead of
x/8.

• Multiply by the inverse when the denominator is constant. For example, x*0.2 instead of x/5.

Eliminate Floating-Point Variables

For more efficient code, eliminate floating-point variables. The one exception to this is loop indices
because they usually become integer types.
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Fixed-Point Design Exploration in Parallel
In this section...
“Overview” on page 11-15
“Setup” on page 11-15
“Using Parallel for-Loops For Design Exploration” on page 11-15
“Description of System Under Test” on page 11-16

Overview
This example shows how to explore and test fixed-point designs by distributing tests across many
computers in parallel. The example uses a parfor loop to test the accuracy of a QRS detector
algorithm. Running parallel simulations requires a Parallel Computing Toolbox™ license.

Setup
To run this example, copy the example files to a local working directory.

copyfile(fullfile(matlabroot,'help','toolbox','fixpoint', 'examples',...
'parallel_examples','heart_rate_detector'))

In your local working directory, open and run the test file that runs the example.

edit test_heart_rate_detector_in_parallel.m
test_heart_rate_detector_in_parallel

Using Parallel for-Loops For Design Exploration
Like a standard for-loop, a parfor-loop executes a series of statements over a range of values.
Using the parfor command, you can set up a parallel for-loop in your code to explore fixed-point
designs by distributing the tests across many computers. In a parfor loop, loop iterations execute in
parallel which can provide better performance than standard for-loops.

This script sets up the system under test, and initializes the arrays that will contain the results
outside of the parfor-loop. It then uses a parfor loop to test each record in parallel. The parfor-
loop loads the data, runs the system, then classifies and saves the results in parallel. When the
parfor-loop finishes, the script displays the results. For more information on the system being tested
in this example, see “Description of System Under Test” on page 11-16.

%% Run test of records in database in parallel
record_names = {'ecg_01','ecg_02','ecg_03','ecg_04','ecg_05','ecg_06',...
    'ecg_07','ecg_08','ecg_09','ecg_10','ecg_11','ecg_12','ecg_13'};
 
%% Set up the system under test
data_type = 'fixedwrap';
T = heart_rate_detector_types(data_type);
[mex_function_name,Fs_target] = setup_heart_rate_detector(record_names,data_type,T);
 
%% Initialize array to contain results 
results_file_names = cell(size(record_names));
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%% Test each record in the database in parallel
parfor record_number = 1:length(record_names);
    % Load data
    record_name = record_names{record_number};
    [ecg,tm,ann,Fs] = load_ecg_data(record_name,Fs_target);
    
    % Run system under test
    detector_outputs = run_heart_rate_detector(mex_function_name,ecg,T);
    
    % Classify results
    [qrs_struct,qrs_stats] = classify_qrs(ann, Fs, detector_outputs);
    
    % Save results
    results_file_names{record_number} = save_heart_rate_data(...
        mex_function_name,record_name,...
        data_type,ecg,tm,ann,Fs,...
        detector_outputs,...
        qrs_struct,qrs_stats);
 
end
 
%% Display results
display_ecg_results(record_names, results_file_names);

Because loop iterations must be completely independent of each other, you cannot call the save and
load commands directly inside a parfor-loop. You can, however, call functions that call these
commands. In this example, the functions load_ecg_data and save_heart_rate_data load and
save the necessary data. For more information on limitations, see “Parallel for-Loops (parfor)”
(Parallel Computing Toolbox).

Description of System Under Test
The system under test in this example tests a simple QRS detector that measures the time difference
between QRS detections to compute heart rate. The test_heart_rate_detector_in_parallel
script passes ECG recordings to the detection algorithm.

The following plot is an example when the detector algorithm correctly identifies the QRS detections
to compute the heartbeat.
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The detection algorithm is simplified for this example. Examining the plots and results that are
displayed when the example runs shows that the algorithm is not always very accurate.

      Record    #QRS      TP      FP      FN     DER      Se      +P
      ecg_01     253     195       1      58   23.32   77.08   99.49
      ecg_02     133     133      18       0   13.53  100.00   88.08
      ecg_03      94      94       1       0    1.06  100.00   98.95
      ecg_04      92      91       0       1    1.09   98.91  100.00
      ecg_05      93      91       1       2    3.23   97.85   98.91
      ecg_06     131     131      22       0   16.79  100.00   85.62
      ecg_07     174     173       2       0    1.15  100.00   98.86
      ecg_08     117     116      10       1    9.40   99.15   92.06
      ecg_09     137     137       1       0    0.73  100.00   99.28
      ecg_10      96      96       3       0    3.13  100.00   96.97
      ecg_11      73      73       1       0    1.37  100.00   98.65
      ecg_12     146     145      71       0   48.63  100.00   67.13
      ecg_13     144     144       5       0    3.47  100.00   96.64
      Totals    1683    1619     136      62   11.76   96.31   92.25

Legend:
   #QRS: Total number of QRS Complexes
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   TP:   Number of true positive
   FP:   Number of false positive
   FN:   Number of false negative
   DER:  Detection error rate in percent
   Se:   Sensitivity in percent
   +P:   Positive prediction in percent

The following plot is an example when the detector algorithm identifies false positives due to noise in
the recording.

Note

• All ECG recordings used in this example were measured on hobbyist equipment.

You can use the PhysioNet database of recorded physiological signals to do a similar analysis on
your own.

• The annotations on these recordings were not verified by doctors.
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Real-Time Image Acquisition, Image Processing, and Fixed-
Point Blob Analysis for Target Practice Analysis

This example shows how to acquire real-time images from a webcam, process the images using fixed-
point blob analysis, and determine world coordinates to score a laser pistol target.

The technology featured in this example is used in a wide range of applications, such as estimating
distances to objects in front of a car, and medical image analysis of cells. Key features of this example
include:

• Fixed-point blob analysis for collecting measurements
• Real-time image acquisition
• Camera calibration to determine world coordinates of image points
• Correct images for lens distortion to ensure accuracy of collected measurements in world units
• Determine world coordinates of image points by mapping pixel locations to locations in real-world

units

All code for this example is stored in the examples folder. To edit the code, navigate to this folder.

cd(fullfile(docroot,'toolbox','fixpoint',...
'examples','laser_target_example'));

Copy the +LaserTargetExample folder to a writeable location.

Hardware Setup
Cameras

Image Acquisition Toolbox enables you to acquire images and video from cameras and frame
grabbers directly into MATLAB® and Simulink®. Using the Image Acquisition Toolbox Support
Package for GigE Vision Hardware or the MATLAB Support Package for USB Webcams, set up a
camera to acquire the real-time images to perform the analysis.

For more information on setting up the camera, see “Device Connection” (Image Acquisition Toolbox).

Target

Use the following commands to create a target to print for use in the exercise. The code generates a
postscript file that can be opened and printed double-sided, with the target on one side, and the
checkerboard for camera calibration on the other side.

distance = 10; % meters
offset_mm = 0; % mm
print_target = true;
LaserTargetExample.make_target_airpistol10m(distance, ...
offset_mm, print_target)
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You can find pre-made targets in the +LaserTargetExample/targets_for_printing folder.

Setup

Set up the camera so that it faces the checkerboard side of the target. The shooter faces the target.
You can keep the target and camera in fixed positions by mounting them on a board.
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Algorithm
Calibrating the Image

Camera calibration is the process of estimating the parameters of the lens and the image sensor.
These parameters measure objects captured by the camera. Use the Camera Calibrator app to
detect the checkerboard pattern on the back of the target, and remove any distortion. Determine the
threshold of ambient light on the target. You may need to adjust camera settings or the lighting so
that the image is not saturated. Use the pointsToWorld function to determine world coordinates of
the image points.

For more information, see “What Is Camera Calibration?” (Computer Vision Toolbox).

Finding and Scoring the Shot

The algorithm scores the shots by detecting the bright light of the laser pistol. While shooting, get a
frame and detect if there is a bright spot. If there is a bright spot over the specified threshold,
process that frame.

Use blob analysis to find the center of the bright spot, and translate the location from pixel
coordinates to world coordinates. The blob analysis is done in fixed point because the image is stored
as an 8-bit signed integer. After finding the center of the bright spot in world coordinates, calculate
its distance from the bullseye at the origin and assign a point value to the shot.
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Run the Example
Add the example code to the path.

addpath(fullfile(docroot,'toolbox','fixpoint',...
'examples','laser_target_example'));

Start the simulation by executing the run script stored in the +LaserTargetExample folder.

LaserTargetExample.run

(1) gigecam
(2) webcam
(3) simulation
Enter the number of the source type:

The script prompts you to select the source to use for the simulation. Enter 3 to watch a simulation of
a previously recorded session. There are eight previously recorded simulations available. Enter a
number (1 through 8) to begin the simulation.

(1) saved_shots_20170627T201451
(2) saved_shots_20170627T201814
(3) saved_shots_20170702T153245
(4) saved_shots_20170702T153418
(5) saved_shots_20170702T162503
(6) saved_shots_20170702T162625
(7) saved_shots_20170702T162743
(8) saved_shots_20170702T162908
Enter number of file from list:

Entering 1 or 2 prompts you to set up a GigE Vision camera or a webcam. The example then prompts
you to enter the distance from the shooter to the target (meters) and the name of the shooter.
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Use a Different Camera
To set up the example using your own camera, use the Camera Calibrator app to detect the
checkerboard on the back of the target, and remove distortion. Save the calibration variables in a
MAT-file. The calibration variables for the GigE Vision camera and a webcam are saved in the
following MAT-files.

• +LaserTargetExample/gigecam_240x240_calibration_parameters.mat
• +LaserTargetExample/webcam_LifeCam_480x480_camera_parameters.mat

Edit one of the following files substituting the settings with appropriate values for your camera.

• +LaserTargetExample/gigecam_setup.m
• +LaserTargetExample/webcam_setup.m

Explore Data
Shot Database

Each time you shoot, the hits are recorded in a file named ShotDatabase.csv. You can load the
data into a table object using readtable to visualize it. For example, after shooting, which populates
the ShotDatabase.csv file, the following code plots the center of a group of many shots.

T = readtable('ShotDatabase.csv');
LaserTargetExample.make_target_airpistol10m;
LaserTargetExample.plot_shot_points(T.X, T.Y);
ax = gca;
line(mean(T.X)*[1,1], ax.YLim);
line(ax.XLim, mean(T.Y)*[1,1]);
grid on;
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Simulation Recordings

Each time you shoot, the video frames in which shots were detected are stored in files in a folder
named simulation_recordings. You can load these files and explore the raw data from the shots.
You can also edit the algorithm.

The variable frames contains the first frame which was used for calibration, plus ten frames for each
detected shot. The first frame in each run of ten is where a shot was detected. You can see your hand
movement in the subsequent frames. You can make a short animation of the data using the following
code.
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d = dir(fullfile('simulation_recordings','*.mat'));
record = load(fullfile(d(1).folder, d(1).name));
t = LaserTargetExample.SerialDateNumber_to_seconds(...
    record.times);
t = t-t(1);
figure
for k = 1:size(record.frames, 3)
    imshow(record.frames(:,:,k), ...
        'InitialMagnification','fit');
    title(sprintf('Time since beginning of round: %.3f seconds',...
        t(k)))
    drawnow
end

See Also
undistortImage | pointsToWorld | vision.BlobAnalysis | detectCheckerboardPoints

More About
• “Acquire Images from GigE Vision Cameras” (Image Acquisition Toolbox)
• “Install the MATLAB Support Package for USB Webcams” (Image Acquisition Toolbox)
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Code Acceleration and Code Generation
from MATLAB for Fixed-Point Algorithms

• “Code Acceleration and Code Generation from MATLAB” on page 12-2
• “Requirements for Generating Compiled C Code Files” on page 12-3
• “Functions Supported for Code Acceleration or C Code Generation” on page 12-4
• “Workflow for Fixed-Point Code Acceleration and Generation” on page 12-5
• “Set Up C Compiler” on page 12-6
• “Accelerate Code Using fiaccel” on page 12-7
• “File Infrastructure and Paths Setup” on page 12-12
• “Detect and Debug Code Generation Errors” on page 12-15
• “Set Up C Code Compilation Options” on page 12-17
• “MEX Configuration Dialog Box Options” on page 12-18
• “Specify Configuration Parameters in Command-Line Workflow Interactively” on page 12-21
• “Best Practices for Accelerating Fixed-Point Code” on page 12-23
• “Code Generation Reports” on page 12-26
• “Generate C Code from Code Containing Global Data” on page 12-30
• “Define Input Properties Programmatically in MATLAB File” on page 12-34
• “Specify Cell Array Inputs at the Command Line” on page 12-41
• “Specify Global Cell Arrays at the Command Line” on page 12-46
• “Control Run-Time Checks” on page 12-47
• “Fix Run-Time Stack Overflows” on page 12-49
• “Code Generation with MATLAB Coder” on page 12-50
• “Code Generation with MATLAB Function Block” on page 12-51
• “Generate Fixed-Point FIR Code Using MATLAB Function Block” on page 12-58
• “Fixed-Point FIR Code Example Parameter Values” on page 12-61
• “Accelerate Code for Variable-Size Data” on page 12-63
• “Code Generation Readiness Tool” on page 12-70
• “Check Code Using the Code Generation Readiness Tool” on page 12-73
• “Check Code Using the MATLAB Code Analyzer” on page 12-74
• “Fix Errors Detected at Code Generation Time” on page 12-75
• “Avoid Multiword Operations in Generated Code” on page 12-76
• “Find Potential Data Type Issues in Generated Code” on page 12-78
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Code Acceleration and Code Generation from MATLAB
In many cases, you may want your code to run faster and more efficiently. Code acceleration provides
optimizations for accelerating fixed-point algorithms through MEX file building. In Fixed-Point
Designer the fiaccel function converts your MATLAB code to a MEX function and can greatly
accelerate the execution speed of your fixed-point algorithms.

Code generation creates efficient, production-quality C/C++ code for desktop and embedded
applications. There are several ways to use Fixed-Point Designer software to generate C/C++ code.

Use... To... Requires... See...
MATLAB Coder
(codegen) function

Automatically convert
MATLAB code to C/C++
code

MATLAB Coder code
generation software
license

“Generate C Code at the
Command Line”
(MATLAB Coder)

MATLAB Function Use MATLAB code in
your Simulink models
that generate
embeddable C/C++
code

Simulink license “Implement MATLAB
Functions in Simulink
with MATLAB Function
Blocks”

MATLAB code generation supports variable-size arrays and matrices with known upper bounds. To
learn more about using variable-size signals, see “Code Generation for Variable-Size Arrays” on page
29-2.
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Requirements for Generating Compiled C Code Files
You use the fiaccel function to generate MEX code from a MATLAB algorithm. The algorithm must
meet these requirements:

• Must be a MATLAB function, not a script
• Must meet the requirements listed on the fiaccel reference page
• Does not call custom C code using any of the following MATLAB Coder constructs:

• coder.ceval
• coder.ref
• coder.rref
• coder.wref
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Functions Supported for Code Acceleration or C Code
Generation

The following general limitations apply to the use of Fixed-Point Designer functions in generated
code, with fiaccel:

• fipref and quantizer objects are not supported.
• Word lengths greater than 128 bits are not supported.
• You cannot change the fimath or numerictype of a given fi variable after that variable has

been created.
• The boolean value of the DataTypeMode and DataType properties are not supported.
• For all SumMode property settings other than FullPrecision, the CastBeforeSum property

must be set to true.
• You can use parallel for (parfor) loops in code compiled with fiaccel, but those loops are

treated like regular for loops.
• When you compile code containing fi objects with nontrivial slope and bias scaling, you may see
different results in generated code than you achieve by running the same code in MATLAB.

To view a list of the Fixed-Point Designer functions that are supported for code acceleration or C/C++
code generation, refer to the Fixed-Point Designer category of these tables:

• Functions and Objects Supported for C/C++ Code Generation (Category List)
• Functions and Objects Supported for C/C++ Code Generation (Alphabetical List)

In these tables, a  icon before the name of a function indicates that there are specific usage notes
and limitations related to code acceleration or code generation for that function. To view these usage
notes and limitations, in the corresponding reference page, scroll down to the Extended
Capabilities section at the bottom and expand the C/C++ Code Generation section.
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Workflow for Fixed-Point Code Acceleration and Generation
Step Action Details
1 Set up your C compiler. See “Set Up C Compiler” on page 12-6.
2 Set up your file infrastructure. See “File Infrastructure and Paths Setup” on page

12-12.
3 Make your MATLAB algorithm suitable for code

generation
See “Best Practices for Accelerating Fixed-Point
Code” on page 12-23.

4 Set compilation options. See “Set Up C Code Compilation Options” on page
12-17.

5 Specify properties of primary function inputs. See “Specify Properties of Entry-Point Function
Inputs” on page 31-2.

6 Run fiaccel with the appropriate command-line
options.

See “Recommended Compilation Options for
fiaccel” on page 12-23.
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Set Up C Compiler
Fixed-Point Designer automatically locates and uses a supported installed compiler. For the current
list of supported compilers, see Supported and Compatible Compilers on the MathWorks Web site.

You can use mex -setup to change the default compiler. See “Change Default Compiler”.
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Accelerate Code Using fiaccel
In this section...
“Speeding Up Fixed-Point Execution with fiaccel” on page 12-7
“Running fiaccel” on page 12-7
“Generated Files and Locations” on page 12-7
“Data Type Override Using fiaccel” on page 12-10
“Specifying Default fimath Values for MEX Functions” on page 12-10

Speeding Up Fixed-Point Execution with fiaccel
You can convert fixed-point MATLAB code to MEX functions using fiaccel. The generated MEX
functions contain optimizations to automatically accelerate fixed-point algorithms to compiled C/C++
code speed in MATLAB. The fiaccel function can greatly increase the execution speed of your
algorithms.

Running fiaccel
The basic command is:

fiaccel M_fcn

By default, fiaccel performs the following actions:

• Searches for the function M_fcn stored in the file M_fcn.m as specified in “Compile Path Search
Order” on page 12-12.

• Compiles M_fcn to MEX code.
• If there are no errors or warnings, generates a platform-specific MEX file in the current folder,

using the naming conventions described in “File Naming Conventions” on page 12-25.
• If there are errors, does not generate a MEX file, but produces an error report in a default output

folder, as described in “Generated Files and Locations” on page 12-7.
• If there are warnings, but no errors, generates a platform-specific MEX file in the current folder,

but does report the warnings.

You can modify this default behavior by specifying one or more compiler options with fiaccel,
separated by spaces on the command line.

Generated Files and Locations
fiaccel generates files in the following locations:

Generates: In:
Platform-specific MEX files Current folder
code generation reports

(if errors or warnings occur during
compilation)

Default output folder:

fiaccel/mex/M_fcn_name/html
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You can change the name and location of generated files by using the options -o and -d when you
run fiaccel.

In this example, you will use the fiaccel function to compile different parts of a simple algorithm.
By comparing the run times of the two cases, you will see the benefits and best use of the fiaccel
function.

Comparing Run Times When Accelerating Different Algorithm Parts

The algorithm used throughout this example replicates the functionality of the MATLAB sum function,
which sums the columns of a matrix. To see the algorithm, type open fi_matrix_column_sum.m at
the MATLAB command line.

function B = fi_matrix_column_sum(A)
% Sum the columns of matrix A.
%#codegen
    [m,n] = size(A);
    w = get(A,'WordLength') + ceil(log2(m));
    f = get(A,'FractionLength');
    B = fi(zeros(1,n),true,w,f);
    for j = 1:n
        for i = 1:m
            B(j) = B(j) + A(i,j);
        end
    end

Trial 1: Best Performance

The best way to speed up the execution of the algorithm is to compile the entire algorithm using the
fiaccel function. To evaluate the performance improvement provided by the fiaccel function
when the entire algorithm is compiled, run the following code.

The first portion of code executes the algorithm using only MATLAB functions. The second portion of
the code compiles the entire algorithm using the fiaccel function. The MATLAB tic and toc
functions keep track of the run times for each method of execution.

% MATLAB
fipref('NumericTypeDisplay','short');
A = fi(randn(1000,10));
tic
B = fi_matrix_column_sum(A)
t_matrix_column_sum_m = toc

% fiaccel
fiaccel fi_matrix_column_sum -args {A} ...
-I [matlabroot '/toolbox/fixedpoint/fidemos']
tic
B = fi_matrix_column_sum_mex(A);
t_matrix_column_sum_mex = toc

Trial 2: Worst Performance

Compiling only the smallest unit of computation using the fiaccel function leads to much slower
execution. In some cases, the overhead that results from calling the mex function inside a nested loop
can cause even slower execution than using MATLAB functions alone. To evaluate the performance of
the mex function when only the smallest unit of computation is compiled, run the following code.
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The first portion of code executes the algorithm using only MATLAB functions. The second portion of
the code compiles the smallest unit of computation with the fiaccel function, leaving the rest of the
computations to MATLAB.

% MATLAB
tic
[m,n] = size(A);
w = get(A,'WordLength') + ceil(log2(m));
f = get(A,'FractionLength');
B = fi(zeros(1,n),true,w,f);
for j = 1:n
    for i = 1:m
        B(j) = fi_scalar_sum(B(j),A(i,j));
        % B(j) = B(j) + A(i,j);
    end
end
t_scalar_sum_m = toc

% fiaccel
fiaccel fi_scalar_sum -args {B(1),A(1,1)} ...
-I [matlabroot '/toolbox/fixedpoint/fidemos']
tic
[m,n] = size(A);
w = get(A,'WordLength') + ceil(log2(m));
f = get(A,'FractionLength');
B = fi(zeros(1,n),true,w,f);
for j = 1:n
    for i = 1:m
        B(j) = fi_scalar_sum_mex(B(j),A(i,j));
        % B(j) = B(j) + A(i,j);
    end
end
t_scalar_sum_mex = toc

Ratio of Times

A comparison of Trial 1 and Trial 2 appears in the following table. Your computer may record
different times than the ones the table shows, but the ratios should be approximately the same. There
is an extreme difference in ratios between the trial where the entire algorithm was compiled using
fiaccel (t_matrix_column_sum_mex.m) and where only the scalar sum was compiled
(t_scalar_sum_mex.m). Even the file with no fiaccel compilation (t_matrix_column_sum_m)
did better than when only the smallest unit of computation was compiled using fiaccel
(t_scalar_sum_mex).

X (Overall Performance Rank) Time X/Best X_m/X_mex
Trial 1: Best Performance
t_matrix_column_sum_m (2) 1.99759 84.4917 84.4917
t_matrix_column_sum_mex (1) 0.0236424 1
Trial 2: Worst Performance
t_scalar_sum_m (4) 10.2067 431.71 2.08017
t_scalar_sum_mex (3) 4.90664 207.536
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Data Type Override Using fiaccel
Fixed-Point Designer software ships with an example of how to generate a MEX function from
MATLAB code. The code in the example takes the weighted average of a signal to create a lowpass
filter. To run the example in the Help browser select MATLAB Examples under Fixed-Point Designer,
and then select Fixed-Point Lowpass Filtering Using MATLAB for Code Generation.

You can specify data type override in this example by typing an extra command at the MATLAB
prompt in the “Define Fixed-Point Parameters” section of the example. To turn data type override on,
type the following command at the MATLAB prompt after running the reset(fipref) command in
that section:

fipref('DataTypeOverride','TrueDoubles')

This command tells Fixed-Point Designer software to create all fi objects with type fi double.
When you compile the code using the fiaccel command in the “Compile the M-File into a MEX File”
section of the example, the resulting MEX-function uses floating-point data.

Specifying Default fimath Values for MEX Functions
MEX functions generated with fiaccel use the MATLAB default global fimath. The MATLAB
factory default global fimath has the following properties:

RoundingMethod: Nearest
OverflowAction: Saturate
ProductMode: FullPrecision
SumMode: FullPrecision

When running MEX functions that depend on the MATLAB default fimath value, do not change this
value during your MATLAB session. Otherwise, MATLAB generates a warning, alerting you to a
mismatch between the compile-time and run-time fimath values. For example, create the following
MATLAB function:

function y = test %#codegen 
y = fi(0); 

The function test constructs a fi object without explicitly specifying a fimath object. Therefore,
test relies on the default fimath object in effect at compile time.

Generate the MEX function test_mex to use the factory setting of the MATLAB default fimath.

resetglobalfimath;
fiaccel test 

fiaccel generates a MEX function, test_mex, in the current folder.

Run test_mex.

test_mex   

ans =        
  0            
       DataTypeMode: Fixed-point: binary point scaling            
       Signedness: Signed            
       WordLength: 16        
       FractionLength: 15
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Modify the MATLAB default fimath value so it no longer matches the setting used at compile time.

F = fimath('RoundingMethod','Floor');
globalfimath(F); 

Clear the MEX function from memory and rerun it.

clear test_mex 
test_mex

The mismatch is detected and MATLAB generates a warning.

testglobalfimath_mex 
Warning: This function was generated with a different default fimath than the current default.   
ans =        
   0            
      DataTypeMode: Fixed-point: binary point scaling            
      Signedness: Signed             
      WordLength: 16         
      FractionLength: 15

To avoid this issue, separate the fimath properties from your algorithm by using types tables. For
more information, see “Separate Data Type Definitions from Algorithm” on page 11-6.
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File Infrastructure and Paths Setup
In this section...
“Compile Path Search Order” on page 12-12
“Naming Conventions” on page 12-12

Compile Path Search Order
fiaccel resolves function calls by searching first on the code generation path and then on the
MATLAB path. By default, fiaccel tries to compile and generate code for functions it finds on the
path unless you explicitly declare the function to be extrinsic. An extrinsic function is a function on
the MATLAB path that is dispatched to MATLAB software for execution. fiaccel does not compile
extrinsic functions, but rather dispatches them to MATLAB for execution.

Naming Conventions
MATLAB enforces naming conventions for functions and generated files.

• “Reserved Prefixes” on page 12-12
• “Reserved Keywords” on page 12-12
• “Conventions for Naming Generated files” on page 12-14

Reserved Prefixes

MATLAB reserves the prefix eml for global C functions and variables in generated code. For example,
run-time library function names all begin with the prefix emlrt, such as emlrtCallMATLAB. To avoid
naming conflicts, do not name C functions or primary MATLAB functions with the prefix eml.

Reserved Keywords

• “C Reserved Keywords” on page 12-12
• “C++ Reserved Keywords” on page 12-13
• “Reserved Keywords for Code Generation” on page 12-14

MATLAB Coder software reserves certain words for its own use as keywords of the generated code
language. MATLAB Coder keywords on page 12-14 are reserved for use internal to MATLAB Coder
software and should not be used in MATLAB code as identifiers or function names. C reserved
keywords on page 12-12 should also not be used in MATLAB code as identifiers or function names. If
your MATLAB code contains reserved keywords that the code generator cannot rename, the code
generation build does not complete and an error message is displayed. To address this error, modify
your code to use identifiers or names that are not reserved.

If you are generating C++ code using the MATLAB Coder software, in addition, your MATLAB code
must not contain the “C++ Reserved Keywords” on page 12-13.

C Reserved Keywords

assert extern setjmp string
auto fenv short struct
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break float signal switch
case for signed tgmath
char goto sizeof threads
const if static time
complex int stdalign typedef
continue inttypes stdarg uchar
ctype iso646 stdatomic union
default limits stdbool unsigned
do locale stddef void
double long stdint volatile
else math stdio wchar
enum register stdlib wctype
errno return stdnoreturn while

C++ Reserved Keywords

algorithm cstddef iostream sstream
any cstdint istream stack
array cstdio iterator static_cast
atomic cstdlib limits stdexcept
bitset cstring list streambuf
cassert ctgmath locale string_view
catch ctime map strstream
ccomplex cuchar memory system_error
cctype cwchar memory_resource template
cerrno cwctype mutable this
cfenv delete mutex thread
cfloat deque namespace throw
chrono dynamic_cast new try
cinttypes exception numeric tuple
ciso646 execution operator typeid
class explicit optional type_traits
climits export ostream typeindex
clocale filesystem private typeinfo
cmath foreward_list protected typename
codecvt friend public unordered_map
complex fstream queue unordered_set
condition_variable functional random using
const_cast future ratio utility
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csetjmp initializer_list regex valarray
csignal inline reinterpret_cast vector
cstdalign iomanip scoped_allocator virtual
cstdarg ios set wchar_t
cstdbool iosfwd shared_mutex  

Reserved Keywords for Code Generation

abs fortran localZCE rtNaN
asm HAVESTDIO localZCSV SeedFileBuffer
bool id_t matrix SeedFileBufferLen
boolean_T int_T MODEL single
byte_T int8_T MT TID01EQ
char_T int16_T NCSTATES time_T
cint8_T int32_T NULL true
cint16_T int64_T NUMST TRUE
cint32_T INTEGER_CODE pointer_T uint_T
creal_T LINK_DATA_BUFFER_SIZE PROFILING_ENABLED uint8_T
creal32_T LINK_DATA_STREAM PROFILING_NUM_SAMPLES uint16_T
creal64_T localB real_T uint32_T
cuint8_T localC real32_T uint64_T
cuint16_T localDWork real64_T UNUSED_PARAMETER
cuint32_T localP RT USE_RTMODEL
ERT localX RT_MALLOC VCAST_FLUSH_DATA
false localXdis rtInf vector
FALSE localXdot rtMinusInf  

Conventions for Naming Generated files

MATLAB provides platform-specific extensions for MEX files.

Platform MEX File Extension
Linux® x86-64 .mexa64
Windows® (32-bit) .mexw32
Windows x64 .mexw64
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Detect and Debug Code Generation Errors

In this section...
“Debugging Strategies” on page 12-15
“Error Detection at Design Time” on page 12-15
“Error Detection at Compile Time” on page 12-16

Debugging Strategies
To prepare your algorithms for code generation, MathWorks recommends that you choose a
debugging strategy for detecting and correcting violations in your MATLAB applications, especially if
they consist of a large number of MATLAB files that call each other's functions. Here are two best
practices:

Debugging
Strategy

What to Do Pros Cons

Bottom-up
verification

1 Verify that your lowest-level
(leaf) functions are suitable for
code generation.

2 Work your way up the function
hierarchy incrementally to
compile and verify each
function, ending with the top-
level function.

• Efficient
• Safe
• Easy to isolate

syntax
violations

Requires application tests that work
from the bottom up

Top-down
verification

1 Declare all functions called by
the top-level function to be
extrinsic so fiaccel does not
compile them.

2 Verify that your top-level
function is suitable for code
generation.

3 Work downward in the function
hierarchy to:

a. Remove extrinsic
declarations one by one

b. Compile and verify each
function, ending with the leaf
functions.

Lets you retain
your top-level tests

Introduces extraneous code that you
must remove after code verification,
including:

• Extrinsic declarations
• Additional assignment statements

as necessary to convert opaque
values returned by extrinsic
functions to nonopaque values.

Error Detection at Design Time
To detect potential issues for MEX file building as you write your MATLAB algorithm, add the
%#codegen directive to the code that you want fiaccel to compile. Adding this directive indicates
that you intend to generate code from the algorithm and turns on detailed diagnostics during
MATLAB code analysis.

 Detect and Debug Code Generation Errors

12-15



Error Detection at Compile Time
Before you can successfully generate code from a MATLAB algorithm, you must verify that the
algorithm does not contain syntax and semantics violations that would cause compile-time errors, as
described in “Detect and Debug Code Generation Errors” on page 12-15.

fiaccel checks for all potential syntax violations at compile time. When fiaccel detects errors or
warnings, it automatically produces a code generation report that describes the issues and provides
links to the offending code. See “Code Generation Reports” on page 12-26.

If your MATLAB code calls functions on the MATLAB path, fiaccel attempts to compile these
functions unless you declare them to be extrinsic.
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Set Up C Code Compilation Options

In this section...
“C Code Compiler Configuration Object” on page 12-17
“Compilation Options Modification at the Command Line Using Dot Notation” on page 12-17
“How fiaccel Resolves Conflicting Options” on page 12-17

C Code Compiler Configuration Object
For C code generation to a MEX file, MATLAB provides a configuration object coder.mexconfig for
fine-tuning the compilation. To set MEX compilation options:

1 Define the compiler configuration object in the MATLAB workspace by issuing a constructor
command:

comp_cfg = coder.mexconfig

MATLAB displays the list of compiler options and their current values in the command window.
2 Modify the compilation options as necessary. See “Compilation Options Modification at the

Command Line Using Dot Notation” on page 12-17
3 Invoke fiaccel with the -config option and specify the configuration object as its argument:

fiaccel -config comp_cfg myMfile

The -config option instructs fiaccel to convert myFile.m to a MEX function, based on the
compilation settings in comp_cfg.

Compilation Options Modification at the Command Line Using Dot
Notation
Use dot notation to modify the value of compilation options, using this syntax:

configuration_object.property = value

Dot notation uses assignment statements to modify configuration object properties. For example, to
change the maximum size function to inline and the stack size limit for inlined functions during MEX
generation, enter this code at the command line:

co_cfg = coder.mexconfig
co_cfg.InlineThreshold = 25;
co_cfg.InlineStackLimit = 4096;
fiaccel -config co_cfg myFun

How fiaccel Resolves Conflicting Options
fiaccel takes the union of all options, including those specified using configuration objects, so that
you can specify options in any order.
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MEX Configuration Dialog Box Options
MEX Configuration Dialog Box Options

The following table describes parameters for fine-tuning the behavior of fiaccel for converting
MATLAB files to MEX:

Parameter Equivalent Command-Line
Property and Values
(default in bold)

Description

Report
Create code generation report GenerateReport

true, false
Document generated code in a
report.

Launch report automatically LaunchReport
true, false

Specify whether to automatically
open report after code generation
completes.

Note Requires that you enable
Create code generation report

Debugging
Echo expressions without
semicolons

EchoExpressions
true, false

Specify whether or not actions that
do not terminate with a semicolon
appear in the MATLAB Command
Window.

Enable debug build EnableDebugging
true, false

Compile the generated code in
debug mode.

Language and Semantics
Constant Folding Timeout ConstantFoldingTimeout

integer, 10000
Specify the maximum number of
instructions to be executed by the
constant folder.

Dynamic memory allocation DynamicMemoryAllocation
'off',
'AllVariableSizeArrays'

Enable dynamic memory allocation
for variable-size data. By default,
dynamic memory allocation is
disabled and fiaccel allocates
memory statically on the stack.
When you select dynamic memory
allocation, fiaccel allocates
memory for all variable-size data
dynamically on the heap.

You must use dynamic memory
allocation for all unbounded
variable-size data.

Enable variable sizing EnableVariableSizing
true, false

Enable support for variable-size
arrays.
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Parameter Equivalent Command-Line
Property and Values
(default in bold)

Description

Extrinsic calls ExtrinsicCalls
true, false

Allow calls to extrinsic functions.

When enabled (true), the compiler
generates code for the call to a
MATLAB function, but does not
generate the function's internal
code.

When disabled (false), the compiler
ignores the extrinsic function. Does
not generate code for the call to the
MATLAB function—as long as the
extrinsic function does not affect the
output of the caller function.
Otherwise, the compiler issues a
compiler error.

Global Data Synchronization Mode GlobalDataSyncMethod
string,SyncAlways,
SyncAtEntryAndExits, NoSync

Controls when global data is
synchronized with the MATLAB
global workspace. By default,
(SyncAlways), synchronizes global
data at MEX function entry and exit
and for all extrinsic calls. This
synchronization ensures maximum
consistency between MATLAB and
generated code. If the extrinsic calls
do not affect global data, use this
option with the coder.extrinsic
-sync:off option to turn off
synchronization for these calls.

SyncAtEntryAndExits
synchronizes global data at MEX
function entry and exit only. If only a
few extrinsic calls affect global data,
use this option with the
coder.extrinsic -sync:on
option to turn on synchronization for
these calls.

NoSync disables synchronization.
Ensure that your generated code
does not interact with MATLAB
before disabling synchronization.
Otherwise, inconsistencies might
occur.

Saturate on integer overflow SaturateOnIntegerOverflow
true, false

Add checks in the generated code to
detect integer overflow or underflow.
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Parameter Equivalent Command-Line
Property and Values
(default in bold)

Description

Safety (disable for faster MEX)
Ensure memory integrity IntegrityChecks

true, false
Detects violations of memory
integrity while building MATLAB
Function blocks and stops simulation
with a diagnostic message. Setting
IntegrityChecks to false also
disables the run-time stack.

Ensure responsiveness ResponsivenessChecks
true, false

Enables responsiveness checks in
code generated from MATLAB
algorithms.

Function Inlining and Stack Allocation
Inline Stack Limit InlineStackLimit

integer, 4000
Specify the stack size limit on inlined
functions.

Inline Threshold InlineThreshold
integer, 10

Specify the maximum size of
functions to be inlined.

Inline Threshold Max InlineThresholdMax
integer, 200

Specify the maximum size of
functions after inlining.

Stack Usage Max StackUsageMax
integer, 200000

Specify the maximum stack usage
per application in bytes. Set a limit
that is lower than the available stack
size. Otherwise, a runtime stack
overflow might occur. Overflows are
detected and reported by the C
compiler, not by fiaccel.

Optimizations
Use BLAS library if possible EnableBLAS

true, false
Speed up low-level matrix operations
during simulation by calling the
Basic Linear Algebra Subprograms
(BLAS) library.

See Also
• “Control Run-Time Checks” on page 12-47
• “Code Generation for Variable-Size Arrays” on page 29-2
• “Generate C Code from Code Containing Global Data” on page 12-30
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Specify Configuration Parameters in Command-Line Workflow
Interactively

After you have created a code generation configuration object at the command line, you can modify
the properties of the object interactively by using the Configuration Parameters dialog box.

For more information on configuring the code generation process by using configuration objects, see
“Configure Build Settings” (MATLAB Coder).

Create and Modify Configuration Objects by Using the Dialog Box
1 Create a configuration object as described in “Creating Configuration Objects” (MATLAB Coder).

For example, to create a coder.MexCodeConfig configuration object for MEX code generation:

mexcfg = coder.config('mex');
2 Open the property dialog box by using one of these methods:

• In the MATLAB workspace, double-click the configuration object variable.
• At the MATLAB command prompt, issue the open command, passing it the configuration

object variable:

open mexcfg
3 In the dialog box, modify configuration parameters as required.

Additional Functionalities in the Dialog Box
To enable you to easily modify the configuration parameters in an interactive fashion, the
Configuration Parameters dialog box provides these functionalities:

• Search: When you search for a string, you see the filtered results across all the settings
categories. The search string might be present in a setting name, the name of an option for a
setting, or in a tooltip.
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• Informative tooltips: The tooltip for each individual setting contains the corresponding
configuration object property name, a Help link for that property, and the name of any additional
product that using that property requires. If the property is disabled, the tooltip also contains
links to other properties that you must set to enable this property. You can make that change in
the tooltip itself.

• Settings with nondefault values: The dialog box shows settings that have nondefault values in bold
font. To reset such a setting to its default values, click the Reset button in the tooltip.

• MISRA Compliance pane: If you have Embedded Coder®, the MISRA Compliance pane displays
the settings that might impact MISRA® compliance of the generated code. To set all of these
settings to the recommended values, click Set to Recommended Values.

See “Generate C/C++ Code with Improved MISRA Compliance” (Embedded Coder).
• Generate equivalent script: You can view the command-line script that produces your current

settings by clicking the Script button located at the bottom of the list of categories. You can
switch from the script mode back to the interactive mode by clicking the Configure button.

See Also
coder.MexCodeConfig | coder.CodeConfig | coder.EmbeddedCodeConfig

More About
• “Configure Build Settings” (MATLAB Coder)
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Best Practices for Accelerating Fixed-Point Code
In this section...
“Recommended Compilation Options for fiaccel” on page 12-23
“Build Scripts” on page 12-23
“Check Code Interactively Using MATLAB Code Analyzer” on page 12-24
“Separating Your Test Bench from Your Function Code” on page 12-24
“Preserving Your Code” on page 12-24
“File Naming Conventions” on page 12-25

Recommended Compilation Options for fiaccel
• -args – Specify input parameters by example

Use the -args option to specify the properties of primary function inputs as a cell array of
example values at the same time as you generate code for the MATLAB file with fiaccel. The cell
array can be a variable or literal array of constant values. The cell array should provide the same
number and order of inputs as the primary function.

When you use the -args option you are specifying the data types and array dimensions of these
parameters, not the values of the variables. For more information, see “Define Input Properties by
Example at the Command Line” (MATLAB Coder).

Note Alternatively, you can use the assert function to define properties of primary function
inputs directly in your MATLAB file. For more information, see “Define Input Properties
Programmatically in MATLAB File” on page 12-34.

• -report – Generate code generation report

Use the -report option to generate a report in HTML format at code generation time to help you
debug your MATLAB code and verify that it is suitable for code generation. If you do not specify
the -report option, fiaccel generates a report only if build errors or warnings occur.

The code generation report contains the following information:

• Summary of code generation results, including type of target and number of warnings or errors
• Build log that records build and linking activities
• Links to generated files
• Error and warning messages (if any)

For more information, see fiaccel.

Build Scripts
Use build scripts to call fiaccel to generate MEX functions from your MATLAB function.

A build script automates a series of MATLAB commands that you want to perform repeatedly from the
command line, saving you time and eliminating input errors. For instance, you can use a build script
to clear your workspace before each build and to specify code generation options.
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This example shows a build script to run fiaccel to process lms_02.m:

close all;
clear all;
clc;

N = 73113;

fiaccel  -report lms_02.m ...
  -args { zeros(N,1) zeros(N,1) }  

In this example, the following actions occur:

• close all deletes all figures whose handles are not hidden. See close in the MATLAB Graphics
function reference for more information.

• clear all removes all variables, functions, and MEX-files from memory, leaving the workspace
empty. This command also clears all breakpoints.

Note Remove the clear all command from the build scripts if you want to preserve
breakpoints for debugging.

• clc clears all input and output from the Command Window display, giving you a “clean screen.”
• N = 73113 sets the value of the variable N, which represents the number of samples in each of

the two input parameters for the function lms_02
• fiaccel -report lms_02.m -args { zeros(N,1) zeros(N,1) } calls fiaccel to

accelerate simulation of the file lms_02.m using the following options:

• -report generates a code generation report
• -args { zeros(N,1) zeros(N,1) } specifies the properties of the function inputs as a cell

array of example values. In this case, the input parameters are N-by-1 vectors of real doubles.

Check Code Interactively Using MATLAB Code Analyzer
The code analyzer checks your code for problems and recommends modifications to maximize
performance and maintainability. You can use the code analyzer to check your code continuously in
the MATLAB Editor while you work.

To ensure that continuous code checking is enabled:

1 On the MATLAB Home tab, click Preferences. Select Code Analyzer to view the list of code
analyzer preferences.

2 Select the Enable integrated warning and error messages check box.

Separating Your Test Bench from Your Function Code
Separate your core algorithm from your test bench. Create a separate test script to do all the pre-
and post-processing such as loading inputs, setting up input values, calling the function under test,
and outputting test results. See the example on the fiaccel reference page.

Preserving Your Code
Preserve your code before making further modifications. This practice provides a fallback in case of
error and a baseline for testing and validation. Use a consistent file naming convention, as described
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in “File Naming Conventions” on page 12-25. For example, add a 2-digit suffix to the file name for
each file in a sequence. Alternatively, use a version control system.

File Naming Conventions
Use a consistent file naming convention to identify different types and versions of your MATLAB files.
This approach keeps your files organized and minimizes the risk of overwriting existing files or
creating two files with the same name in different folders.

For example, the file naming convention in the Generating MEX Functions getting started tutorial is:

• The suffix _build identifies a build script.
• The suffix _test identifies a test script.
• A numerical suffix, for example, _01 identifies the version of a file. These numbers are typically

two-digit sequential integers, beginning with 01, 02, 03, and so on.

For example:

• The file build_01.m is the first version of the build script for this tutorial.
• The file test_03.m is the third version of the test script for this tutorial.
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Code Generation Reports

In this section...
“Report Generation” on page 12-26
“Report Location” on page 12-26
“Errors and Warnings” on page 12-26
“Files and Functions” on page 12-26
“MATLAB Source” on page 12-27
“MATLAB Variables” on page 12-28
“Code Insights” on page 12-29
“Report Limitations” on page 12-29

When you enable report generation or an error occurs, fiaccel generates a code generation report.
Use the report to debug your MATLAB functions and verify that they are suitable for code generation.
The report provides type information for the variables and expressions in your functions. This
information helps you to find sources of error messages and to understand type propagation rules.

Report Generation
To control generation and opening of the report, use fiaccel options:

• To generate a report, use the -report option.
• To generate and open a report, use the -launchreport option.

Alternatively, use configuration object properties:

• To generate a report, set GenerateReport to true.
• If you want fiaccel to open the report for you, set LaunchReport to true.

Report Location
The code generation report is named report.mldatx. It is located in the html subfolder of the code
generation output folder. If you have MATLAB R2018a or later, you can open the report.mldatx file
by double-clicking it.

Errors and Warnings
View code generation error, warning, and information messages on the All Messages tab. To
highlight the source code for an error or warning, click the message. It is a best practice to address
the first message because subsequent errors and warnings can be related to the first message.

Files and Functions
In the MATLAB Source pane, the Function List view organizes functions according to the
containing file. To visualize functions according to the call structure, use the Call Tree view.
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To view a function in the code pane of the report, click the function in the list. Clicking a function
opens the file that contains the function. To edit the selected file in the MATLAB Editor, click Edit in
MATLAB or click a line number in the code pane.

Specialized Functions or Classes

When a function is called with different types of inputs or a class uses different types for its
properties, the code generator produces specializations. In the MATLAB Source pane, numbered
functions (or classes) indicate specializations. For example:

MATLAB Source
To view a MATLAB function in the code pane, click the name of the function in the MATLAB Source
pane. In the code pane, when you pause on a variable or expression, a tooltip displays information
about its size, type, and complexity. Additionally, syntax highlighting helps you to identify MATLAB
syntax elements and certain code generation attributes, such as whether a function is extrinsic or
whether an argument is constant.

Extrinsic Functions

The report identifies an extrinsic function with purple text. The tooltip indicates that the function is
extrinsic.

Constant Arguments

Orange text indicates a compile-time constant argument to an entry-point function or a specialized
function. The tooltip includes the constant value.
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Knowing the value of a constant argument helps you to understand the generated function
signatures. It also helps you to see when code generation creates function specializations for different
constant argument values.

To export the value to a variable in the workspace, click the Export icon .

MATLAB Variables
The Variables tab provides information about the variables for the selected MATLAB function. To
select a function, click the function in the MATLAB Source pane.

The variables table shows:

• Class, size, and complexity
• Properties of fixed-point types

This information helps you to understand type propagation and identify type mismatch errors.

Visual Indicators on the Variables Tab

This table describes the symbols, badges, and other indicators in the variables table.

Column in the Variables
Table

Indicator Description

Name expander Variable has elements or
properties that you can see by
clicking the expander.

Name {:} Homogenous cell array (all
elements have the same
properties).

Name {n} nth element of a heterogeneous
cell array.

Class v > n v is reused with a different
class, size, and complexity. The
number n identifies a reuse with
a unique set of properties. When
you pause on a renamed
variable, the report highlights
only the instances of this
variable that share the class,
size, and complexity. See “Reuse
the Same Variable with Different
Properties” on page 18-10.

Size :n Variable-size array with an
upper bound of n.

Size :? Variable-size array with no
upper bound.
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Column in the Variables
Table

Indicator Description

Size italics Variable-size array whose
dimensions do not change size
during execution.

Class sparse prefix Sparse array.
Class complex prefix Complex number.
Class Fixed-point type.

To see the fixed-point
properties, click the badge.

Code Insights
If you enable potential differences reporting, you can view the messages on the Code Insights tab.
The report includes potential differences messages only if you enabled potential differences
reporting. See “Potential Differences Reporting” on page 19-18.

Report Limitations
• The entry-point summary shows the individual elements of varargin and varargout, but the

variables table does not show them.
• The report does not show full information for unrolled loops. It displays data types of one arbitrary

iteration.
• The report does not show information about dead code.

See Also
fiaccel

More About
• “Accelerate Code Using fiaccel” on page 12-7
• “Reuse the Same Variable with Different Properties” on page 18-10
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Generate C Code from Code Containing Global Data
In this section...
“Workflow Overview” on page 12-30
“Declaring Global Variables” on page 12-30
“Defining Global Data” on page 12-30
“Synchronizing Global Data with MATLAB” on page 12-31
“Limitations of Using Global Data” on page 12-33

Workflow Overview
To generate MEX functions from MATLAB code that uses global data:

1 Declare the variables as global in your code.
2 Define and initialize the global data before using it.

For more information, see “Defining Global Data” on page 12-30.
3 Compile your code using fiaccel.

If you use global data, you must also specify whether you want to synchronize this data between
MATLAB and the generated code. If there is no interaction between MATLAB and the generated code,
it is safe to disable synchronization. Otherwise, you should enable synchronization. For more
information, see “Synchronizing Global Data with MATLAB” on page 12-31.

Declaring Global Variables
For code generation, you must declare global variables before using them in your MATLAB code.
Consider the use_globals function that uses two global variables AR and B.

function y = use_globals()
%#codegen
% Turn off inlining to make 
% generated code easier to read
coder.inline('never');
% Declare AR and B as global variables
global AR;
global B;
AR(1) = B(1);
y = AR * 2;

Defining Global Data
You can define global data either in the MATLAB global workspace or at the command line. If you do
not initialize global data at the command line, fiaccel looks for the variable in the MATLAB global
workspace. If the variable does not exist, fiaccel generates an error.

Defining Global Data in the MATLAB Global Workspace

To compile the use_globals function described in “Declaring Global Variables” on page 12-30 using
fiaccel:
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1 Define the global data in the MATLAB workspace. At the MATLAB prompt, enter:

global AR B;
AR = fi(ones(4),1,16,14);
B = fi([1 2 3],1,16,13);

2 Compile the function to generate a MEX file named use_globalsx.

fiaccel -o use_globalsx use_globals

Defining Global Data at the Command Line

To define global data at the command line, use the fiaccel -global option. For example, to
compile the use_globals function described in “Declaring Global Variables” on page 12-30, specify
two global inputs AR and B at the command line.

fiaccel -o use_globalsx ...
   -global {'AR',fi(ones(4)),'B',fi([1 2 3])} use_globals

Alternatively, specify the type and initial value with the -globals flag using the format -globals
{'g', {type, initial_value}}.

Defining Variable-Sized Global Data

To provide initial values for variable-sized global data, specify the type and initial value with the -
globals flag using the format -globals {'g', {type, initial_value}}. For example, to
specify a global variable g1 that has an initial value [1 1] and upper bound [2 2], enter:

fiaccel foo -globals {'g1',{coder.typeof(0,[2 2],1),[1 1]}}

For a detailed explanation of coder.typeof syntax, see coder.typeof.

Synchronizing Global Data with MATLAB
Why Synchronize Global Data?

The generated code and MATLAB each have their own copies of global data. To ensure consistency,
you must synchronize their global data whenever the two interact. If you do not synchronize the data,
their global variables might differ. The level of interaction determines when to synchronize global
data.

When to Synchronize Global Data

By default, synchronization between global data in MATLAB and generated code occurs at MEX
function entry and exit and for all extrinsic calls, which are calls to MATLAB functions on the
MATLAB path that fiaccel dispatches to MATLAB for execution. This behavior ensures maximum
consistency between generated code and MATLAB.

To improve performance, you can:

• Select to synchronize only at MEX function entry and exit points.
• Disable synchronization when the global data does not interact.
• Choose whether to synchronize before and after each extrinsic call.

The following table summarizes which global data synchronization options to use. To learn how to set
these options, see “How to Synchronize Global Data” on page 12-32.
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Global Data Synchronization Options
If you want to... Set the global data

synchronization mode
to:

Synchronize before and after
extrinsic calls?

Ensure maximum consistency when all
extrinsic calls modify global data.

At MEX-function
entry, exit and
extrinsic calls
(default)

Yes. Default behavior.

Ensure maximum consistency when
most extrinsic calls modify global
data, but a few do not.

At MEX-function
entry, exit and
extrinsic calls
(default)

Yes. Use the coder.extrinsic -
sync:off option to turn off
synchronization for the extrinsic
calls that do not affect global data.

Ensure maximum consistency when
most extrinsic calls do not modify
global data, but a few do.

At MEX-function
entry and exit

Yes. Use the coder.extrinsic -
sync:on option to synchronize
only the calls that modify global
data.

Maximize performance when
synchronizing global data, and none of
your extrinsic calls modify global data.

At MEX-function
entry and exit

No.

Communicate between generated
code files only. No interaction between
global data in MATLAB and generated
code.

Disabled No.

How to Synchronize Global Data

To control global data synchronization, set the global data synchronization mode and select whether
to synchronize extrinsic functions. For guidelines on which options to use, see “When to Synchronize
Global Data” on page 12-31.

You control the synchronization of global data with extrinsic functions using the coder.extrinsic -
sync:on and -sync:off options.
Controlling the Global Data Synchronization Mode from the Command Line

1 Define the compiler options object in the MATLAB workspace by issuing a constructor command:

comp_cfg = coder.mexconfig
2 From the command line, set the GlobalDataSyncMethod property to Always,

SyncAtEntryAndExits or NoSync, as applicable. For example:

comp_cfg.GlobalDataSyncMethod = 'SyncAtEntryAndExits';
3 Use the comp_cfg configuration object when compiling your code by specifying it using the -

config compilation option. For example,

fiaccel -config comp_cfg myFile

Controlling Synchronization for Extrinsic Function Calls

You can control whether synchronization between global data in MATLAB and generated code occurs
before and after you call an extrinsic function. To do so, use the coder.extrinsic -sync:on and -
sync:off options.
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By default, global data is:

• Synchronized before and after each extrinsic call if the global data synchronization mode is At
MEX-function entry, exit and extrinsic calls. If you are sure that certain extrinsic
calls do not affect global data, turn off synchronization for these calls using the -sync:off
option. Turning off synchronization improves performance. For example, if functions foo1 and
foo2 do not affect global data, turn off synchronization for these functions:

coder.extrinsic('-sync:off', 'foo1', 'foo2');
• Not synchronized if the global data synchronization mode is At MEX-function entry and

exit. If the code has a few extrinsic calls that affect global data, turn on synchronization for these
calls using the -sync:on option. For example, if functions foo1 and foo2 do affect global data,
turn on synchronization for these functions:

coder.extrinsic('-sync:on', 'foo1', 'foo2');
• Not synchronized if the global data synchronization mode is Disabled. When synchronization is

disabled, you cannot control the synchronization for specific extrinsic calls. The -sync:on option
has no effect.

Clear Global Data

Because MEX functions and MATLAB each have their own copies of global data, you must clear both
copies to ensure that consecutive MEX runs produce the same results. The clear global command
removes only the copy of the global data in the MATLAB workspace. To remove both copies of the
data, use the clear global and clear mex commands together. The clear all command also
removes both copies.

Limitations of Using Global Data
You cannot use global data with the coder.varsize function. Instead, use a coder.typeof object
to define variable-sized global data as described in “Defining Variable-Sized Global Data” on page 12-
31.

See Also

More About
• “Specify Global Cell Arrays at the Command Line” on page 12-46
• “Convert Code Containing Global Data to Fixed Point” on page 7-56
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Define Input Properties Programmatically in MATLAB File
In this section...
“How to Use assert” on page 12-34
“Rules for Using assert Function” on page 12-37
“Specifying Properties of Primary Fixed-Point Inputs” on page 12-37
“Specifying Properties of Cell Arrays” on page 12-38
“Specifying Class and Size of Scalar Structure” on page 12-39
“Specifying Class and Size of Structure Array” on page 12-40

How to Use assert
You can use the MATLAB assert function to define properties of primary function inputs directly in
your MATLAB file.

Use the assert function to invoke standard MATLAB functions for specifying the class, size, and
complexity of primary function inputs.

Specify Any Class

assert ( isa ( param, 'class_name') )

Sets the input parameter param to the MATLAB class class_name. For example, to set the class of
input U to a 32-bit signed integer, call:

...
assert(isa(U,'embedded.fi'));
...

Note If you set the class of an input parameter to fi, you must also set its numerictype, see
“Specify numerictype of Fixed-Point Input” on page 12-36. You can also set its fimath properties,
see “Specify fimath of Fixed-Point Input” on page 12-37.

If you set the class of an input parameter to struct, you must specify the properties of each field in
the structure in the order in which you define the fields in the structure definition.

Specify fi Class

assert ( isfi ( param ) )
assert ( isa ( param, 'embedded.fi' ) )

Sets the input parameter param to the MATLAB class fi (fixed-point numeric object). For example, to
set the class of input U to fi, call:

...
assert(isfi(U));
...

or
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...
assert(isa(U,'embedded.fi'));
...

Note If you set the class of an input parameter to fi, you must also set its numerictype, see
“Specify numerictype of Fixed-Point Input” on page 12-36. You can also set its fimath properties,
see “Specify fimath of Fixed-Point Input” on page 12-37.

Specify Structure Class
assert ( isstruct ( param ) )

Sets the input parameter param to the MATLAB class struct (structure). For example, to set the
class of input U to a struct, call:

...
assert(isstruct(U));
...

or

...
assert(isa(U,'struct'));
...

Note If you set the class of an input parameter to struct, you must specify the properties of each
field in the structure in the order in which you define the fields in the structure definition.

Specify Cell Array Class
assert(iscell( param))
assert(isa(param, 'cell'))

Sets the input parameter param to the MATLAB class cell (cell array). For example, to set the class
of input C to a cell, call:

...
assert(iscell(C));
...

or

...
assert(isa(C, 'cell'));
...

To specify the properties of cell array elements, see “Specifying Properties of Cell Arrays” on page
12-38.

Specify Any Size
assert ( all ( size (param) == [dims ] ) )

Sets the input parameter param to the size specified by dimensions dims. For example, to set the size
of input U to a 3-by-2 matrix, call:
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...
assert(all(size(U)== [3 2]));
...

Specify Scalar Size

assert ( isscalar (param ) )
assert ( all ( size (param) == [ 1 ] ) )

Sets the size of input parameter param to scalar. For example, to set the size of input U to scalar, call:

...
assert(isscalar(U));
...

or

...
assert(all(size(U)== [1]));
...

Specify Real Input

assert ( isreal (param ) )

Specifies that the input parameter param is real. For example, to specify that input U is real, call:

...
assert(isreal(U));
...

Specify Complex Input

assert ( ~isreal (param ) )

Specifies that the input parameter param is complex. For example, to specify that input U is complex,
call:

...
assert(~isreal(U));
...

Specify numerictype of Fixed-Point Input

assert ( isequal ( numerictype ( fiparam ), T ) )

Sets the numerictype properties of fi input parameter fiparam to the numerictype object T. For
example, to specify the numerictype property of fixed-point input U as a signed numerictype
object T with 32-bit word length and 30-bit fraction length, use the following code:

...
% Define the numerictype object.
T = numerictype(1, 32, 30);

% Set the numerictype property of input U to T.
assert(isequal(numerictype(U),T));
...
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Specify fimath of Fixed-Point Input

assert ( isequal ( fimath ( fiparam ), F ) )

Sets the fimath properties of fi input parameter fiparam to the fimath object F. For example, to
specify the fimath property of fixed-point input U so that it saturates on integer overflow, use the
following code:

...
% Define the fimath object.
F = fimath('OverflowAction','Saturate');

% Set the fimath property of input U to F.
assert(isequal(fimath(U),F));
... 

Specify Multiple Properties of Input

assert ( function1 ( params ) && function2 ( params ) && function3 ( params ) && ... )

Specifies the class, size, and complexity of one or more inputs using a single assert function call.
For example, the following code specifies that input U is a double, complex, 3-by-3 matrix, and input V
is a 16-bit unsigned integer:

...
assert(isa(U,'double') && ~isreal(U) && all(size(U) == [3 3]) && isa(V,'uint16'));
... 

Rules for Using assert Function
Follow these rules when using the assert function to specify the properties of primary function
inputs:

• Call assert functions at the beginning of the primary function, before any flow-control operations
such as if statements or subroutine calls.

• Do not call assert functions inside conditional constructs, such as if, for, while, and switch
statements.

• If you set the class of an input parameter to fi:

• You must also set its numerictype, see “Specify numerictype of Fixed-Point Input” on page
12-36.

• You can also set its fimath properties, see “Specify fimath of Fixed-Point Input” on page 12-
37.

• If you set the class of an input parameter to struct, you must specify the class, size, and
complexity of each field in the structure in the order in which you define the fields in the structure
definition.

Specifying Properties of Primary Fixed-Point Inputs
In the following example, the primary MATLAB function emcsqrtfi takes one fixed-point input: x.
The code specifies the following properties for this input:

 Define Input Properties Programmatically in MATLAB File

12-37



Property Value
class fi
numerictype numerictype object T, as specified in the primary function
fimath fimath object F, as specified in the primary function
size scalar (by default)
complexity real (by default)

function y = emcsqrtfi(x)
T = numerictype('WordLength',32,'FractionLength',23,...
      'Signed',true);
F = fimath('SumMode','SpecifyPrecision',...
      'SumWordLength',32,'SumFractionLength',23,...
      'ProductMode','SpecifyPrecision',...
      'ProductWordLength',32,'ProductFractionLength',23);
assert(isfi(x));
assert(isequal(numerictype(x),T));
assert(isequal(fimath(x),F));

y = sqrt(x);

Specifying Properties of Cell Arrays
To specify the MATLAB class cell (cell array), use one of the following syntaxes:

assert(iscell(param))
assert(isa( param, 'cell'))

For example, to set the class of input C to cell, use:

...
assert(iscell(C));
...

or

...
assert(isa(C, 'cell'));
...

You can also specify the size of the cell array and the properties of the cell array elements. The
number of elements that you specify determines whether the cell array is homogeneous or
heterogeneous. See “Code Generation for Cell Arrays” (MATLAB Coder).

If you specify the properties of the first element only, the cell array is homogeneous. For example, the
following code specifies that C is a 1x3 homogeneous cell array whose elements are 1x1 double.

...
assert(isa(C, 'cell'));
assert(all(size(C) == [1  3]));
assert(isa(C{1}, 'double'));
...

If you specify the properties of each element, the cell array is heterogeneous. For example, the
following code specifies a 1x2 heterogeneous cell array whose first element is 1x1 char and whose
second element is 1x3 double.
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...
assert(isa(C, 'cell'));
assert(all(size(C) == [1  2]));
assert(isa(C{1}, 'char'));
assert(all(size(C{2}) == [1 3]));
assert(isa(C{2}, 'double'));
...

If you specify more than one element, you cannot specify that the cell array is variable size, even if all
elements have the same properties. For example, the following code specifies a variable-size cell
array. Because the code specifies the properties of the first and second elements, code generation
fails.

...
assert(isa(C, 'cell'));
assert(all(size(C) <= [1  2]));
assert(isa(C{1}, 'double'));
assert(isa(C{2}, 'double'));
...

In the previous example, if you specify the first element only, you can specify that the cell array is
variable-size. For example:

...
assert(isa(C, 'cell'));
assert(all(size(C) <= [1  2]));
assert(isa(C{1}, 'double'));
...

Specifying Class and Size of Scalar Structure
Assume you have defined S as the following scalar MATLAB structure:

S = struct('r',double(1),'i',fi(4,true,8,0));

This code specifies the class and size of S and its fields when passed as an input to your MATLAB
function:

function y = fcn(S)

% Specify the class of the input as struct.
assert(isstruct(S));

% Specify the size of the fields r and i
% in the order in which you defined them.
T = numerictype('Wordlength', 8,'FractionLength', ...
   0,'signed',true);
assert(isa(S.r,'double'));
assert(isfi(S.i) && isequal(numerictype(S.i),T));

y = S;

Note The only way to name a field in a structure is to set at least one of its properties. Therefore in
the preceding example, an assert function specifies that field S.r is of type double, even though
double is the default.
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Specifying Class and Size of Structure Array
For structure arrays, you must choose a representative element of the array for specifying the
properties of each field. For example, assume you have defined S as the following 1-by-2 array of
MATLAB structures:

S = struct('r',{double(1), double(2)},'i',...
   {fi(4,1,8,0), fi(5,1,8,0)});

The following code specifies the class and size of each field of structure input S using the first
element of the array:

function y = fcn(S)

% Specify the class of the input S as struct.
assert(isstruct(S));
T = numerictype('Wordlength', 8,'FractionLength', ...
   0,'signed',true);

% Specify the size of the fields r and i
% based on the first element of the array.
assert(all(size(S) == [1 2]));
assert(isa(S(1).r,'double'));
assert(isfi(S(1).i) && isequal(numerictype(S(1).i),T));

y = S;

Note The only way to name a field in a structure is to set at least one of its properties. Therefore in
the example above, an assert function specifies that field S(1).r is of type double, even though
double is the default.
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Specify Cell Array Inputs at the Command Line
To specify cell array inputs at the command line, use the same methods that you use for other types
of inputs. You can:

• Provide an example cell array input to the -args option of the fiaccel command.
• Provide a coder.CellType object to the -args option of the fiaccel command. To create a

coder.CellType object, use coder.typeof.
• Use coder.Constant to specify a constant cell array input.

For code generation, cell arrays are classified as homogeneous or heterogeneous. See “Code
Generation for Cell Arrays” on page 30-2. When you provide an example cell array to fiaccel or
coder.typeof, the function determines whether the cell array type is homogeneous or
heterogeneous. If the cell array elements have the same class and size, coder.typeof returns a
homogeneous cell array type. If the elements have different classes, coder.typeof returns a
heterogeneous cell array type. For some cell arrays, the classification as homogeneous or
heterogeneous is ambiguous. For example, the type for {1 [2 3]} can be a 1x2 heterogeneous type.
The first element is double and the second element is 1x2 double. The type can also be a 1x3
homogeneous type in which the elements have class double and size 1x:2. For these ambiguous cases,
coder.typeof uses heuristics to classify the type as homogeneous or heterogeneous. If you want a
different classification, use the coder.CellType makeHomogeneous or makeHeterogeneous
methods. The makeHomogeneous method makes a homogeneous copy of a type. The
makeHeterogeneous method makes a heterogeneous copy of a type.

The makeHomogeneous and makeHeterogeneous methods permanently assign the classification as
homogeneous and heterogeneous, respectively. You cannot later use one of these methods to create a
copy that has a different classification.

Specify Cell Array Inputs by Example
To specify a cell array input by example, provide an example cell array in the -args option of the
fiaccel command.

For example:

• To specify a 1x3 cell array whose elements have class double:

fiaccel myfunction -args {{1 2 3}} -report

The input argument is a 1x3 homogeneous cell array whose elements are 1x1 double.
• To specify a 1x2 cell array whose first element has class char and whose second element has class

double:

fiaccel myfunction -args {{'a', 1}} -report

The input argument is a 1x2 heterogeneous cell array whose first element is 1x1 char and whose
second element is 1x1 double.

Specify the Type of the Cell Array Input
To specify the type of a cell array input, use coder.typeof to create a coder.CellType object.
Pass the coder.CellType object to the -args option of the fiaccel command.
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For example:

• To specify a 1x3 cell array whose elements have class double:

t = coder.typeof({1 2 3});
fiaccel myfunction -args {t} -report

The input argument is a 1x3 homogeneous cell array whose elements are 1x1 double.
• To specify a 1x2 cell array whose first element has class char and whose second element has class

double:

t = coder.typeof({'a', 1});
fiaccel myfunction -args {t}

The input argument is a 1x2 heterogeneous cell array whose first element is a 1x1 char and whose
second element is a 1x1 double.

You can also use the advanced function coder.newtype to create a coder.CellType object.

Make a Homogeneous Copy of a Type
If coder.typeof returns a heterogeneous cell array type, but you want a homogeneous type, use the
makeHomogeneous method to make a homogeneous copy of the type.

The following code creates a heterogeneous type.

t = coder.typeof({1 [2 3]})

t = 

coder.CellType
   1x2 heterogeneous cell 
      f0: 1x1 double
      f1: 1x2 double

To make a homogeneous copy of the type, use:

t = makeHomogeneous(t)

t = 

coder.CellType
   1×2 locked homogeneous cell 
      base: 1×:2 double

Alternatively, use this notation:

t = makeHomogeneous(coder.typeof({1 [2 3]}))

t = 

coder.CellType
   1×2 locked homogeneous cell 
      base: 1×:2 double

The classification as homogeneous is locked (permanent). You cannot later use the
makeHeterogeneous method to make a heterogeneous copy of the type.
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If the elements of a type have different classes, such as char and double, you cannot use
makeHomogeneous to make a homogeneous copy of the type.

Make a Heterogeneous Copy of a Type
If coder.typeof returns a homogeneous cell array type, but you want a heterogeneous type, use the
makeHeterogeneous method to make a heterogeneous copy of the type.

The following code creates a homogeneous type.

t = coder.typeof({1 2 3})

t = 

coder.CellType
   1x3 homogeneous cell 
      base: 1x1 double

To make the type heterogeneous, use:

t = makeHeterogeneous(t)

t = 

coder.CellType
   1×3 locked heterogeneous cell 
      f1: 1×1 double
      f2: 1×1 double
      f3: 1×1 double

Alternatively, use this notation:

t = makeHeterogeneous(coder.typeof({1 2 3}))

t = 

coder.CellType
   1×3 locked heterogeneous cell 
      f1: 1×1 double
      f2: 1×1 double
      f3: 1×1 double

The classification as heterogeneous is locked (permanent). You cannot later use the
makeHomogeneous method to make a homogeneous copy of the type.

If a type is variable size, you cannot use makeHeterogeneous to make a heterogeneous copy of it.

Specify Variable-Size Cell Array Inputs
You can specify variable-size cell array inputs in the following ways:

• In the coder.typeof call.

For example, to specify a variable-size cell array whose first dimension is fixed and whose second
dimension has an upper bound of 5:

t = coder.typeof({1}, [1 5], [0 1])
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t = 

coder.CellType
   1x:5 homogeneous cell 
      base: 1x1 double

For elements with the same classes, but different sizes, you can the use coder.typeof size and
variable dimensions arguments to create a variable-size homogeneous cell array type. For
example, the following code does not use the size and variable dimensions arguments. This code
creates a type for a heterogeneous cell array.

t = coder.typeof({1 [2 3]})

t = 

coder.CellType
   1x2 heterogeneous cell 
      f0: 1x1 double
      f1: 1x2 double

The following code, that uses the size and dimensions arguments, creates a type for a variable-size
homogeneous type cell array:

t = coder.typeof({1 [2 3]}, [1 5], [0 1])

t = 

coder.CellType
   1×:5 locked homogeneous cell 
      base: 1×:2 double

• Use coder.resize.

For example, to specify a variable-size cell array whose first dimension is fixed and whose second
dimension has an upper bound of 5:

t = coder.typeof({1});
t = coder.resize(t, [1 5], [0,1])

t = 

coder.CellType
   1x5 homogeneous cell 
      base: 1x1 double

You cannot use coder.resize with a heterogeneous cell array type.

Specify Constant Cell Array Inputs
To specify that a cell array input is constant, use the coder.Constant function with the -args
option of the fiaccel command. For example:

fiaccel myfunction -args {coder.Constant({'red', 1  'green', 2,  'blue', 3})} -report

The input is a 1x6 heterogeneous cell array. The sizes and classes of the elements are:

• 1x3 char
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• 1x1 double
• 1x5 char
• 1x1 double
• 1x4 char
• 1x1 double

See Also
coder.CellType | coder.typeof | coder.resize | coder.newtype

Related Examples
• “Define Input Properties by Example at the Command Line” on page 31-4
• “Specify Constant Inputs at the Command Line” on page 31-6

More About
• “Code Generation for Cell Arrays” on page 30-2
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Specify Global Cell Arrays at the Command Line
To specify global cell array inputs, use the -globals option of the fiaccel command with this
syntax:

fiaccel myfunction -globals {global_var, {type_object, initial_value}} 

For example:

• To specify that the global variable g is a 1x3 cell array whose elements have class double and
whose initial value is {1 2 3}, use:

fiaccel myfunction -globals {'g', {coder.typeof({1 1 1}), {1 2 3}}} 

Alternatively, use:

t = coder.typeof({1 1 1});
fiaccel myfunction -globals {'g', {t, {1 2 3}}}

The global variable g is a 1x3 homogeneous cell array whose elements are 1x1 double.

To make g heterogeneous, use:

t = makeHeterogeneous(coder.typeof({1 1 1}));
fiaccel myfunction -globals {'g', {t, {1 2 3}}}

• To specify that g is a cell array whose first element has type char, whose second element has type
double, and whose initial value is {'a', 1}, use:

fiaccel myfunction -globals {'g', {coder.typeof({'a', 1}), {'a', 1}}}

The global variable g is a 1x2 heterogeneous cell array whose first element is 1x1 char and whose
second element is 1x1 double.

• To specify that g is a cell array whose first element has type double, whose second element is a
1x2 double array, and whose initial value is {1 [2 3]}, use:

fiaccel myfunction -globals {'g', {coder.typeof({1 [2 3]}), {1 [2 3]}}}

Alternatively, use:

t = coder.typeof({1 [2 3]});
fiaccel myfunction -globals {'g', {t, {1 [2 3]}}}

The global variable g is a 1x2 heterogeneous cell array whose first element is 1x1 double and
whose second element is 1x2 double.

Global variables that are cell arrays cannot have variable size.

See Also
fiaccel | coder.typeof

Related Examples
• “Generate C Code from Code Containing Global Data” on page 12-30
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Control Run-Time Checks

In this section...
“Types of Run-Time Checks” on page 12-47
“When to Disable Run-Time Checks” on page 12-47
“How to Disable Run-Time Checks” on page 12-48

Types of Run-Time Checks
In simulation, the code generated for your MATLAB functions includes the following run-time checks
and external function calls.

• Memory integrity checks

These checks detect violations of memory integrity in code generated for MATLAB functions and
stop execution with a diagnostic message.

Caution For safety, these checks are enabled by default. Without memory integrity checks,
violations will result in unpredictable behavior.

• Responsiveness checks in code generated for MATLAB functions

These checks enable periodic checks for Ctrl+C breaks in code generated for MATLAB functions.
Enabling responsiveness checks also enables graphics refreshing.

Caution For safety, these checks are enabled by default. Without these checks the only way to
end a long-running execution might be to terminate MATLAB.

• Extrinsic calls to MATLAB functions

Extrinsic calls to MATLAB functions, for example to display results, are enabled by default for
debugging purposes. For more information about extrinsic functions, see “Use the coder.extrinsic
Construct” on page 14-9.

When to Disable Run-Time Checks
Generally, generating code with run-time checks enabled results in more generated code and slower
simulation than generating code with the checks disabled. Similarly, extrinsic calls are time
consuming and have an adverse effect on performance. Disabling run-time checks and extrinsic calls
usually results in streamlined generated code and faster simulation, with these caveats:

Consider disabling... Only if...
Memory integrity checks You are sure that your code is safe and that all

array bounds and dimension checking is
unnecessary.

Responsiveness checks You are sure that you will not need to stop
execution of your application using Ctrl+C.
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Consider disabling... Only if...
Extrinsic calls You are only using extrinsic calls to functions that

do not affect application results.

How to Disable Run-Time Checks
To disable run-time checks:

1 Define the compiler options object in the MATLAB workspace by issuing a constructor command:

comp_cfg = coder.MEXConfig
2 From the command line set the IntegrityChecks, ExtrinsicCalls, or

ResponsivenessChecks properties false, as applicable:

comp_cfg.IntegrityChecks = false;
comp_cfg.ExtrinsicCalls = false;
comp_cfg.ResponsivenessChecks = false;
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Fix Run-Time Stack Overflows
If your C compiler reports a run-time stack overflow, set the value of the maximum stack usage
parameter to be less than the available stack size. Create a command-line configuration object,
coder.mexconfig and then set the StackUsageMax parameter.
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Code Generation with MATLAB Coder
MATLAB Coder codegen automatically converts MATLAB code directly to C code. It generates
standalone C code that is bit-true to fixed-point MATLAB code. Using Fixed-Point Designer and
MATLAB Coder software you can generate C code with algorithms containing integer math only (i.e.,
without any floating-point math).
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Code Generation with MATLAB Function Block

In this section...
“Composing a MATLAB Language Function in a Simulink Model” on page 12-51
“MATLAB Function Block with Data Type Override” on page 12-51
“Fixed-Point Data Types with MATLAB Function Block” on page 12-52

Composing a MATLAB Language Function in a Simulink Model
The MATLAB Function block lets you compose a MATLAB language function in a Simulink model that
generates embeddable code. When you simulate the model or generate code for a target
environment, a function in a MATLAB Function block generates efficient C/C++ code. This code
meets the strict memory and data type requirements of embedded target environments. In this way,
the MATLAB Function blocks bring the power of MATLAB for the embedded environment into
Simulink.

For more information about the MATLAB Function block and code generation, refer to the following:

• MATLAB Function block reference page in the Simulink documentation
• “Implement MATLAB Functions in Simulink with MATLAB Function Blocks”
• “Code Generation Workflow” (MATLAB Coder)

MATLAB Function Block with Data Type Override
When you use the MATLAB Function block in a Simulink model that specifies data type override, the
block determines the data type override equivalents of the input signal and parameter types. The
block then uses these equivalent values to run the simulation. The following table shows how the
MATLAB Function block determines the data type override equivalent using

• The data type of the input signal or parameter
• The data type override settings in the Simulink model

For more information about data type override, see fxptdlg.

Input Signal or
Parameter Type

Data Type Override
Setting

Data Type Override
Applies To Setting

Override Data Type

Inherited single Double All numeric types or
Floating-point

Built-in double

Single All numeric types or
Floating-point

Built-in single

Scaled double All numeric types or
Floating-point

fi scaled double

Specified single Double All numeric types or
Floating-point

Built-in double

Single All numeric types or
Floating-point

Built-in single
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Input Signal or
Parameter Type

Data Type Override
Setting

Data Type Override
Applies To Setting

Override Data Type

Scaled double All numeric types or
Floating-point

fi scaled double

Inherited double Double All numeric types or
Floating-point

Built-in double

Single All numeric types or
Floating-point

Built-in single

Scaled double All numeric types or
Floating-point

fi scaled double

Specified double Double All numeric types or
Floating-point

Built-in double

Single All numeric types or
Floating-point

Built-in single

Scaled double All numeric types or
Floating-point

fi scaled double

Inherited Fixed Double All numeric types or
Fixed-point

fi double

Single All numeric types or
Fixed-point

fi single

Scaled double All numeric types or
Fixed-point

fi scaled double

Specified Fixed Double All numeric types or
Fixed-point

fi double

Single All numeric types or
Fixed-point

fi single

Scaled double All numeric types or
Fixed-point

fi scaled double

Fixed-Point Data Types with MATLAB Function Block
Code generation from MATLAB supports a significant number of Fixed-Point Designer functions.
Refer to “Functions Supported for Code Acceleration or C Code Generation” on page 12-4 for
information about which Fixed-Point Designer functions are supported.

For more information on working with fixed-point MATLAB Function blocks, see:

• “Specifying Fixed-Point Parameters in the Model Explorer” on page 12-53
• “Using fimath Objects in MATLAB Function Blocks” on page 12-54
• “Sharing Models with Fixed-Point MATLAB Function Blocks” on page 12-56

Note To simulate models using fixed-point data types in Simulink, you must have a Fixed-Point
Designer license.
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Specifying Fixed-Point Parameters in the Model Explorer

You can specify parameters for a MATLAB Function block in a fixed-point model using the Model
Explorer. For more information, see “Specify MATLAB Function Block Properties”.

Try the following exercise:

1 Place a MATLAB Function block in a new model. You can find the block in the Simulink User-
Defined Functions library.

2 Open the Model Explorer. On the Modeling tab, in the Design section, click Model Explorer.
3 Expand the untitled* node in the Model Hierarchy pane of the Model Explorer. Then, select the

MATLAB Function node. The Model Explorer now appears as shown in the following figure.

The following parameters in the Dialog pane apply to MATLAB Function blocks in models that use
fixed-point and integer data types:

Treat these inherited Simulink signal types as fi objects
Choose whether to treat inherited fixed-point and integer signals as fi objects.

• When you select Fixed-point, the MATLAB Function block treats all fixed-point inputs as
Fixed-Point Designer fi objects.

• When you select Fixed-point & Integer, the MATLAB Function block treats all fixed-point
and integer inputs as Fixed-Point Designer fi objects.
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MATLAB Function block fimath
Specify the fimath properties for the block to associate with the following objects:

• All fixed-point and integer input signals to the MATLAB Function block that you choose to
treat as fi objects.

• All fi and fimath objects constructed in the MATLAB Function block.

You can select one of the following options for the MATLAB Function block fimath:

• Same as MATLAB — When you select this option, the block uses the same fimath properties
as the current default fimath. The edit box appears dimmed and displays the current default
fimath in read-only form.

• Specify Other — When you select this option, you can specify your own fimath object in the
edit box.

For more information on these parameters, see “Using fimath Objects in MATLAB Function
Blocks” on page 12-54.

Using fimath Objects in MATLAB Function Blocks

The MATLAB Function block fimath parameter enables you to specify one set of fimath object
properties for the MATLAB Function block. The block associates the fimath properties you specify
with the following objects:

• All fixed-point and integer input signals to the MATLAB Function block that you choose to treat as
fi objects.

• All fi and fimath objects constructed in the MATLAB Function block.

You can set these parameters on the following dialog box.
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• To access this pane through the Model Explorer, select the MATLAB Function block from the
Model Hierarchy pane on the left side of the Model Explorer.

• To access this pane through the and Property Inspector:

1 On the Modeling tab, in the Design section, click Property Inspector.
2 Expand the Fixed-point properties section.

When you select Same as MATLAB for the MATLAB Function block fimath, the MATLAB
Function block uses the current default fimath. The current default fimath appears dimmed and in
read-only form in the edit box.

When you select Specify other the block allows you to specify your own fimath object in the edit
box. You can do so in one of two ways:

• Constructing the fimath object inside the edit box.
• Constructing the fimath object in the MATLAB or model workspace and then entering its variable

name in the edit box.

Note If you use this option and plan to share your model with others, make sure you define the
variable in the model workspace. See “Sharing Models with Fixed-Point MATLAB Function Blocks”
on page 12-56 for more information on sharing models.

The Fixed-Point Designer isfimathlocal function supports code generation for MATLAB.
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Sharing Models with Fixed-Point MATLAB Function Blocks

When you collaborate with a coworker, you can share a fixed-point model using the MATLAB Function
block. To share a model, make sure that you move any variables you define in the MATLAB
workspace, including fimath objects, to the model workspace. For example, try the following:

1 Place a MATLAB Function block in a new model. You can find the block in the Simulink User-
Defined Functions library.

2 Define a fimath object in the MATLAB workspace that you want to use for any Simulink fixed-
point signal entering the MATLAB Function block as an input:

F = fimath('RoundingMethod','Floor','OverflowAction','Wrap',...
    'ProductMode','KeepLSB','ProductWordLength',32,...
    'SumMode','KeepLSB','SumWordLength',32)
 
F =
        RoundingMethod: Floor
        OverflowAction: Wrap
           ProductMode: KeepLSB
     ProductWordLength: 32
               SumMode: KeepLSB
         SumWordLength: 32
         CastBeforeSum: true

3 Open the Model Explorer.
4 Expand the untitled* node in the Model Hierarchy pane of the Model Explorer, and select the

MATLAB Function node.
5 Select Specify other for the MATLAB Function block fimath parameter and enter the variable

F into the edit box on the Dialog pane. Click Apply to save your changes.

You have now defined the fimath properties to be associated with all Simulink fixed-point input
signals and all fi and fimath objects constructed within the block.

6 Select the Base Workspace node in the Model Hierarchy pane. You can see the variable F that
you have defined in the MATLAB workspace listed in the Contents pane. If you send this model
to a coworker, that coworker must first define that same variable in the MATLAB workspace to
get the same results.

7 Cut the variable F from the base workspace, and paste it into the model workspace listed under
the node for your model, in this case, untitled*. The Model Explorer now appears as shown in
the following figure.
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You can now email your model to a coworker. Because you included the required variables in the
workspace of the model itself, your coworker can simply run the model and get the correct
results. Receiving and running the model does not require any extra steps.
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Generate Fixed-Point FIR Code Using MATLAB Function Block
In this section...
“Program the MATLAB Function Block” on page 12-58
“Prepare the Inputs” on page 12-58
“Create the Model” on page 12-59
“Define the fimath Object Using the Model Explorer” on page 12-60
“Run the Simulation” on page 12-60

Program the MATLAB Function Block
The following example shows how to create a fixed-point, lowpass, direct form FIR filter in Simulink.
To create the FIR filter, you use Fixed-Point Designer software and the MATLAB Function block. In
this example, you perform the following tasks in the sequence shown:

1 Place a MATLAB Function block in a new model. You can find the block in the Simulink User-
Defined Functions library.

2 Save your model as cgen_fi.
3 Double-click the MATLAB Function block in your model to open the MATLAB Function Block

Editor. Type or copy and paste the following MATLAB code, including comments, into the Editor:

function [yout,zf] = dffirdemo(b, x, zi) %#codegen
%codegen_fi doc model example
%Initialize the output signal yout and the final conditions zf
Ty = numerictype(1,12,8);
yout = fi(zeros(size(x)),'numerictype',Ty);
zf = zi;

% FIR filter code
for k=1:length(x);
  % Update the states: z = [x(k);z(1:end-1)]  
  zf(:) = [x(k);zf(1:end-1)];
  % Form the output: y(k) = b*z
  yout(k) = b*zf;
end

% Plot the outputs only in simulation.
% This does not generate C code.
figure;
subplot(211);plot(x); title('Noisy Signal');grid;
subplot(212);plot(yout); title('Filtered Signal');grid;

Prepare the Inputs
Define the filter coefficients b, noise x, and initial conditions zi by typing the following code at the
MATLAB command line:

b=fidemo.fi_fir_coefficients;
load mtlb
x = mtlb;
n = length(x);
noise = sin(2*pi*2140*(0:n-1)'./Fs);
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x = x + noise;
zi = zeros(length(b),1);

Create the Model
1 Add blocks to your model to create the following system.

2 Set the block parameters in the model to these “Fixed-Point FIR Code Example Parameter
Values” on page 12-61.

3 On the Modeling tab, click Model Settings. Set the following configuration parameters.

Parameter Value
Stop time 0
Type Fixed-step
Solver discrete (no continuous states)

Click Apply to save your changes.
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Define the fimath Object Using the Model Explorer
1 Open the Model Explorer for the model.
2 Click the cgen_fi > MATLAB Function node in the Model Hierarchy pane. The dialog box for

the MATLAB Function block appears in the Dialog pane of the Model Explorer.
3 Select Specify other for the MATLAB Function block fimath parameter on the MATLAB

Function block dialog box. You can then create the following fimath object in the edit box:

fimath('RoundingMethod','Floor','OverflowAction','Wrap',...
    'ProductMode','KeepLSB','ProductWordLength',32,...
    'SumMode','KeepLSB','SumWordLength',32)

The fimath object you define here is associated with fixed-point inputs to the MATLAB Function
block as well as the fi object you construct within the block.

By selecting Specify other for the MATLAB Function block fimath, you ensure that your
model always uses the fimath properties you specified.

Run the Simulation
1 Run the simulation by selecting your model and typing Ctrl+T. While the simulation is running,

information outputs to the MATLAB command line. You can look at the plots of the noisy signal
and the filtered signal.

2 Next, build embeddable C code for your model by selecting the model and typing Ctrl+B. While
the code is building, information outputs to the MATLAB command line. A folder called
coder_fi_grt_rtw is created in your current working folder.

3 Navigate to coder_fi_grt_rtw > cgen_fi.c. In this file, you can see the code generated from
your model. Search for the following comment in your code:

/* codegen_fi doc model example */

This search brings you to the beginning of the section of the code that your MATLAB Function
block generated.
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Fixed-Point FIR Code Example Parameter Values
Block Parameter Value
Constant Constant value b

Interpret vector parameters
as 1-D

Not selected

Sampling mode Sample based
Sample time inf
Mode Fixed point
Signedness Signed
Scaling Slope and bias
Word length 12
Slope 2^-12
Bias 0

Constant1 Constant value x+noise
Interpret vector parameters
as 1-D

Unselected

Sampling mode Sample based
Sample time 1
Mode Fixed point
Signedness Signed
Scaling Slope and bias
Word length 12
Slope 2^-8
Bias 0

Constant2 Constant value zi
Interpret vector parameters
as 1-D

Unselected

Sampling mode Sample based
Sample time inf
Mode Fixed point
Signedness Signed
Scaling Slope and bias
Word length 12
Slope 2^-8
Bias 0

To Workspace Variable name yout
Limit data points to last inf
Decimation 1
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Block Parameter Value
Sample time -1
Save format Array
Log fixed-point data as a fi
object

Selected

To Workspace1 Variable name zf
Limit data points to last inf
Decimation 1
Sample time -1
Save format Array
Log fixed-point data as a fi
object

Selected

To Workspace2 Variable name noisyx
Limit data points to last inf
Decimation 1
Sample time -1
Save format Array
Log fixed-point data as a fi
object

Selected
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Accelerate Code for Variable-Size Data

In this section...
“Disable Support for Variable-Size Data” on page 12-63
“Control Dynamic Memory Allocation” on page 12-63
“Accelerate Code for MATLAB Functions with Variable-Size Data” on page 12-64
“Accelerate Code for a MATLAB Function That Expands a Vector in a Loop” on page 12-65

Variable-size data is data whose size might change at run time. MATLAB supports bounded and
unbounded variable-size data for code generation. Bounded variable-size data has fixed upper
bounds. This data can be allocated statically on the stack or dynamically on the heap. Unbounded
variable-size data does not have fixed upper bounds. This data must be allocated on the heap. By
default, for MEX and C/C++ code generation, support for variable-size data is enabled and dynamic
memory allocation is enabled for variable-size arrays whose size exceeds a configurable threshold.

Disable Support for Variable-Size Data
By default, for MEX and C/C++ code acceleration, support for variable-size data is enabled. You
modify variable sizing settings at the command line.

1 Create a configuration object for code generation.

cfg = coder.mexconfig;

2 Set the EnableVariableSizing option:

cfg.EnableVariableSizing = false;

3 Using the -config option, pass the configuration object to fiaccel :

fiaccel -config cfg foo

Control Dynamic Memory Allocation
By default, dynamic memory allocation is enabled for variable-size arrays whose size exceeds a
configurable threshold. If you disable support for variable-size data, you also disable dynamic
memory allocation. You can modify dynamic memory allocation settings at the command line.

1 Create a configuration object for code acceleration. For example, for a MEX function:

mexcfg = coder.mexconfig;

2 Set the DynamicMemoryAllocation option:

Setting Action
mexcfg.DynamicMemoryAllocation='Off'; Dynamic memory allocation is

disabled. All variable-size data is
allocated statically on the stack.
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Setting Action
mexcfg.DynamicMemoryAllocation='AllVariableSizeArrays'; Dynamic memory allocation is

enabled for all variable-size
arrays. All variable-size data is
allocated dynamically on the
heap.

mexcfg.DynamicMemoryAllocation='Threshold'; Dynamic memory allocation is
enabled for all variable-size
arrays whose size (in bytes) is
greater than or equal to the
value specified using the
Dynamic memory allocation
threshold parameter. Variable-
size arrays whose size is less
than this threshold are allocated
on the stack.

3 Optionally, if you set Dynamic memory allocation to 'Threshold', configure Dynamic
memory allocation threshold to fine tune memory allocation.

4 Using the -config option, pass the configuration object to fiaccel:

fiaccel -config mexcfg foo

Accelerate Code for MATLAB Functions with Variable-Size Data
Here is a basic workflow that generates MEX code.

1 In the MATLAB Editor, add the compilation directive %#codegen at the top of your function.

This directive:

• Indicates that you intend to generate code for the MATLAB algorithm
• Turns on checking in the MATLAB Code Analyzer to detect potential errors during code

generation
2 Address issues detected by the Code Analyzer.

In some cases, the MATLAB Code Analyzer warns you when your code assigns data a fixed size
but later grows the data, such as by assignment or concatenation in a loop. If that data is
supposed to vary in size at run time, you can ignore these warnings.

3 Generate a MEX function using fiaccel. Use the following command-line options:

• -args {coder.typeof...} if you have variable-size inputs
• -report to generate a code generation report

For example:

fiaccel -report foo -args {coder.typeof(0,[2 4],1)}

This command uses coder.typeof to specify one variable-size input for function foo. The first
argument, 0, indicates the input data type (double) and complexity (real). The second
argument, [2 4], indicates the size, a matrix with two dimensions. The third argument, 1,

12 Code Acceleration and Code Generation from MATLAB for Fixed-Point Algorithms

12-64



indicates that the input is variable sized. The upper bound is 2 for the first dimension and 4 for
the second dimension.

Note During compilation, fiaccel detects variables and structure fields that change size after
you define them, and reports these occurrences as errors. In addition, fiaccel performs a
runtime check to generate errors when data exceeds upper bounds.

4 Fix size mismatch errors:

Cause: How To Fix: For More Information:
You try to change the size
of data after its size has
been locked.

Declare the data to be variable
sized.

See “Diagnosing and Fixing
Size Mismatch Errors” on page
29-12.

5 Fix upper bounds errors

Cause: How To Fix: For More Information:
MATLAB cannot determine
or compute the upper
bound

Specify an upper bound. See “Specify Upper Bounds for
Variable-Size Arrays” and
“Diagnosing and Fixing Size
Mismatch Errors” on page 29-
12.

MATLAB attempts to
compute an upper bound
for unbounded variable-size
data.

If the data is unbounded,
enable dynamic memory
allocation.

See “Control Dynamic Memory
Allocation” on page 12-63

6 Generate C/C++ code using the fiaccel function.

Accelerate Code for a MATLAB Function That Expands a Vector in a
Loop
• “About the MATLAB Function uniquetol” on page 12-65
• “Step 1: Add Compilation Directive for Code Generation” on page 12-66
• “Step 2: Address Issues Detected by the Code Analyzer” on page 12-66
• “Step 3: Generate MEX Code” on page 12-66
• “Step 4: Fix the Size Mismatch Error” on page 12-67
• “Step 5: Compare Execution Speed of MEX Function to Original Code” on page 12-69

About the MATLAB Function uniquetol

This example uses the function uniquetol. This function returns in vector B a version of input vector
A, where the elements are unique to within tolerance tol of each other. In vector B, abs(B(i) - B(j))
> tol for all i and j. Initially, assume input vector A can store up to 100 elements.

function B = uniquetol(A, tol)
A = sort(A);
B = A(1);
k = 1;
for i = 2:length(A)
   if abs(A(k) - A(i)) > tol
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      B = [B A(i)];
      k = i;
   end
end

Step 1: Add Compilation Directive for Code Generation

Add the %#codegen compilation directive at the top of the function:

function B = uniquetol(A, tol) %#codegen
A = sort(A);
B = A(1);
k = 1;
for i = 2:length(A)
   if abs(A(k) - A(i)) > tol
      B = [B A(i)];
      k = i;
   end
end

Step 2: Address Issues Detected by the Code Analyzer

The Code Analyzer detects that variable B might change size in the for- loop. It issues this warning:

The variable 'B' appears to change size on every loop iteration.
Consider preallocating for speed.

In this function, vector B should expand in size as it adds values from vector A. Therefore, you can
ignore this warning.

Step 3: Generate MEX Code

To generate MEX code, use the fiaccel function.

1 Generate a MEX function for uniquetol:

T = numerictype(1, 16, 15);
fiaccel -report uniquetol -args {coder.typeof(fi(0,T),[1 100],1),coder.typeof(fi(0,T))}

What do these command-line options mean?

T = numerictype(1, 16, 15) creates a signed numerictype object with a 16-bit word length
and 15-bit fraction length that you use to specify the data type of the input arguments for the
function uniquetol.

The fiaccel function -args option specifies the class, complexity, and size of each input to
function uniquetol:

• The first argument, coder.typeof, defines a variable-size input. The expression
coder.typeof(fi(0,T),[1 100],1) defines input A as a vector of real, signed
embedded.fi objects that have a 16-bit word length and 15-bit fraction length. The vector has
a fixed upper bound; its first dimension is fixed at 1 and its second dimension can vary in size
up to 100 elements.

For more information, see “Specify Variable-Size Inputs at the Command Line” (MATLAB
Coder).
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• The second argument, coder.typeof(fi(0,T)), defines input tol as a real, signed
embedded.fi object with a 16-bit word length and 15-bit fraction length.

The -report option instructs fiaccel to generate a code generation report, even if no errors
or warnings occur.

For more information, see thefiaccel reference page.

Executing this command generates a compiler error:

??? Size mismatch (size [1 x 1] ~= size [1 x 2]).
The size to the left is the size 
of the left-hand side of the assignment.

2 Open the error report and select the Variables tab.

The error indicates a size mismatch between the left-hand side and right-hand side of the assignment
statement B = [B A(i)];. The assignment B = A(1) establishes the size of B as a fixed-size scalar
(1 x 1). Therefore, the concatenation of [B A(i)] creates a 1 x 2 vector.

Step 4: Fix the Size Mismatch Error

To fix this error, declare B to be a variable-size vector.

1 Add this statement to the uniquetol function:

coder.varsize('B');
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It should appear before B is used (read). For example:

function B = uniquetol(A, tol) %#codegen
A = sort(A);

coder.varsize('B');

B = A(1);
k = 1;
for i = 2:length(A)
   if abs(A(k) - A(i)) > tol
      B = [B A(i)]; 
      k = i;
   end
end

The function coder.varsize declares every instance of B in uniquetol to be variable sized.
2 Generate code again using the same command:

fiaccel -report uniquetol -args {coder.typeof(fi(0,T),[1 100],1),coder.typeof(fi(0,T))}

In the current folder, fiaccel generates a MEX function for uniquetol named
uniquetol_mex and provides a link to the code generation report.

3 Click the View report link.
4 In the code generation report, select the Variables tab.

The size of variable B is 1x:?, indicating that it is variable size with no upper bounds.
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Step 5: Compare Execution Speed of MEX Function to Original Code

Run the original MATLAB algorithm and MEX function with the same inputs for the same number of
loop iterations and compare their execution speeds.

1 Create inputs of the correct class, complexity, and size to pass to the uniquetol MATLAB and
MEX functions.

x = fi(rand(1,90), T);
tol = fi(0, T);

2 Run the original uniquetol function in a loop and time how long it takes to execute 10
iterations of the loop.

tic; for k=1:10, b = uniquetol(x,tol); end; tSim=toc
3 Run the generated MEX function with the same inputs for the same number of loop iterations.

tic; for k=1:10, b = uniquetol_mex(x,tol); end; tSim_mex=toc
4 Compare the execution times.

r = tSim/tSim_mex

This example shows that generating a MEX function using fiaccel greatly accelerates the
execution of the fixed-point algorithm.
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Code Generation Readiness Tool
The code generation readiness tool screens MATLAB code for features and functions that code
generation does not support. The tool provides a report that lists the source files that contain
unsupported features and functions. It is possible that the tool does not detect all code generation
issues. Under certain circumstances, it is possible that the tool can report false errors. Therefore,
before you generate code, verify that your code is suitable for code generation by generating a MEX
function.

The code generation readiness tool does not report functions that the code generator automatically
treats as extrinsic. Examples of such functions are plot, disp, and figure.

Issues Tab

On the Issues tab, the tool displays information about:

• MATLAB syntax issues. These issues are reported in the MATLAB editor. To learn more about the
issues and how to fix them, use the Code Analyzer.

• Unsupported MATLAB function calls, language features, and data types.

You can also:
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• View your MATLAB code inside the Code Generation Readiness Tool. When you select an issue,
the part of your MATLAB code that caused this issue gets highlighted.

• Group the readiness results either by issue or by file.
• Select the language that the code generation readiness analysis uses.
• Refresh the code generation readiness analysis if you updated your MATLAB code.
• Export the analysis report either as plain text file or as a coder.ScreenerInfo object in the

base workspace.

Files Tab

If the code that you are checking calls functions in other MATLAB code files, the Files tab shows the
call dependency between these files. If you select Show MathWorks Functions, the report also lists
the MathWorks functions that your function calls.

See Also
coder.screener | coder.ScreenerInfo Properties

Related Examples
• “MATLAB Language Features Supported for C/C++ Code Generation” (MATLAB Coder)
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• “Functions and Objects Supported for C/C++ Code Generation” (MATLAB Coder)
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Check Code Using the Code Generation Readiness Tool

Run Code Generation Readiness Tool at the Command Line
1 Navigate to the folder that contains the file that you want to check for code generation readiness.
2 At the MATLAB command prompt, enter:

coder.screener('filename')

The Code Generation Readiness tool opens for the file named filename, provides a code
generation readiness score, and lists issues that must be fixed prior to code generation.

Run the Code Generation Readiness Tool From the Current Folder
Browser
1 In the current folder browser, right-click the file that you want to check for code generation

readiness.
2 From the context menu, select Check Code Generation Readiness.

The Code Generation Readiness tool opens for the selected file and provides a code generation
readiness score and lists issues that must be fixed prior to code generation.

See Also
• “Code Generation Readiness Tool” on page 12-70
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Check Code Using the MATLAB Code Analyzer
The code analyzer checks your code for problems and recommends modifications. You can use the
code analyzer to check your code interactively in the MATLAB Editor while you work.

To verify that continuous code checking is enabled:

1 In MATLAB, select the Home tab and then click Preferences.
2 In the Preferences dialog box, select Code Analyzer.
3 In the Code Analyzer Preferences pane, verify that Enable integrated warning and error

messages is selected.
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Fix Errors Detected at Code Generation Time
When the code generator detects errors or warnings, it automatically generates an error report. The
error report describes the issues and provides links to the MATLAB code with errors.

To fix the errors, modify your MATLAB code to use only those MATLAB features that are supported
for code generation. For more information, see “Algorithm Design Basics”. Choose a debugging
strategy for detecting and correcting code generation errors in your MATLAB code. For more
information, see “Debugging Strategies” on page 12-15.

When code generation is complete, the software generates a MEX function that you can use to test
your implementation in MATLAB.

If your MATLAB code calls functions on the MATLAB path, unless the code generator determines that
these functions should be extrinsic or you declare them to be extrinsic, it attempts to compile these
functions. See “Resolution of Function Calls for Code Generation” on page 14-2. To get detailed
diagnostics, add the %#codegen directive to each external function that you want codegen to
compile.

See Also
• “Code Generation Reports” on page 12-26
• “Why Test MEX Functions in MATLAB?” (MATLAB Coder)
• “When to Generate Code from MATLAB Algorithms” on page 19-2
• “Debugging Strategies” on page 12-15
• “Use the coder.extrinsic Construct” on page 14-9
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Avoid Multiword Operations in Generated Code
This example shows how to avoid multiword operations in generated code by using the accumpos
function instead of simple addition in your MATLAB algorithm. Similarly, you can use accumneg for
subtraction.

This example requires a MATLAB Coder license.

Write a simple MATLAB algorithm that adds two numbers and returns the result.

function y = my_add1(a,b)
  y = a+b;
end

Write a second MATLAB algorithm that adds two numbers using accumpos and returns the result.

function y = my_add2(a,b)
  y = accumpos(a,b); %floor, wrap
end

accumpos adds a and b using the data type of a. b is cast into the data type of a. If a is a fi object,
by default, accumpos sets the rounding mode to 'Floor' and the overflow action to 'Wrap'. It
ignores the fimath properties of a and b.

Compare the outputs of the two functions in MATLAB.

a = fi(1.25,1,32,5);
b = fi(0.125,0,32);

y1 = my_add1(a,b)
y2 = my_add2(a,b)

y1 = 

    1.3750

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 63
        FractionLength: 34

y2 = 

    1.3750

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 32
        FractionLength: 5

For the simple addition, the word length grows but using accumpos, the word length of the result is
the same as that of a.

Generate C code for the function my_add1. First, disable use of the long long data type because it
is not usually supported by the target hardware.

hw = coder.HardwareImplementation;
hw.ProdHWDeviceType = 'Generic->32-bit Embedded Processor';
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hw.ProdLongLongMode = false;
hw.ProdBitPerLong = 32;
cfg = coder.config('lib');
cfg.HardwareImplementation = hw;
codegen my_add1 -args {a,b} -report  -config cfg

MATLAB Coder generates a C static library and provides a link to the code generation report.

View the generated code for the simple addition. Click the View report link to open the code
generation report and then scroll to the code for the my_add1 function.

/* Function Declarations */
static void MultiWordAdd(const unsigned long u1[], const unsigned long u2[],
 unsigned long y[], int n);
static void MultiWordSignedWrap(const unsigned long u1[], int n1, unsigned int
  n2, unsigned long y[]);
static void sLong2MultiWord(long u, unsigned long y[], int n);
static void sMultiWord2MultiWord(const unsigned long u1[], int n1, unsigned long
  y[], int n);
static void sMultiWord2sMultiWordSat(const unsigned long u1[], int n1, unsigned
  long y[], int n);
static void sMultiWordShl(const unsigned long u1[], int n1, unsigned int n2,
  unsigned long y[], int n);
static void sMultiWordShr(const unsigned long u1[], int n1, unsigned int n2,
  unsigned long y[], int n);
static void uLong2MultiWord(unsigned long u, unsigned long y[], int n);

The generated C code contains multiple multiword operations.

Generate C code for the function my_add2.

codegen my_add2 -args {a,b} -report -config cfg

View the generated code for the addition using accumpos. Click the View report link to open the
code generation report and then scroll to the code for the my_add2 function.

int my_add2(int a, unsigned int b)
{
  int y;
  y = a + (int)(b >> 29);
  /* floor, wrap */
  return y;
}

For this function, the generated code contains no multiword operations.

 Avoid Multiword Operations in Generated Code

12-77



Find Potential Data Type Issues in Generated Code
In this section...
“Data Type Issues Overview” on page 12-78
“Enable Highlighting of Potential Data Type Issues” on page 12-78
“Find and Address Cumbersome Operations” on page 12-78
“Find and Address Expensive Rounding” on page 12-79
“Find and Address Expensive Comparison Operations” on page 12-80
“Find and Address Multiword Operations” on page 12-80

Data Type Issues Overview
When you convert MATLAB code to fixed point, you can highlight potential data type issues in the
generated report. The report highlights MATLAB code that requires single-precision, double-
precision, or expensive fixed-point operations.

• The double-precision check highlights expressions that result in a double-precision operation.
When trying to achieve a strict-single or fixed-point design, manual inspection of code can be
time-consuming and error prone.

• The single-precision check highlights expressions that result in a single operation.
• The expensive fixed-point operations check identifies optimization opportunities for fixed-point

code. It highlights expressions in the MATLAB code that require cumbersome multiplication or
division, expensive rounding, expensive comparison, or multiword operations. For more
information on optimizing generated fixed-point code, see “Tips for Making Generated Code More
Efficient” on page 49-9.

Enable Highlighting of Potential Data Type Issues
Enable the highlight option using the Fixed-Point Converter app

1 On the Convert to Fixed Point page, click the Settings arrow .
2 Under Plotting and Reporting, set Highlight potential data type issues to Yes.

When conversion is complete, open the fixed-point conversion report to view the highlighting. Click
View report in the Type Validation Output tab.

Enable the highlight option using the command-line interface

1 Create a fixed-point code configuration object:

fixptcfg = coder.config('fixpt');
2 Set the HighlightPotentialDataTypeIssues property of the configuration object to true.

fixptcfg.HighlightPotentialDataTypeIssues = true;

Find and Address Cumbersome Operations
Cumbersome operations usually occur due to an insufficient range of output. Avoid inputs to a
multiply or divide operation that have word lengths larger than the base integer type of your
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processor. Software can process operations with larger word lengths, but this approach requires
more code and runs slower.

This example requires Embedded Coder and Fixed-Point Designer. The target word length for the
processor in this example is 64.

1 Create the function myMul.

function out = myMul(in1, in2)
    out = fi(in1*in2, 1, 64, 0);
end

2 Generate code for myMul.

cfg = coder.config('lib');
cfg.GenerateReport = true;
cfg.HighlightPotentialDataTypeIssues = true;
fm = fimath('ProductMode', 'SpecifyPrecision', 'ProductWordLength', 64);
codegen -config cfg myMul -args {fi(1, 1, 64, 4, fm), fi(1, 1, 64, 4, fm)}

3 Click View report.
4 In the code generation report, click the Code Insights tab.
5 Expand the Potential data type issues section. Then, expand the Expensive fixed-point

operations section.

The report flags the expression in1 * in2. To resolve the issue, modify the data types of in1
and in2 so that the word length of the product does not exceed the target word length of 64.

Find and Address Expensive Rounding
Traditional handwritten code, especially for control applications, almost always uses "no effort"
rounding. For example, for unsigned integers and two's complement signed integers, shifting right
and dropping the bits is equivalent to rounding to floor. To get results comparable to, or better than,
what you expect from traditional handwritten code, use the floor rounding method.

This example requires Embedded Coder and Fixed-Point Designer.

1 Create the function myRounding.

function [quot] = myRounding(in1, in2)
   quot = in1 / in2;
end

2 Generate code for myRounding.

cfg = coder.config('lib');
cfg.GenerateReport = true;
cfg.HighlightPotentialDataTypeIssues = true;
codegen -config cfg myRounding -args {fi(1, 1, 16, 2), fi(1, 1, 16, 4)}

3 Click View report.
4 In the code generation report, click the Code Insights tab.
5 Expand the Potential data type issues section. Then, expand the Expensive fixed-point

operations section.
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The division operation in1/in2 uses the default rounding method, nearest. Changing the
rounding method to Floor provides a more efficient implementation.

Find and Address Expensive Comparison Operations
Comparison operations generate extra code when a casting operation is required to do the
comparison. For example, before comparing an unsigned integer to a signed integer, one of the inputs
must be cast to the signedness of the other. Consider optimizing the data types of the input
arguments so that a cast is not required in the generated code.

This example requires Embedded Coder and Fixed-Point Designer.

1 Create the function myRelop.

function out = myRelop(in1, in2)
    out = in1 > in2;
end

2 Generate code for myRelop.

cfg = coder.config('lib');
cfg.GenerateReport = true;
cfg.HighlightPotentialDataTypeIssues = true;
codegen -config cfg myRelop -args {fi(1, 1, 14, 3, 1), fi(1, 0, 14, 3, 1)}

3 Click View report.
4 In the code generation report, click the Code Insights tab.
5 Expand the Potential data type issues section. Then, expand the Expensive fixed-point

operations section.

The first input argument, in1, is signed, while in2 is unsigned. Extra code is generated because
a cast must occur before the two inputs can be compared.

Change the signedness and scaling of one of the inputs to generate more efficient code.

Find and Address Multiword Operations
Multiword operations can be inefficient on hardware. When an operation has an input or output data
type larger than the largest word size of your processor, the generated code contains multiword
operations. You can avoid multiword operations in the generated code by specifying local fimath
properties for variables. You can also manually specify input and output word lengths of operations
that generate multiword code.
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This example requires Embedded Coder and Fixed-Point Designer. In this example, the target word
length is 64.

1 Create the function myMul.

function out = myMul(in1, in2)
    out = in1 * in2;
end

2 Generate code for myMul.

cfg = coder.config('lib');
cfg.GenerateReport = true;
cfg.HighlightPotentialDataTypeIssues = true;
codegen -config cfg myMul -args {fi(1, 1, 33, 4), fi(1, 1, 32, 4)}

3 Click View report.
4 In the code generation report, click the Code Insights tab.
5 Expand the Potential data type issues section. Then, expand the Expensive fixed-point

operations section.

The report flags the in1 * in2 operation in line 2 of myMul.
6 In the code pane, pause over in1, in2, and the expression in1 * in2. You see that:

• The word length of in1 is 33 bits and the word length of in2 is 32 bits.
• The word length of the expression in1 * in2 is 65 bits.

The software detects a multiword operation because the word length 65 is larger than the target
word length of 64.

7 To resolve this issue, modify the data types of in1 and in2 so that the word length of the product
does not exceed the target word length. Alternatively, specify the ProductMode property of the
local fimath object.

See Also

More About
• “Highlight Potential Data Type Issues in a Report” (Embedded Coder)
• “Code Generation Reports” (MATLAB Coder)
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Interoperability with Other Products

• “fi Objects with Simulink” on page 13-2
• “fi Objects with DSP System Toolbox” on page 13-7
• “Ways to Generate Code” on page 13-10
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fi Objects with Simulink

In this section...
“View and Edit fi objects in Model Explorer” on page 13-2
“Reading Fixed-Point Data from the Workspace” on page 13-3
“Writing Fixed-Point Data to the Workspace” on page 13-3
“Setting the Value and Data Type of Block Parameters” on page 13-6
“Logging Fixed-Point Signals” on page 13-6
“Accessing Fixed-Point Block Data During Simulation” on page 13-6

View and Edit fi objects in Model Explorer
You can view and edit fi objects and their local fimath properties using Model Explorer in Simulink.
You can change the writable properties of fi objects from the Model Explorer, but you cannot change
the numeric type properties of fi objects after creation.

13 Interoperability with Other Products

13-2



Reading Fixed-Point Data from the Workspace
You can read fixed-point data from the MATLAB workspace into a Simulink model via the From
Workspace block. To do so, the data must be in a structure format with a fi object in the values
field. In array format, the From Workspace block only accepts real, double-precision data.

To read in fi data, the Interpolate data parameter of the From Workspace block must not be
selected, and the Form output after final data value by parameter must be set to anything other
than Extrapolation.

Writing Fixed-Point Data to the Workspace
You can write fixed-point output from a model to the MATLAB workspace via the To Workspace block
in either array or structure format. Fixed-point data written by a To Workspace block to the
workspace in structure format can be read back into a Simulink model in structure format by a From
Workspace block.

Note To write fixed-point data to the MATLAB workspace as a fi object, select the Log fixed-point
data as a fi object check box on the To Workspace block dialog. Otherwise, fixed-point data is
converted to double and written to the workspace as double.

For example, you can use the following code to create a structure in the MATLAB workspace with a
fi object in the values field. You can then use the From Workspace block to bring the data into a
Simulink model.

a = fi([sin(0:10)' sin(10:-1:0)'])
 
a =
 
         0   -0.5440
    0.8415    0.4121
    0.9093    0.9893
    0.1411    0.6570
   -0.7568   -0.2794
   -0.9589   -0.9589
   -0.2794   -0.7568
    0.6570    0.1411
    0.9893    0.9093
    0.4121    0.8415
   -0.5440         0

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 15
 
s.signals.values = a

s = 

    signals: [1x1 struct]
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s.signals.dimensions = 2

s = 

    signals: [1x1 struct]

s.time = [0:10]'

s = 

    signals: [1x1 struct]
       time: [11x1 double]

The From Workspace block in the following model has the fi structure s in the Data parameter.

Remember, to write fixed-point data to the MATLAB workspace as a fi object, select the Log fixed-
point data as a fi object check box on the To Workspace block dialog. Otherwise, fixed-point data is
converted to double and written to the workspace as double.

In the model, the following parameters in the Solver pane of the Model Configuration Parameters
dialog have the indicated settings:

• Start time — 0.0
• Stop time — 10.0
• Type — Fixed-step
• Solver — Discrete (no continuous states)
• Fixed step size (fundamental sample time) — 1.0

13 Interoperability with Other Products

13-4



The To Workspace block writes the result of the simulation to the MATLAB workspace as a fi
structure.

simout.signals.values
 
ans =
 
         0   -8.7041
   13.4634    6.5938
   14.5488   15.8296
    2.2578   10.5117
  -12.1089   -4.4707
  -15.3428  -15.3428
   -4.4707  -12.1089
   10.5117    2.2578
   15.8296   14.5488
    6.5938   13.4634
   -8.7041         0

DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 32
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        FractionLength: 25

Setting the Value and Data Type of Block Parameters
You can use Fixed-Point Designer expressions to specify the value and data type of block parameters
in Simulink. For more information, see “Specify Fixed-Point Data Types”.

Logging Fixed-Point Signals
When fixed-point signals are logged to the MATLAB workspace via signal logging, they are always
logged as fi objects.

To enable signal logging for a signal:

1 Select the signal.
2 Open the Record dropdown.
3 Select Log/Unlog Selected Signals.

For more information, refer to “Export Signal Data Using Signal Logging”.

When you log signals from a referenced model or Stateflow® chart in your model, the word lengths of
fi objects may be larger than you expect. The word lengths of fixed-point signals in referenced
models and Stateflow charts are logged as the next largest data storage container size.

Accessing Fixed-Point Block Data During Simulation
Simulink provides an application program interface (API) that enables programmatic access to block
data, such as block inputs and outputs, parameters, states, and work vectors, while a simulation is
running. You can use this interface to develop MATLAB programs capable of accessing block data
while a simulation is running or to access the data from the MATLAB command line. Fixed-point
signal information is returned to you via this API as fi objects. For more information on the API,
refer to “Accessing Block Data During Simulation” in the Simulink documentation.
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fi Objects with DSP System Toolbox
In this section...
“Reading Fixed-Point Signals from the Workspace” on page 13-7
“Writing Fixed-Point Signals to the Workspace” on page 13-7

Reading Fixed-Point Signals from the Workspace
You can read fixed-point data from the MATLAB workspace into a Simulink model using the Signal
From Workspace and Triggered Signal From Workspace blocks from DSP System Toolbox software.
Enter the name of the defined fi variable in the Signal parameter of the Signal From Workspace or
Triggered Signal From Workspace block.

Writing Fixed-Point Signals to the Workspace
Fixed-point output from a model can be written to the MATLAB workspace via the To Workspace or
Triggered To Workspace block from the blockset. The fixed-point data is always written as a 2-D or 3-
D array.

Note To write fixed-point data to the MATLAB workspace as a fi object, select the Log fixed-point
data as a fi object check box on the Signal To Workspace or Triggered To Workspace block dialog.
Otherwise, fixed-point data is converted to double and written to the workspace as double.

For example, you can use the following code to create a fi object in the MATLAB workspace. You can
then use the Signal From Workspace block to bring the data into a Simulink model.

a = fi([sin(0:10)' sin(10:-1:0)'])
 
a =
 
         0   -0.5440
    0.8415    0.4121
    0.9093    0.9893
    0.1411    0.6570
   -0.7568   -0.2794
   -0.9589   -0.9589
   -0.2794   -0.7568
    0.6570    0.1411
    0.9893    0.9093
    0.4121    0.8415
   -0.5440         0

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 15

The Signal From Workspace block in the following model has these settings:
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• Signal — a
• Sample time — 1
• Samples per frame — 2
• Form output after final data value by — Setting to zero

The following parameters in the Solver pane of the Model Configuration Parameters dialog have
these settings:

• Start time — 0.0
• Stop time — 10.0
• Type — Fixed-step
• Solver — Discrete (no continuous states)
• Fixed step size (fundamental sample time) — 1.0

Remember, to write fixed-point data to the MATLAB workspace as a fi object, select the Log fixed-
point data as a fi object check box on the Signal To Workspace block dialog. Otherwise, fixed-point
data is converted to double and written to the workspace as double.

The Signal To Workspace block writes the result of the simulation to the MATLAB workspace as a fi
object.

yout =
 

(:,:,1) =
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    0.8415   -0.1319
   -0.8415   -0.9561

(:,:,2) =

    1.0504    1.6463
    0.7682    0.3324

(:,:,3) =

   -1.7157   -1.2383
    0.2021    0.6795

(:,:,4) =

    0.3776   -0.6157
   -0.9364   -0.8979

(:,:,5) =

    1.4015    1.7508
    0.5772    0.0678

(:,:,6) =

   -0.5440         0
   -0.5440         0

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 17
        FractionLength: 15
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Ways to Generate Code
There are several ways to use Fixed-Point Designer software to generate code:

• The Fixed-Point Designer fiaccel function converts your fixed-point MATLAB code to a MEX
function and can greatly accelerate the execution speed of your fixed-point algorithms.

• The MATLAB Coder codegen function automatically converts MATLAB code to C/C++ code.
Using the MATLAB Coder software allows you to accelerate your MATLAB code that uses Fixed-
Point Designer software. To use the codegen function with Fixed-Point Designer software, you
also need to have a MATLAB Coder license. For more information, see “Generate C Code at the
Command Line” (MATLAB Coder).

• The MATLAB Function block allows you to use MATLAB code in your Simulink models that
generate embeddable C/C++ code. To use the MATLAB Function block with Fixed-Point Designer
software, you also need a Simulink license. For more information on the MATLAB Function block,
see the Simulink documentation.
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Calling Functions for Code Generation

• “Resolution of Function Calls for Code Generation” on page 14-2
• “Resolution of File Types on Code Generation Path” on page 14-5
• “Compilation Directive %#codegen” on page 14-7
• “Use MATLAB Engine to Execute a Function Call in Generated Code” on page 14-8
• “Code Generation for Recursive Functions” on page 14-14
• “Force Code Generator to Use Run-Time Recursion” on page 14-16
• “Avoid Duplicate Functions in Generated Code” on page 14-19
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Resolution of Function Calls for Code Generation
From a MATLAB function, you can call local functions, supported toolbox functions, and other
MATLAB functions. MATLAB resolves function names for code generation as follows:
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Key Points About Resolving Function Calls
The diagram illustrates key points about how MATLAB resolves function calls for code generation:

• Searches two paths, the code generation path and the MATLAB path

See “Compile Path Search Order” on page 14-4.
• Attempts to compile functions unless the code generator determines that it should not compile

them or you explicitly declare them to be extrinsic.

If a MATLAB function is not supported for code generation, you can declare it to be extrinsic by
using the construct coder.extrinsic, as described in “Use the coder.extrinsic Construct” on
page 14-9. During simulation, the code generator produces code for the call to an extrinsic
function, but does not generate the internal code for the function. Therefore, simulation can run
only on platforms where MATLAB software is installed. During standalone code generation, the
code generator attempts to determine whether the extrinsic function affects the output of the
function in which it is called — for example by returning mxArrays to an output variable. If the
output does not change, code generation proceeds, but the extrinsic function is excluded from the
generated code. Otherwise, compilation errors occur.

The code generator detects calls to many common visualization functions, such as plot, disp,
and figure. The software treats these functions like extrinsic functions but you do not have to
declare them extrinsic using the coder.extrinsic function.

• Resolves file type based on precedence rules described in “Resolution of File Types on Code
Generation Path” on page 14-5

Compile Path Search Order
During code generation, function calls are resolved on two paths:

1 Code generation path

MATLAB searches this path first during code generation. The code generation path contains the
toolbox functions supported for code generation.

2 MATLAB path

If the function is not on the code generation path, MATLAB searches this path.

MATLAB applies the same dispatcher rules when searching each path (see “Function Precedence
Order”).

When to Use the Code Generation Path
Use the code generation path to override a MATLAB function with a customized version. A file on the
code generation path shadows a file of the same name on the MATLAB path.

For more information on how to add additional folders to the code generation path, see “Paths and
File Infrastructure Setup” (MATLAB Coder).
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Resolution of File Types on Code Generation Path
MATLAB uses the following precedence rules for code generation:
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Compilation Directive %#codegen
Add the %#codegen directive (or pragma) to your function after the function signature to indicate
that you intend to generate code for the MATLAB algorithm. Adding this directive instructs the
MATLAB Code Analyzer to help you diagnose and fix violations that would result in errors during
code generation.

function y = my_fcn(x) %#codegen

....

Note The %#codegen directive is not necessary for MATLAB Function blocks. Code inside a MATLAB
Function block is always intended for code generation. The %#codegen directive, or the absence of it,
does not change the error checking behavior.

 Compilation Directive %#codegen
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Use MATLAB Engine to Execute a Function Call in Generated
Code

When processing a call to a function foo in your MATLAB code, the code generator finds the
definition of foo and generates code for its body. In some cases, you might want to bypass code
generation and instead use the MATLAB engine to execute the call. Use coder.extrinsic('foo')
to declare that calls to foo do not generate code and instead use the MATLAB engine for execution.
In this context, foo is referred to as an extrinsic function. This functionality is available only when
the MATLAB engine is available during execution. Examples of such situations include execution of
MEX functions, Simulink simulations, or function calls at the time of code generation (also known as
compile time).

If you generate standalone code for a function that calls foo and includes
coder.extrinsic('foo'), the code generator attempts to determine whether foo affects the
output. If foo does not affect the output, the code generator proceeds with code generation, but
excludes foo from the generated code. Otherwise, the code generator produces a compilation error.

Including the coder.extrinsic('foo') directive inside a certain MATLAB function declares all
calls to foo inside that MATLAB function as extrinsic. Alternatively, you might want to narrow the
scope of extrinsic declaration to just one call to foo. See “Call MATLAB Functions Using feval”
(MATLAB Coder).

When To Declare a Function as Extrinsic
These are some common situations in which you might consider declaring a MATLAB function as
extrinsic:
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• The function performs display or logging actions. Such functions are useful primarily during
simulation and are not used in embedded systems.

• In your MEX execution or Simulink simulation, you want to use a MATLAB function that is not
supported for code generation. This workflow does not apply to non-simulation targets.

• You instruct the code generator to constant fold a function call by using coder.const. In such
situations, the function is called only during code generation when the MATLAB engine is
available for executing the call.

Use the coder.extrinsic Construct
To declare a function foo as extrinsic, include this statement in your MATLAB code.

coder.extrinsic('foo')

When declaring functions as extrinsic for code generation, adhere to these rules:

• Declare the function as extrinsic before you call it.
• Do not use the extrinsic declaration in conditional statements.
• Assign the return value of an extrinsic function to a known type. See “Working with mxArrays”

(MATLAB Coder).

For additional information and examples, see coder.extrinsic.

The code generator automatically treats many common MATLAB visualization functions, such as
plot, disp, and figure, as extrinsic. You do not have to explicitly declare them as extrinsic
functions by using coder.extrinsic. For example, you might want to call plot to visualize your
results in the MATLAB environment. If you generate a MEX function from a function that calls plot,
and then run the generated MEX function, the code generator dispatches calls to the plot function
to the MATLAB engine. If you generate a library or executable, the generated code does not contain
calls to the plot function.

If you generate MEX or standalone C/C++ code by using MATLAB Coder, the code generation report
highlights calls from your MATLAB code to extrinsic functions. By inspecting the report, you can
determine which functions are supported only in the MATLAB environment.

 Use MATLAB Engine to Execute a Function Call in Generated Code
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Scope of Extrinsic Function Declarations

The coder.extrinsic construct has function scope. For example, consider the following code:

function y = foo %#codegen
coder.extrinsic('rat','min');
[N D] = rat(pi);
y = 0;
y = min(N, D);

In this example, rat and min as treated as extrinsic every time they are called in the main function
foo. There are two ways to narrow the scope of an extrinsic declaration inside the main function:

• Declare the MATLAB function extrinsic in a local function, as in this example:

function y = foo %#codegen
coder.extrinsic('rat');
[N D] = rat(pi);
y = 0;
y = mymin(N, D);
 
function y = mymin(a,b)
coder.extrinsic('min');
y = min(a,b);

Here, the function rat is extrinsic every time it is called inside the main function foo, but the
function min is extrinsic only when called inside the local function mymin.

• Instead of using the coder.extrinsic construct, call the MATLAB function using feval. This
approach is described in the next section.

Extrinsic Declaration for Nonstatic Methods

Suppose that you define a class myClass that has a nonstatic method foo, and then create an
instance obj of this class. If you want to declare the method obj.foo as extrinsic in your MATLAB
code that you intend for code generation, follow these rules:

• Write the call to foo as a function call. Do not write the call by using the dot notation.
• Declare foo to be extrinsic by using the syntax coder.extrinsic('foo').

For example, define myClass as:

classdef myClass
    properties
        prop = 1
    end
    methods
        function y = foo(obj,x)
            y = obj.prop + x;
        end
    end
end

Here is an example MATLAB function that declares foo as extrinsic.

function y = myFunction(x) %#codegen
coder.extrinsic('foo');
obj = myClass;
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y = foo(obj,x);
end

Nonstatic methods are also known as ordinary methods. See “Define Class Methods and Functions”.

Additional Uses

Use the coder.extrinsic construct to:

• Call MATLAB functions that do not produce output during simulation without generating
unnecessary code.

• Make your code self-documenting and easier to debug. You can scan the source code for
coder.extrinsic statements to isolate calls to MATLAB functions, which can potentially create
and propagate mxArrays. See “Working with mxArrays” (MATLAB Coder).

Call MATLAB Functions Using feval
To narrow the scope of extrinsic declaration to just one function call, use the function feval. feval
is automatically interpreted as an extrinsic function during code generation. So, you can use feval
to call functions that you want to execute in the MATLAB environment, rather than compile to
generated code.

Consider this example:

function y = foo 
coder.extrinsic('rat');
[N D] = rat(pi);
y = 0;
y = feval('min',N,D);

Because feval is extrinsic, the statement feval('min',N,D) is evaluated by MATLAB, not
compiled, which has the same result as declaring the function min extrinsic for just this one call. By
contrast, the function rat is extrinsic throughout the function foo.

The code generator does not support the use of feval to call local functions or functions that are
located in a private folder.

Working with mxArrays
The run-time output of an extrinsic function is an mxArray, also known as a MATLAB array. The only
valid operations for mxArrays are:

• Storing an mxArray in a variable.
• Passing an mxArray to an extrinsic function.
• Returning an mxArray from a function back to MATLAB.
• Converting an mxArray to a known type at run time. Assign the mxArray to a variable whose type

is already defined by a prior assignment. See the following example.

To use an mxArray returned by an extrinsic function in other operations (for example, returning it
from a MATLAB Function block to Simulink execution), you must first convert it to a known type.

If the input arguments of a function are mxArrays, the code generator automatically treats the
function as extrinsic.

 Use MATLAB Engine to Execute a Function Call in Generated Code
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Convert mxArrays to Known Types

To convert an mxArray to a known type, assign the mxArray to a variable whose type is defined. At
run time, the mxArray is converted to the type of the variable that it is assigned to. If the data in the
mxArray is not consistent with the type of the variable, you get a run-time error.

For example, consider this code:

function y = foo %#codegen
coder.extrinsic('rat');
[N D] = rat(pi);
y = min(N,D);

Here, the top-level function foo calls the extrinsic MATLAB function rat, which returns two
mxArrays representing the numerator N and denominator D of the rational fraction approximation of
pi. You can pass these mxArrays to another MATLAB function, in this case, min. Because the inputs
passed to min are mxArrays, the code generator automatically treats min as an extrinsic function. As
a result, min returns an mxArray.

While generating a MEX function by using MATLAB Coder, you can directly assign this mxArray
returned by min to the output y because the MEX function returns its output to MATLAB.

codegen foo

Code generation successful.

But if you put foo in a MATLAB Function block in a Simulink model and then update or run the
model, you get this error:

Function output 'y' cannot be an mxArray in this context. 
Consider preinitializing the output variable with a known type.

This error occurs because returning an mxArray back to Simulink is not supported. To fix this issue,
define y to be the type and size of the value that you expect min to return, in this case, a scalar
double:

function y = foo %#codegen
coder.extrinsic('rat');
[N D] = rat(pi);
y = 0; % Define y as a scalar of type double
y = min(N,D);

In this example, the output of the extrinsic function min affects the output y of the entry-point
function foo for which you are generating code. If you attempt to generate standalone code (for
example, a static library) for foo, the code generator is unable to ignore the extrinsic function call
and produces a code generation error.

codegen -config:lib foo

??? The extrinsic function 'min' is not available for standalone code generation. It must be eliminated for stand-alone code to be
generated. It could not be eliminated because its outputs appear to influence the calling function. Fix this error by not using
'min' or by ensuring that its outputs are unused.

Error in ==> foo Line: 4 Column: 5
Code generation failed: View Error Report

Error using codegen
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Restrictions on Using Extrinsic Functions
The full MATLAB run-time environment is not supported during code generation. Therefore, the
following restrictions apply when calling MATLAB functions extrinsically:

• MATLAB functions that inspect the caller, or read or write to the caller workspace, do not work
during code generation. Such functions include:

• dbstack
• evalin
• assignin
• save

• Functions in generated code can produce unpredictable results if your extrinsic function performs
these actions at run time:

• Changes folders
• Changes the MATLAB path
• Deletes or adds MATLAB files
• Changes warning states
• Changes MATLAB preferences
• Changes Simulink parameters

• The code generator does not support the use of coder.extrinsic to call functions that are
located in a private folder.

• The code generator does not support the use of coder.extrinsic to call local functions.
• You can call extrinsic functions with up to 64 inputs and 64 outputs.

See Also
coder.extrinsic | coder.const
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Code Generation for Recursive Functions
To generate code for recursive MATLAB functions, the code generator uses compile-time recursion on
page 14-14 or run-time recursion on page 14-14. You can influence whether the code generator
uses compile-time or run-time recursion by modifying your MATLAB code. See “Force Code Generator
to Use Run-Time Recursion” on page 14-16.

You can disallow recursion on page 14-15 or disable run-time recursion on page 14-15 by modifying
configuration parameters.

When you use recursive functions in MATLAB code that is intended for code generation, you must
adhere to certain restrictions. See “Recursive Function Limitations for Code Generation” on page 14-
15.

Compile-Time Recursion
With compile-time recursion, the code generator creates multiple versions of a recursive function in
the generated code. The inputs to each version have values or sizes that are customized for that
version. These versions are known as function specializations. You can see if the code generator used
compile-time recursion by looking at the code generation report. Here is an example of compile-time
recursion in the report.

Run-Time Recursion
With run-time recursion, the code generator produces a recursive function in the generated code. You
can see if the code generator used run-time recursion by looking at the code generation report. Here
is an example of run-time recursion in the report.
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Disallow Recursion
In a code acceleration configuration object, set the value of the CompileTimeRecursionLimit
configuration parameter to 0.

Disable Run-Time Recursion
Some coding standards, such as MISRA, do not allow recursion. To increase the likelihood of
generating code that is compliant with MISRA C®, disable run-time recursion.

In a code acceleration configuration object, set EnableRuntimeRecursion to false.

If your code requires run-time recursion and run-time recursion is disabled, you must rewrite your
code so that it uses compile-time recursion or does not use recursion.

Recursive Function Limitations for Code Generation
When you use recursion in MATLAB code that is intended for code generation, follow these
restrictions:

• Assign all outputs of a run-time recursive function before the first recursive call in the function.
• Assign all elements of cell array outputs of a run-time recursive function.
• Inputs and outputs of run-time recursive functions cannot be classes.
• The StackUsageMax code acceleration configuration parameter is ignored for run-time recursion.

See Also

More About
• “Force Code Generator to Use Run-Time Recursion” on page 14-16
• “Output Variable Must Be Assigned Before Run-Time Recursive Call” on page 49-36
• “Compile-Time Recursion Limit Reached” on page 49-33
• “Set Up C Code Compilation Options” on page 12-17
• “Code Generation Reports” on page 12-26
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Force Code Generator to Use Run-Time Recursion
When your MATLAB code includes recursive function calls, the code generator uses compile-time or
run-time recursion. With compile-time recursion on page 14-14, the code generator creates multiple
versions of the recursive function in the generated code. These versions are known as function
specializations. With run-time recursion on page 14-14, the code generator produces a recursive
function. If compile-time recursion results in too many function specializations or if you prefer run-
time recursion, you can try to force the code generator to use run-time recursion. Try one of these
approaches:

• “Treat the Input to the Recursive Function as a Nonconstant” on page 14-16
• “Make the Input to the Recursive Function Variable-Size” on page 14-17
• “Assign Output Variable Before the Recursive Call” on page 14-18

Treat the Input to the Recursive Function as a Nonconstant
Consider this function:

function y = call_recfcn(n)
A = ones(1,n);
x = 5;
y = recfcn(A,x);
end

function y = recfcn(A,x)
if size(A,2) == 1 || x == 1
    y = A(1);
else
    y = A(1)+recfcn(A(2:end),x-1);
end
end

call_recfcn calls recfcn with the value 5 for the second argument. recfcn calls itself recursively
until x is 1. For each recfcn call, the input argument x has a different value. The code generator
produces five specializations of recfcn, one for each call.

To force run-time recursion, in call_recfcn, in the call to recfcn, instruct the code generator to
treat the value of the input argument x as a nonconstant value by using coder.ignoreConst.
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function y = call_recfcn(n)
A = ones(1,n);
x = coder.ignoreConst(5);
y = recfcn(A,x);
end

function y = recfcn(A,x)
if size(A,2) == 1 || x == 1
    y = A(1);
else
    y = A(1)+recfcn(A(2:end),x-1);
end
end

, you see only one specialization.

Make the Input to the Recursive Function Variable-Size
Consider this code:

function z = call_mysum(A)
%#codegen
z = mysum(A);
end

function y = mysum(A)
coder.inline('never');
if size(A,2) == 1
    y = A(1);
else
    y = A(1)+ mysum(A(2:end));
end
end

If the input to mysum is fixed-size, the code generator uses compile-time recursion. To force the code
generator to use run-time conversion, make the input to mysum variable-size by using
coder.varsize.

function z = call_mysum(A)
%#codegen
B = A;
coder.varsize('B');
z = mysum(B);
end

function y = mysum(A)
coder.inline('never');
if size(A,2) == 1

 Force Code Generator to Use Run-Time Recursion

14-17



    y = A(1);
else
    y = A(1)+ mysum(A(2:end));
end
end

Assign Output Variable Before the Recursive Call
The code generator uses compile-time recursion for this code:

function y = callrecursive(n)
x = 10;
y = myrecursive(x,n);
end

function y = myrecursive(x,n)
coder.inline('never')
if x > 1
    y = n + myrecursive(x-1,n-1);
    
else
    y = n;
end
end

To force the code generator to use run-time recursion, modify myrecursive so that the output y is
assigned before the recursive call. Place the assignment y = n in the if block and the recursive call
in the else block.

function y = callrecursive(n)
x = 10;
y = myrecursive(x,n);
end

function y = myrecursive(x,n)
coder.inline('never')
if x == 1
    y = n;  
else
    y = n + myrecursive(x-1,n-1);
end
end

See Also

More About
• “Code Generation for Recursive Functions” on page 14-14
• “Output Variable Must Be Assigned Before Run-Time Recursive Call” on page 49-36
• “Compile-Time Recursion Limit Reached” on page 49-33
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Avoid Duplicate Functions in Generated Code

Issue
You generate code and it contains multiple, duplicate copies of the same functions, with only slight
differences, such as modifications to the function signature. For example, your generated code might
contain functions called foo and b_foo. Duplicate functions can make the generated code more
difficult to analyze and manage.

Cause
Duplicate functions in the generated code are the result of function specializations. The code
generator specializes functions when it detects that they differ at different call sites by:

• Number of input or output variables.
• Type of input or output variables.
• Size of input or output variables.
• Values of input variables.

In some cases, these specializations are necessary for the generated C/C++ code because C/C++
functions do not have the same flexibility as MATLAB functions. In other cases, the code generator
specializes functions to optimize the generated code or because of a lack of information.

Solution
In certain cases, you can alter your MATLAB code to avoid the generation of duplicate functions.

Identify Duplicate Functions by Using Code Generation Report

You can determine whether the code generator created duplicate functions by inspecting the code
generation report or in Simulink, the MATLAB Function report. The report shows a list of the
duplicate functions underneath the entry-point function. For example:

Duplicate Functions Generated for Multiple Input Sizes

If your MATLAB code calls a function multiple times and passes inputs of different sizes, the code
generator can create specializations of the function for each size. To avoid this issue, use on the
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function input. For example, this code uses coder.ignoreSize to avoid creating multiple copies of
the function indexOf:

function [out1, out2] = test1(in)
  a = 1:10;
  b = 2:40;
  % Without coder.ignoreSize duplicate functions are generated
  out1 = indexOf(coder.ignoreSize(a), in);
  out2 = indexOf(coder.ignoreSize(b), in);
end

function index = indexOf(array, value)
  coder.inline('never');
  for i = 1:numel(array)
      if array(i) == value
          index = i;
          return
      end
  end
  index = -1;
  return
end

To generate code, enter:

codegen test1 -config:lib -report -args {1}

Duplicate Functions Generated for Different Input Values

If your MATLAB code calls a function and passes multiple different constant inputs, the code
generator can create specializations of the function for each different constant. In this case, use to
indicate to the code generator not to treat the value as an immutable constant. For example:

function [out3, out4] = test2(in)
  c = ['a', 'b', 'c'];
  if in > 0
      c(2)='d';
  end
  out3 = indexOf(c, coder.ignoreConst('a')); 
  out4 = indexOf(c, coder.ignoreConst('b')); 
end

function index = indexOf(array, value)
  coder.inline('never');
  for i = 1:numel(array)
      if array(i) == value
          index = i;
          return
      end
  end
  index = -1;
  return
end

To generate code, enter:

codegen test2 -config:lib -report -args {1}
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Duplicate Functions Generated for Different Number of Outputs

If your MATLAB code calls a function and accepts a different number of outputs at different call sites,
the code generator can produce specializations for each call. For example:

[a b] = foo();
c = foo();

To make each call return the same number of outputs and avoid duplicate functions, use the ~
symbol:

[a b] = foo();
[c, ~] = foo();

See Also
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Code Generation for MATLAB Classes

• “MATLAB Classes Definition for Code Generation” on page 15-2
• “Classes That Support Code Generation” on page 15-7
• “Generate Code for MATLAB Value Classes” on page 15-8
• “Generate Code for MATLAB Handle Classes and System Objects” on page 15-12
• “Code Generation for Handle Class Destructors” on page 15-15
• “Class Does Not Have Property” on page 15-18
• “Handle Object Limitations for Code Generation” on page 15-19
• “System Objects in MATLAB Code Generation” on page 15-22
• “Specify Objects as Inputs” on page 15-25
• “Work Around Language Limitation: Code Generation Does Not Support Object Arrays”

on page 15-28
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MATLAB Classes Definition for Code Generation
To generate efficient standalone code for MATLAB classes, you must use classes differently than
when running your code in the MATLAB environment.

What’s Different More Information
Restricted set of language features. “Language Limitations” on page 15-2
Restricted set of code generation features. “Code Generation Features Not Compatible with

Classes” on page 15-3
Definition of class properties. “Defining Class Properties for Code Generation”

on page 15-3
Use of handle classes. “Generate Code for MATLAB Handle Classes and

System Objects” on page 15-12

“Code Generation for Handle Class Destructors”
on page 15-15

“Handle Object Limitations for Code Generation”
on page 15-19

Global variables containing MATLAB handle
objects are not supported for code generation.

N/A

Inheritance from built-in MATLAB classes is not
supported.

“Inheritance from Built-In MATLAB Classes Not
Supported” on page 15-5

Language Limitations
Although code generation support is provided for common features of classes such as properties and
methods, there are a number of advanced features which are not supported, such as:

• Events
• Listeners
• Arrays of objects
• Recursive data structures

• Linked lists
• Trees
• Graphs

• Nested functions in constructors
• Overloadable operators subsref, subsassign, and subsindex

In MATLAB, classes can define their own versions of the subsref, subsassign, and subsindex
methods. Code generation does not support classes that have their own definitions of these
methods.

• The empty method

In MATLAB, classes have a built-in static method, empty, which creates an empty array of the
class. Code generation does not support this method.
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• The following MATLAB handle class methods:

• addlistener
• eq
• findobj
• findpro

• The AbortSet property attribute

Code Generation Features Not Compatible with Classes
• You can generate code for entry-point MATLAB functions that use classes, but you cannot

generate code directly for a MATLAB class.

For example, if ClassNameA is a class definition, you cannot generate code by executing:

codegen ClassNameA
• A handle class object cannot be an entry-point function input or output.
• A value class object can be an entry-point function input or output. However, if a value class object

contains a handle class object, then the value class object cannot be an entry-point function input
or output. A handle class object cannot be an entry-point function input or output.

• Code generation does not support global variables that are handle classes.
• Code generation does not support multiple outputs from constructors.
• Code generation does not support assigning an object of a value class into a nontunable property.

For example, obj.prop=v; is invalid when prop is a nontunable property and v is an object
based on a value class.

• You cannot use coder.extrinsic to declare a class or method as extrinsic.
• If an object has duplicate property names and the code generator tries to constant-fold the object,

code generation can fail. The code generator constant-folds an object when it is used with
coder.Constant or , or when it is an input to or output from a constant-folded extrinsic function.

Duplicate property names occur in an object of a subclass in these situations:

• The subclass has a property with the same name as a property of the superclass.
• The subclass derives from multiple superclasses that use the same name for a property.

For information about when MATLAB allows duplicate property names, see “Subclassing Multiple
Classes”.

Defining Class Properties for Code Generation
For code generation, you must define class properties differently than you do when running your code
in the MATLAB environment:

• To test property validation, it is a best practice to run a MEX function over the full range of input
values.

• After defining a property, do not assign it an incompatible type. Do not use a property before
attempting to grow it.

When you define class properties for code generation, consider the same factors that you take into
account when defining variables. In the MATLAB language, variables can change their class, size,
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or complexity dynamically at run time so you can use the same variable to hold a value of varying
class, size, or complexity. C and C++ use static typing. Before using variables, to determine their
type, the code generator requires a complete assignment to each variable. Similarly, before using
properties, you must explicitly define their class, size, and complexity.

• Initial values:

• If the property does not have an explicit initial value, the code generator assumes that it is
undefined at the beginning of the constructor. The code generator does not assign an empty
matrix as the default.

• If the property does not have an initial value and the code generator cannot determine that the
property is assigned prior to first use, the software generates a compilation error.

• For System objects, if a nontunable property is a structure, you must completely assign the
structure. You cannot do partial assignment using subscripting.

For example, for a nontunable property, you can use the following assignment:

mySystemObject.nonTunableProperty=struct('fieldA','a','fieldB','b');

You cannot use the following partial assignments:

mySystemObject.nonTunableProperty.fieldA = 'a';
mySystemObject.nonTunableProperty.fieldB = 'b';

• coder.varsize is not supported for class properties.
• If the initial value of a property is an object, then the property must be constant. To make a

property constant, declare the Constant attribute in the property block. For example:

classdef MyClass 
    properties (Constant) 
        p1 = MyClass2; 
    end 
end 

• MATLAB computes class initial values at class loading time before code generation. If you use
persistent variables in MATLAB class property initialization, the value of the persistent variable
computed when the class loads belongs to MATLAB; it is not the value used at code generation
time. If you use coder.target in MATLAB class property initialization,
coder.target('MATLAB') returns true (1).

• Variable-size properties:

• Code generation supports upper-bounded and unbounded variable-size properties for both
value and handle classes.

• To generate unbounded variable-size class properties, enable dynamic memory allocation.
• To make a variable-size class property, make two sequential assignments of a class property,

one to a scalar and the next to an array.
classdef varSizeProp1 < handle
    properties
        prop
        varProp
    end
end

function extFunc(n)
    obj = varSizeProp1;    
    % Assign a scalar value to the property.
    obj.prop = 1;
    obj.varProp = 1;
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    % Assign an array to the same property to make it variable-sized.
    obj.prop = 1:98;    
    obj.varProp = 1:n;
end

In the preceding code, the first assignment to prop and varProp is scalar, and their second
assignment is to an array with the same base type. The size of prop has an upper bound of 98,
making it an upper-bounded, variable-size property.

If n is unknown at compile time, obj.varProp is an unbounded variable-size property. If it is
known, it is an upper-bounded, variable-size class property.

• If the class property is initialized with a variable-size array, the property is variable-size.
classdef varSizeProp2 
    properties
        prop
    end
    methods
        function obj = varSizeProp2(inVar)
            % Assign incoming value to local variable
            locVar = inVar;
            
            % Declare the local variable to be a variable-sized column             
            % vector with no size limit
            coder.varsize('locVar',[inf 1],[1 0]);
            
            % Assign value
            obj.prop = locVar;
         end
    end
end

In the preceding code, inVar is passed to the class constructor and stored in locVar. locVar
is modified to be variable-size by coder.varsize and assigned to the class property
obj.prop, which makes the property variable-size.

• If the input to the function call varSizeProp2 is variable-size, coder.varsize is not
required.

function z = constructCall(n)
    z = varSizeProp2(1:n);
end

• If the value of n is unknown at compile-time and has no specified bounds, z.prop is an
unbounded variable-size class property.

• If the value of n is unknown at compile-time and has specified bounds, z.prop is an upper-
bounded variable-size class property.

• If a property is constant and its value is an object, you cannot change the value of a property of
that object. For example, suppose that:

• obj is an object of myClass1.
• myClass1 has a constant property p1 that is an object of myClass2.
• myClass2 has a property p2.

Code generation does not support the following code:

obj.p1.p2 = 1;

Inheritance from Built-In MATLAB Classes Not Supported
You cannot generate code for classes that inherit from built-in MATLAB classes. For example, you
cannot generate code for the following class:
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classdef myclass < double

An exception to this rule is the MATLAB enumeration class. You can generate code for enumeration
classes that inherit from built-in MATLAB classes. See “Code Generation for Enumerations” (MATLAB
Coder).
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Classes That Support Code Generation
You can generate code for MATLAB value and handle classes and user-defined System objects. Your
class can have multiple methods and properties and can inherit from multiple classes.

To generate code for: Example:
Value classes “Generate Code for MATLAB Value Classes” on

page 15-8
Handle classes including user-defined System
objects

“Generate Code for MATLAB Handle Classes and
System Objects” on page 15-12

For more information, see:

• “Role of Classes in MATLAB”
• “MATLAB Classes Definition for Code Generation” on page 15-2
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Generate Code for MATLAB Value Classes
This example shows how to generate code for a MATLAB value class and then view the generated
code in the code generation report.

1 In a writable folder, create a MATLAB value class, Shape. Save the code as Shape.m.

classdef Shape 
% SHAPE Create a shape at coordinates 
% centerX and centerY
    properties
        centerX;
        centerY;
    end
    properties (Dependent = true)
        area;
    end
    methods 
        function out = get.area(obj)
            out =  obj.getarea();
        end
        function obj = Shape(centerX,centerY)
            obj.centerX = centerX;
            obj.centerY = centerY;
        end
    end
    methods(Abstract = true)
        getarea(obj);
    end
    methods(Static)
        function d = distanceBetweenShapes(shape1,shape2)
            xDist = abs(shape1.centerX - shape2.centerX);
            yDist = abs(shape1.centerY - shape2.centerY);
            d = sqrt(xDist^2 + yDist^2);
        end
    end
end  

2 In the same folder, create a class, Square, that is a subclass of Shape. Save the code as
Square.m.

classdef Square < Shape 
% Create a Square at coordinates center X and center Y 
% with sides of length of side
    properties
        side;
    end
    methods
        function obj = Square(side,centerX,centerY)
            obj@Shape(centerX,centerY);
            obj.side = side;
        end
        function Area = getarea(obj)
            Area = obj.side^2;
        end
    end
end
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3 In the same folder, create a class, Rhombus, that is a subclass of Shape. Save the code as
Rhombus.m.

classdef Rhombus < Shape
    properties
        diag1;
        diag2;
    end
    methods
        function obj = Rhombus(diag1,diag2,centerX,centerY)
            obj@Shape(centerX,centerY);
            obj.diag1 = diag1;
            obj.diag2 = diag2;
        end
        function Area = getarea(obj)
            Area = 0.5*obj.diag1*obj.diag2;
        end
    end
end

4 Write a function that uses this class.

function [TotalArea, Distance] =   use_shape
%#codegen
s = Square(2,1,2);
r = Rhombus(3,4,7,10);
TotalArea  = s.area + r.area;
Distance = Shape.distanceBetweenShapes(s,r);  

5 Generate a static library for use_shape and generate a code generation report.

codegen -config:lib -report use_shape

codegen generates a C static library with the default name, use_shape, and supporting files in
the default folder, codegen/lib/use_shape.

6 Click the View report link.
7 To see the Rhombus class definition, on the MATLAB Source pane, under Rhombus.m, click

Rhombus. The Rhombus class constructor is highlighted.
8 Click the Variables tab. You see that the variable obj is an object of the Rhombus class. To see

its properties, expand obj.
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9 In the MATLAB Source pane, click Call Tree.

The Call Tree view shows that use_shape calls the Rhombus constructor and that the Rhombus
constructor calls the Shape constructor.

10 In the code pane, in the Rhombus class constructor, move your pointer to this line:

obj@Shape(centerX,centerY)

The Rhombus class constructor calls the Shape method of the base Shape class. To view the
Shape class definition, in obj@Shape, double-click Shape.
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Generate Code for MATLAB Handle Classes and System Objects
This example shows how to generate code for a user-defined System object and then view the
generated code in the code generation report.

1 In a writable folder, create a System object, AddOne, which subclasses from matlab.System.
Save the code as AddOne.m.

classdef AddOne < matlab.System
% ADDONE Compute an output value that increments the input by one

  methods (Access=protected)
    % stepImpl method is called by the step method
    function y = stepImpl(~,x)
      y = x+1;
    end
  end
end      

2 Write a function that uses this System object.

function y = testAddOne(x)
%#codegen
  p = AddOne();
  y = p.step(x);
end    

3 Generate a MEX function for this code.

codegen -report testAddOne -args {0}

The -report option instructs codegen to generate a code generation report, even if no errors
or warnings occur. The -args option specifies that the testAddOne function takes one scalar
double input.

4 Click the View report link.
5 In the MATLAB Source pane, click testAddOne. To see information about the variables in

testAddOne, click the Variables tab.
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6 To view the class definition for addOne, in the MATLAB Source pane, click AddOne.
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See Also

More About
• “Code Generation for Handle Class Destructors” on page 15-15

15 Code Generation for MATLAB Classes

15-14



Code Generation for Handle Class Destructors
You can generate code for MATLAB code that uses delete methods (destructors) for handle classes.
To perform clean-up operations, such as closing a previously opened file before an object is
destroyed, use a delete method. The generated code calls the delete method at the end of an
object's lifetime, even if execution is interrupted by a run-time error. When System objects are
destroyed, delete calls the release method, which in turn calls the user-defined releaseImpl.
For more information on when to define a delete method in a MATLAB code, see “Handle Class
Destructor”.

Guidelines and Restrictions
When you write the MATLAB code, adhere to these guidelines and restrictions:

• Code generation does not support recursive calls of the delete method. Do not create an object
of a certain class inside the delete method for the same class. This usage might cause a
recursive call of delete and result in an error message.

• The generated code always calls the delete method, when an object goes out of scope. Code
generation does not support explicit calls of the delete method.

• Initialize all properties of MyClass that the delete method of MyClass uses either in the
constructor or as the default property value. If delete tries to access a property that has not
been initialized in one of these two ways, the code generator produces an error message.

• Suppose a property prop1 of MyClass1 is itself an object (an instance of another class
MyClass2). Initialize all properties of MyClass2 that the delete method of MyClass1 uses.
Perform this initialization either in the constructor of MyClass2 or as the default property value.
If delete tries to access a property of MyClass2 that has not been initialized in one of these two
ways, the code generator produces an error message. For example, define the two classes
MyClass1 and MyClass2:

classdef MyClass1 < handle
    properties
        prop1
    end
    methods
        function h = MyClass1(index)
            h.prop1 = index;
        end
        function delete(h)
            fprintf('h.prop1.prop2 is: %1.0f\n',h.prop1.prop2);
        end
    end
end

classdef MyClass2 < handle
    properties
        prop2
    end
end

Suppose you try to generate code for this function:

function MyFunction
obj2 = MyClass2;
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obj1 = MyClass1(obj2); % Assign obj1.prop1 to the input (obj2)
end

The code generator produces an error message because you have not initialized the property
obj2.prop2 that the delete method displays.

Behavioral Differences of Objects in Generated Code and in MATLAB
The behavior of objects in the generated code can be different from their behavior in MATLAB in
these situations:

• The order of destruction of several independent objects might be different in MATLAB than in the
generated code.

• The lifetime of objects in the generated code can be different from their lifetime in MATLAB.
MATLAB calls the delete method when an object can no longer be reached from any live
variable. The generated code calls the delete method when an object goes out of scope. In some
situations, this difference causes delete to be called later on in the generated code than in
MATLAB. For example, define the class:

classdef MyClass < handle
    methods
        function delete(h)
            global g
            % Destructor displays current value of global variable g
            fprintf('The global variable is: %1.0f\n',g);
        end
    end
end

Run the function:

function MyFunction
global g
g = 1;
obj = MyClass;
obj = MyClass;
% MATLAB destroys the first object here
g = 2;
% MATLAB destroys the second object here
% Generated code destroys both objects here
end

The first object can no longer be reached from any live variable after the second instance of obj
= MyClass in MyFunction. MATLAB calls the delete method for the first object after the
second instance of obj = MyClass in MyFunction and for the second object at the end of the
function. The output is:

The global variable is: 1
The global variable is: 2

In the generated code, both delete method calls happen at the end of the function when the two
objects go out of scope. Running MyFunction_mex results in a different output:

The global variable is: 2
The global variable is: 2
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• In MATLAB, persistent objects are automatically destroyed when they cannot be reached from
any live variable. In the generated code, you have to call the terminate function explicitly to
destroy the persistent objects.

• The generated code does not destroy partially constructed objects. If a handle object is not fully
constructed at run time, the generated code produces an error message but does not call the
delete method for that object. For a System object, if there is a run-time error in setupImpl, the
generated code does not call releaseImpl for that object.

MATLAB does call the delete method to destroy a partially constructed object.

See Also

More About
• “Generate Code for MATLAB Handle Classes and System Objects” on page 15-12
• “System Objects in MATLAB Code Generation” on page 15-22
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Class Does Not Have Property
If a MATLAB class has a method, mymethod, that returns a handle class with a property, myprop, you
cannot generate code for the following type of assignment:

obj.mymethod().myprop=...

For example, consider the following classes:

classdef MyClass < handle
  properties
    myprop
  end
  methods
    function this = MyClass
      this.myprop = MyClass2;
    end
    function y = mymethod(this)
      y = this.myprop;
    end
  end
end

classdef MyClass2 < handle
  properties
    aa
  end
end

You cannot generate code for function foo.

function foo
 
h = MyClass;

h.mymethod().aa = 12;

In this function, h.mymethod() returns a handle object of type MyClass2. In MATLAB, the
assignment h.mymethod().aa = 12; changes the property of that object. Code generation does
not support this assignment.

Solution
Rewrite the code to return the object and then assign a value to a property of the object.

function foo

h = MyClass;

b=h.mymethod();
b.aa=12;

See Also
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Handle Object Limitations for Code Generation
The code generator statically determines the lifetime of a handle object. When you use handle
objects, this static analysis has certain restrictions.

With static analysis the generated code can reuse memory rather than rely on a dynamic memory
management scheme, such as reference counting or garbage collection. The code generator can
avoid dynamic memory allocation and run-time automatic memory management. These generated
code characteristics are important for some safety-critical and real-time applications.

For limitations, see:

• “A Variable Outside a Loop Cannot Refer to a Handle Object Allocated Inside a Loop” on page 15-
19

• “A Handle Object That a Persistent Variable Refers To Must Be a Singleton Object” on page 15-20

The code generator analyzes whether all variables are defined prior to use. Undefined variables or
data types cause an error during code generation. In certain circumstances, the code generator
cannot determine if references to handle objects are defined. See “References to Handle Objects Can
Appear Undefined” on page 15-21.

A Variable Outside a Loop Cannot Refer to a Handle Object Allocated
Inside a Loop
Consider the handle class mycls and the function usehandle1.

classdef mycls < handle
   properties
       prop
   end
   
   methods
       function obj = mycls(x)
       obj.prop = x;
       end
   end
end

function y = usehandle1
p = mycls(0); % Instance of mycls with prop value 10 created

for i = 1:10
    p = mycls(i); % Handle object allocated inside loop
end

y = p.prop; % Handle object referenced outside loop
end

If you try to generate code for the usehandle1 function, the code generator produces an error. The
error occurs because:

• A handle object is allocated inside the for loop. The variable p.prop refers to this handle object.
• Outside the loop, the variable x refers to the property prop handle object.
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A Handle Object That a Persistent Variable Refers To Must Be a
Singleton Object
If a persistent variable refers to a handle object, the code generator allows only one instance of the
object during the program’s lifetime. The object must be a singleton object. To create a singleton
handle object, enclose statements that create the object in the if isempty() guard for the
persistent variable.

For example, consider the class mycls and the function usehandle2. The code generator reports an
error for usehandle2 because p.prop refers to the mycls object that the statement inner =
mycls creates. This statement creates a mycls object for each invocation of usehandle2.

classdef mycls < handle
   properties
       prop
   end
end

function usehandle2(x)
assert(isa(x, 'double'));
persistent p;
inner = mycls;
inner.prop = x;
if isempty(p)
    p = mycls;
    p.prop = inner;
end

If you move the statements inner = mycls and inner.prop = x inside the if isempty() guard,
code generation succeeds. The statement inner = mycls executes only once during the program’s
lifetime.

function usehandle2(x)
assert(isa(x, 'double'));
persistent p;
if isempty(p)
    inner = mycls;
    inner.prop = x;
    p = mycls;
    p.prop = inner;
end

Consider the function usehandle3. The code generator reports an error for usehandle3 because
the persistent variable p refers to the mycls object that the statement myobj = mycls creates. This
statement creates a mycls object for each invocation of usehandle3.

function usehandle3(x)
assert(isa(x, 'double'));
myobj = mycls;
myobj.prop = x;
doinit(myobj);
disp(myobj.prop);
function doinit(obj)
persistent p;
if isempty(p)
    p = obj;
end
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If you make myobj persistent and enclose the statement myobj = mycls inside an if isempty()
guard, code generation succeeds. The statement myobj = mycls executes only once during the
program’s lifetime.

function usehandle3(x)
assert(isa(x, 'double'));
persistent myobj;
if isempty(myobj) 
  myobj = mycls;
end

doinit(myobj);

function doinit(obj)
persistent p;
if isempty(p)
    p = obj;
end

References to Handle Objects Can Appear Undefined
Consider the function refHandle that copies a handle object property to another object. The
function uses a simple handle class and value class. In MATLAB, the function runs without error.

function [out1, out2, out3] = refHandle()
  x = myHandleClass;
  y = x;
  v = myValueClass(); 
  v.prop = x;
  x.prop = 42;
  out1 = x.prop;
  out2 = y.prop;
  out3 = v.prop.prop;
end 

classdef myHandleClass < handle
    properties
        prop
    end
end

classdef myValueClass
    properties
        prop
    end
end

During code generation, an error occurs:

Property 'v.prop.prop' is undefined on some execution paths.

Three variables reference the same memory location: x, y, and v.prop. The code generator
determines that x.prop and y.prop share the same value. The code generator cannot determine
that the handle object property v.prop.prop shares its definition with x.prop and y.prop. To
avoid the error, define v.prop.prop directly.
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System Objects in MATLAB Code Generation
In this section...
“Usage Rules and Limitations for System Objects for Generating Code” on page 15-22
“System Objects in codegen” on page 15-24
“System Objects in the MATLAB Function Block” on page 15-24
“System Objects in the MATLAB System Block” on page 15-24
“System Objects and MATLAB Compiler Software” on page 15-24

You can generate C/C++ code in MATLAB from your system that contains System objects by using
MATLAB Coder. You can generate efficient and compact code for deployment in desktop and
embedded systems and accelerate fixed-point algorithms.

Usage Rules and Limitations for System Objects for Generating Code
The following usage rules and limitations apply to using System objects in code generated from
MATLAB.

Object Construction and Initialization

• If objects are stored in persistent variables, initialize System objects once by embedding the
object handles in an if statement with a call to isempty().

• Set arguments to System object constructors as compile-time constants.
• Initialize all System objects properties that releaseImpl uses before the end of setupImpl.
• You cannot initialize System objects properties with other MATLAB class objects as default values

in code generation. You must initialize these properties in the constructor.

Inputs and Outputs

• System objects accept a maximum of 1024 inputs. A maximum of eight dimensions per input is
supported.

• The data type of the inputs should not change.
• The complexity of the inputs should not change.
• If you want the size of inputs to change, verify that support for variable-size is enabled. Code

generation support for variable-size data also requires that variable-size support is enabled. By
default in MATLAB, support for variable-size data is enabled.

• System objects predefined in the software do not support variable-size if their data exceeds the
DynamicMemoryAllocationThreshold value.

• Do not set System objects to become outputs from the MATLAB Function block.
• Do not use the Save and Restore Simulation Operating Point option for any System object in a

MATLAB Function block.
• Do not pass a System object as an example input argument to a function being compiled with

codegen.
• Do not pass a System object to functions declared as extrinsic (functions called in interpreted

mode) using the coder.extrinsic function. System objects returned from extrinsic functions
and scope System objects that automatically become extrinsic can be used as inputs to another
extrinsic function. But, these functions do not generate code.
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Properties

• In MATLAB System blocks, you cannot use variable-size for discrete state properties of System
objects. Private properties can be variable-size.

• Objects cannot be used as default values for properties.
• You can only assign values to nontunable properties once, including the assignment in the

constructor.
• Nontunable property values must be constant.
• For fixed-point inputs, if a tunable property has dependent data type properties, you can set

tunable properties only at construction time or after the object is locked.
• For getNumInputsImpl and getNumOutputsImpl methods, if you set the return argument from

an object property, that object property must have the Nontunable attribute.

Global Variables

• Global variables are allowed in a System object, unless you are using that System object in
Simulink via the MATLAB System block. See “Generate Code for Global Data” (MATLAB Coder).

Methods

• Code generation support is available only for these System object methods:

• get
• getNumInputs
• getNumOutputs
• isDone (for sources only)
• isLocked
• release
• reset
• set (for tunable properties)
• step

• For System objects that you define, code generation support is available only for these methods:

• getDiscreteStateImpl
• getNumInputsImpl
• getNumOutputsImpl
• infoImpl
• isDoneImpl
• isInputDirectFeedthroughImpl
• outputImpl
• processTunedPropertiesImpl
• releaseImpl — Code is not generated automatically for this method. To release an object,

you must explicitly call the release method in your code.
• resetImpl
• setupImpl
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• stepImpl
• updateImpl
• validateInputsImpl
• validatePropertiesImpl

System Objects in codegen
You can include System objects in MATLAB code in the same way you include any other elements. You
can then compile a MEX file from your MATLAB code by using the codegen command, which is
available if you have a MATLAB Coder license. This compilation process, which involves a number of
optimizations, is useful for accelerating simulations. See “Get Started with MATLAB Coder” (MATLAB
Coder) and “MATLAB Classes” (MATLAB Coder) for more information.

Note Most, but not all, System objects support code generation. Refer to the particular object’s
reference page for information.

System Objects in the MATLAB Function Block
Using the MATLAB Function block, you can include any System object and any MATLAB language
function in a Simulink model. This model can then generate embeddable code. System objects
provide higher-level algorithms for code generation than do most associated blocks. For more
information, see “Implement MATLAB Functions in Simulink with MATLAB Function Blocks”.

System Objects in the MATLAB System Block
Using the MATLAB System block, you can include in a Simulink model individual System objects that
you create with a class definition file. The model can then generate embeddable code. For more
information, see “MATLAB System Block”.

System Objects and MATLAB Compiler Software
MATLAB Compiler™ software supports System objects for use inside MATLAB functions. The
compiler product does not support System objects for use in MATLAB scripts.

See Also

More About
• “Generate Code That Uses Row-Major Array Layout” (MATLAB Coder)

15 Code Generation for MATLAB Classes

15-24



Specify Objects as Inputs
When you accelerate code by using fiaccel, to specify the type of an input that is a value class
object, you can provide an example object with the -args option.

1 Define the value class. For example, define a class myRectangle.

classdef myRectangle
    properties
        length;
        width;
    end
    methods
        function obj = myRectangle(l,w)
            if nargin > 0
                obj.length = l;
                obj.width = w;
            end
        end
        function area = calcarea(obj)
            area = obj.length * obj.width;
        end
    end
end

2 Define a function that takes an object of the value class as an input. For example:

function z = getarea(r)
%#codegen
z = calcarea(r);
end

3 Define an object of the class.

rect_obj = myRectangle(fi(4),fi(5))

rect_obj = 

  myRectangle with properties:

    length: [1×1 embedded.fi]
     width: [1×1 embedded.fi]

4 Pass the example object to fiaccel by using the -args option.

fiaccel getarea -args {rect_obj} -report

In the report, you see that r has the same properties, length and width, as the example object
rect_object.

Instead of providing an example object, you can create a type for an object of the value class and
provide the type with the -args option.
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1 Define an object of the class:

rect_obj = myRectangle(fi(4),fi(5))

rect_obj = 

  myRectangle with properties:

    length: [1×1 embedded.fi]
     width: [1×1 embedded.fi]

2 To create a type for an object of myRectangle that has the same property types as rect_obj,
use coder.typeof. coder.typeof creates a coder.ClassType object that defines a type for
a class.

t= coder.typeof(rect_obj)

t = 

coder.ClassType
   1×1 myRectangle   
      length: 1×1 embedded.fi
                DataTypeMode: Fixed-point: binary point scaling
                  Signedness: Signed
                  WordLength: 16
              FractionLength: 12
      
      width : 1×1 embedded.fi
                DataTypeMode: Fixed-point: binary point scaling
                  Signedness: Signed
                  WordLength: 16
              FractionLength: 12

3 Pass the type to fiaccel by using the -args option.

fiaccel getarea -args {t} -report

After you create the type, you can change the types of the properties.

t.Properties.length = coder.typeof(fi(0,1,32,29))
t.Properties.width = coder.typeof(fi(0,1,32,29))

You can also add or delete properties. For example, to add a property newprop:

t.Properties.newprop = coder.typeof(int16(1))

Consistency Between coder.ClassType Object and Class Definition File
When you accelerate code, the properties of the coder.ClassType object that you pass to fiaccel
must be consistent with the properties in the class definition file. If the class definition file has
properties that your code does not use, the coder.ClassType object does not have to include those
properties. fiaccel removes properties that you do not use.

Limitations for Using Objects as Entry-Point Function Inputs
Entry-point function inputs that are objects have these limitations:
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• An object that is an entry-point function input must be an object of a value class. Objects of handle
classes cannot be entry-point function inputs. Therefore, a value class that contains a handle class
cannot be an entry-point function input.

• An object cannot be a global variable.
• If an object has duplicate property names, you cannot use it with coder.Constant. Duplicate

property names occur in an object of a subclass in these situations:

• The subclass has a property with the same name as a property of the superclass.
• The subclass derives from multiple superclasses that use the same name for a property.

For information about when MATLAB allows duplicate property names, see “Subclassing Multiple
Classes”.

See Also
coder.typeof

More About
• “Specify Properties of Entry-Point Function Inputs” on page 31-2
• “MATLAB Classes Definition for Code Generation” on page 15-2
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Work Around Language Limitation: Code Generation Does Not
Support Object Arrays

Issue
In certain situations, your MATLAB algorithm uses an array of objects that are instances of the same
class. But code generation does not support object arrays. When attempting to generate code for
such MATLAB code, you get this or a similar error message:

Code generation does not support object arrays.

Possible Solutions
Use Cell Array of Objects

Code generation supports cell arrays of objects. In your MATLAB code, represent the collection of
objects by using a cell array instead of an array.

For example, suppose that your MATLAB algorithm uses the class Square:

classdef Square
    properties(Access = private)
        side
    end

    methods(Access = public)
        function obj = Square(side)
            obj.side = side;
        end

        function area = calculateArea(obj)
            area = obj.side^2;
        end
    end
end

The function addAreas constructs and uses a 1-by-3 array of Square objects:

function y = addAreas(n)
obj = Square(0);
collection = [obj obj obj]; % collection is an array

for i = 1:numel(collection)
    collection(i) = Square(n + i);
end

y = 0;
for i = 1:numel(collection)
    y = y + collection(i).calculateArea;
end
end

Attempt to generate a MEX function for addAreas. Code generation fails because the local variable
collection is an object array.

15 Code Generation for MATLAB Classes

15-28



codegen addAreas -args 0 -report

??? Code generation does not support object arrays.

Error in ==> addAreas Line: 3 Column: 14
Code generation failed: View Error Report

Redefine collection to be a cell array instead. Modify the code to use cell array indexing to index
into collection. Name the modified function addAreas_new.

function y = addAreas_new(n)
obj = Square(0);
collection = {obj obj obj}; % collection is a cell array

for i = 1:numel(collection)
    collection{i} = Square(n + i);
end

y = 0;
for i = 1:numel(collection)
    y = y + collection{i}.calculateArea;
end
end

Attempt to generate a MEX function for addAreas_new. Code generation succeeds and produces
addAreas_new_mex.

codegen addAreas_new -args 0 -report

Code generation successful: View report

Verify that addAreas_new and addAreas_new_mex have the same runtime behavior.

disp([addAreas_new(0) addAreas_new_mex(0)])

14    14

For Assignment with Nonscalar Indexing, Use Curly Braces and deal

Suppose that your original MATLAB code performs assignment to the array of objects by using
nonscalar indexing. For example, you might add this line after the first for loop in the addAreas
function:

collection(1:2) = [Square(10) Square(20)];

In the modified function addAreas_new, index into the corresponding cell array by using curly
braces {} and perform assignment by using the deal function. Replace the above line by:

[collection{1:2}] = deal(Square(10),Square(20));

See Also

More About
• “MATLAB Classes Definition for Code Generation” (MATLAB Coder)
• “What Is a Cell Array?”
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Defining Data for Code Generation

• “Data Definition Considerations for Code Generation” on page 16-2
• “Code Generation for Complex Data” on page 16-8
• “Encoding of Characters in Code Generation” on page 16-12
• “Array Size Restrictions for Code Generation” on page 16-13
• “Code Generation for Constants in Structures and Arrays” on page 16-14
• “Code Generation for Strings” on page 16-16
• “Define String Scalar Inputs” on page 16-17
• “Code Generation for Sparse Matrices” on page 16-19
• “Specify Array Layout in Functions and Classes” on page 16-21
• “Code Design for Row-Major Array Layout” on page 16-25
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Data Definition Considerations for Code Generation
To generate efficient standalone code, you must define the following types and classes of data
differently from when you run your code in MATLAB.

Data Type Considerations More Information
Arrays Maximum number of elements is

restricted.
“Array Size Restrictions for
Code Generation” on page 16-
13

Numeric types Assign numeric type variables a
value before using them in
operations or returning them as
outputs.

“Best Practices for Defining
Variables for C/C++ Code
Generation” (MATLAB Coder)

Complex numbers • Set complexity of variables
at the time of assignment
and before first use.

• Expressions containing a
complex number or variable
evaluate to a complex result,
even if the imaginary part of
the result is zero.

“Code Generation for Complex
Data” on page 16-8

Characters and strings • Characters are restricted to
8 bits of precision.

• For code generation, string
scalars do not support global
variables, indexing with
curly braces, missing values,
or size changes by using the
function coder.varsize.

• “Encoding of Characters in
Code Generation” on page
16-12

• “Code Generation for
Strings” (MATLAB Coder)

Variable-Size data After initial fixed-size
assignment to a variable,
attempts to grow the variable
might cause a compilation error.

• “Code Generation for
Variable-Size Arrays”
(MATLAB Coder)

• “Define Variable-Size Data
for Code Generation”
(MATLAB Coder)

Structures • Assign fields to structures in
the same order on each
control path.

• Assign corresponding fields
in the structure array
elements with same size,
type, and complexity.

• “Define Scalar Structures for
Code Generation” (MATLAB
Coder)

• “Define Arrays of Structures
for Code Generation”
(MATLAB Coder)
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Data Type Considerations More Information
Cell arrays • Assign all cell array elements

before passing the cell array
to a function or returning it
from a function.

• Variable-size cell array
elements must all have the
same size, type, and
complexity.

• “Code Generation for Cell
Arrays” (MATLAB Coder)

• “Cell Array Limitations for
Code Generation” (MATLAB
Coder)

Tables • You must specify variable
names by using the
'VariableNames' name-
value argument when
creating tables from input
arrays.

• Limited data type support
when you preallocate a table
by using the table function
and the 'Size' name-value
argument.

• Table indices that specify
variables must be compile
time constant.

• You cannot change the size
of a table by assignments.

• You cannot change the
VariableNames,
RowNames,
DimensionNames, or
UserData properties of a
table after you create it.

Limitations that apply to classes
also apply to tables.

• “Code Generation for Tables”
(MATLAB Coder)

• “Table Limitations for Code
Generation” (MATLAB
Coder)

Categorical arrays Categorical arrays do not
support these inputs and
operations:

• Arrays of MATLAB objects
• Sparse matrices
• Duplicate category names
• Growth by assignment
• Adding a category
• Deleting an element

Limitations that apply to classes
also apply to categorical arrays.

• “Code Generation for
Categorical Arrays”
(MATLAB Coder)

• “Categorical Array
Limitations for Code
Generation” (MATLAB
Coder)
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Data Type Considerations More Information
Datetime arrays datetime arrays do not support

these inputs and operations:

• Text inputs
• The 'Format' name-value

argument
• The 'TimeZone' name-value

argument and the
'TimeZone' property

• Setting time component
properties

• Growth by assignment
• Deleting an element

Limitations that apply to classes
also apply to datetime arrays.

• “Code Generation for
Datetime Arrays” (MATLAB
Coder)

• “Datetime Array Limitations
for Code Generation”
(MATLAB Coder)

Duration arrays Duration arrays do not support
these inputs and operations:

• Text inputs
• Growth by assignment
• Deleting an element
• Converting duration values

to text by using
char,cellstr, or string
functions

Limitations that apply to classes
also apply to duration arrays.

• “Code Generation for
Duration Arrays” (MATLAB
Coder)

• “Duration Array Limitations
for Code Generation”
(MATLAB Coder)
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Data Type Considerations More Information
Timetables • You must specify variable

names by using the
'VariableNames' name-
value argument when
creating timetables from
input arrays.

• Limited data type support
when you preallocate a table
by using the timetable
function and the 'Size'
name-value argument.

• Timetable indices that
specify variables must be
compile time constant.

• You cannot change the size
of a timetable by
assignments.

• You cannot change the
VariableNames,
DimensionNames, or
UserData properties of a
timetable after you create it.

• If you create a regular
timetable, and you attempt
to set irregular row times,
then an error is produced.

• If you create an irregular
timetable, then it remains
irregular even if you set its
sample rate or time step.

Limitations that apply to classes
also apply to timetables.

• “Code Generation for
Timetables” (MATLAB
Coder)

• “Timetable Limitations for
Code Generation” (MATLAB
Coder)

Enumerated data Supports integer-based
enumerated types only.

“Enumerations”
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Data Type Considerations More Information
MATLAB Classes • Before generating code, it is

a best practice to test class
property validation by
running a MEX function over
the full range of input values.

• If a property does not have
an explicit initial value, the
code generator assumes that
it is undefined at the
beginning of the constructor.
The code generator does not
assign an empty matrix as
the default.

• The coder.varsize
function is not supported for
class properties.

• If the initial value of a
property is an object, then
the property must be
constant. To make a property
constant, declare the
Constant attribute in the
property block.

• “Generate C++ Classes for
MATLAB Classes” (MATLAB
Coder)

• “MATLAB Classes Definition
for Code Generation”
(MATLAB Coder)

Function handles • Assigning different function
handles to the same variable
can cause a compile-time
error.

• You cannot pass function
handles to or from entry-
point functions or extrinsic
functions.

• You cannot view function
handles from the MATLAB
Function Block debugger.

“Function Handles”
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Data Type Considerations More Information
Deep learning arrays dlarrays do not support these

inputs and operations:

• The data format argument
must be a compile-time
constant

• Define dlarray variables
inside the entry-point
function.

• The input to a dlarray must
be fixed-size.

• Code generation does not
support creating a dlarray
type object by using the
coder.typeof function
with upper bound size and
variable dimensions
specified.

• “Code Generation for
dlarray” (MATLAB Coder)

• “dlarray Limitations for Code
Generation” (MATLAB
Coder)

The information in the preceding table is not an exhaustive list of considerations for each data type.
See the topics in the More Information column.

See Also

Related Examples
• “Best Practices for Defining Variables for C/C++ Code Generation” (MATLAB Coder)
• “Reuse the Same Variable with Different Properties” (MATLAB Coder)
• “Eliminate Redundant Copies of Variables in Generated Code” (MATLAB Coder)
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Code Generation for Complex Data
In this section...
“Restrictions When Defining Complex Variables” on page 16-8
“Code Generation for Complex Data with Zero-Valued Imaginary Parts” on page 16-8
“Results of Expressions That Have Complex Operands” on page 16-11
“Results of Complex Multiplication with Nonfinite Values” on page 16-11

Restrictions When Defining Complex Variables
For code generation, you must set the complexity of variables at the time of assignment. Assign a
complex constant to the variable or use the complex function. For example:

x = 5 + 6i; % x is a complex number by assignment.
y = complex(5,6); % y is the complex number 5 + 6i.

After assignment, you cannot change the complexity of a variable. Code generation for the following
function fails because x(k) = 3 + 4i changes the complexity of x.

function x = test1( )
x = zeros(3,3); % x is real
for k = 1:numel(x)
    x(k) = 3 + 4i;
end
end

To resolve this issue, assign a complex constant to x.

function x = test1( )
x = zeros(3,3)+ 0i; %x is complex
for k = 1:numel(x)
    x(k) = 3 + 4i;
end
end

Code Generation for Complex Data with Zero-Valued Imaginary Parts
For code generation, complex data that has all zero-valued imaginary parts remains complex. This
data does not become real. This behavior has the following implications:

• In some cases, results from functions that sort complex data by absolute value can differ from the
MATLAB results. See “Functions That Sort Complex Values by Absolute Value” on page 16-8.

• For functions that require that complex inputs are sorted by absolute value, complex inputs with
zero-valued imaginary parts must be sorted by absolute value. These functions include ismember,
union, intersect, setdiff, and setxor.

Functions That Sort Complex Values by Absolute Value

Functions that sort complex values by absolute value include sort, issorted, sortrows, median,
min, and max. These functions sort complex numbers by absolute value even when the imaginary
parts are zero. In general, sorting the absolute values produces a different result than sorting the real
parts. Therefore, when inputs to these functions are complex with zero-valued imaginary parts in

16 Defining Data for Code Generation

16-8



generated code, but real in MATLAB, the generated code can produce different results than MATLAB.
In the following examples, the input to sort is real in MATLAB, but complex with zero-valued
imaginary parts in the generated code:

• You Pass Real Inputs to a Function Generated for Complex Inputs

1 Write this function:

function myout = mysort(A)
myout = sort(A);
end

2 Call mysort in MATLAB.

A = -2:2;
mysort(A)

ans =

    -2    -1     0     1     2
3 Generate a MEX function for complex inputs.

A = -2:2;
codegen mysort -args {complex(A)} -report

4 Call the MEX Function with real inputs.

mysort_mex(A)

ans =

     0     1    -1     2    -2

You generated the MEX function for complex inputs, therefore, it treats the real inputs as
complex numbers with zero-valued imaginary parts. It sorts the numbers by the absolute
values of the complex numbers. Because the imaginary parts are zero, the MEX function
returns the results to the MATLAB workspace as real numbers. See “Inputs and Outputs for
MEX Functions Generated for Complex Arguments” on page 16-10.

• Input to sort Is Output from a Function That Returns Complex in Generated Code

1 Write this function:

function y = myfun(A)
x = eig(A);
y = sort(x,'descend');

The output from eig is the input to sort. In generated code, eig returns a complex result.
Therefore, in the generated code, x is complex.

2 Call myfun in MATLAB.

A = [2 3 5;0 5 5;6 7 4];
myfun(A)

ans =

   12.5777
    2.0000
   -3.5777
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The result of eig is real. Therefore, the inputs to sort are real.
3 Generate a MEX function for complex inputs.

codegen myfun -args {complex(A)}

4 Call the MEX function.

myfun_mex(A)

ans =

   12.5777
   -3.5777
    2.0000

In the MEX function, eig returns a complex result. Therefore, the inputs to sort are
complex. The MEX function sorts the inputs in descending order of the absolute values.

Inputs and Outputs for MEX Functions Generated for Complex Arguments

For MEX functions created by fiaccel:

• Suppose that you generate the MEX function for complex inputs. If you call the MEX function with
real inputs, the MEX function transforms the real inputs to complex values with zero-valued
imaginary parts.

• If the MEX function returns complex values that have all zero-valued imaginary parts, the MEX
function returns the values to the MATLAB workspace as real values. For example, consider this
function:

function y = foo()
    y = 1 + 0i;   % y is complex with imaginary part equal to zero
end     

If you generate a MEX function for foo and view the code generation report, you see that y is
complex.

codegen foo -report

If you run the MEX function, you see that in the MATLAB workspace, the result of foo_mex is the
real value 1.

z = foo_mex 

ans =

     1
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Results of Expressions That Have Complex Operands
In general, expressions that contain one or more complex operands produce a complex result in
generated code, even if the value of the result is zero. Consider the following line of code:

z = x + y; 

Suppose that at run time, x has the value 2 + 3i and y has the value 2 - 3i. In MATLAB, this code
produces the real result z = 4. During code generation, the types for x and y are known, but their
values are not known. Because either or both operands in this expression are complex, z is defined as
a complex variable requiring storage for a real and an imaginary part. z equals the complex result 4
+ 0i in generated code, not 4, as in MATLAB code.

Exceptions to this behavior are:

• When the imaginary parts of complex results are zero, MEX functions return the results to the
MATLAB workspace as real values. See “Inputs and Outputs for MEX Functions Generated for
Complex Arguments” on page 16-10.

• When the imaginary part of the argument is zero, complex arguments to extrinsic functions are
real.

function y = foo()
    coder.extrinsic('sqrt')
    x = 1 + 0i;   % x is complex
    y = sqrt(x);  % x is real, y is real
end     

• Functions that take complex arguments but produce real results return real values.

y = real(x); % y is the real part of the complex number x.
y = imag(x); % y is the real-valued imaginary part of x.
y = isreal(x); % y is false (0) for a complex number x.

• Functions that take real arguments but produce complex results return complex values.

z = complex(x,y); % z is a complex number for a real x and y.

Results of Complex Multiplication with Nonfinite Values
When an operand of a complex multiplication contains a nonfinite value, the generated code might
produce a different result than the result that MATLAB produces. The difference is due to the way
that code generation defines complex multiplication. For code generation:

• Multiplication of a complex value by a complex value (a + bi) (c + di) is defined as (ac - bd) + (ad
+ bc)i. The complete calculation is performed, even when a real or an imaginary part is zero.

• Multiplication of a real value by a complex value c(a + bi) is defined as ca + cbi .
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Encoding of Characters in Code Generation
MATLAB represents characters in 16-bit Unicode. The code generator represents characters in an 8-
bit codeset that the locale setting determines. Differences in character encoding between MATLAB
and code generation have these consequences:

• Code generation of characters with numeric values greater than 255 produces an error.
• For some characters in the range 128–255, it might not be possible to represent the character in

the codeset of the locale setting or to convert the character to an equivalent 16-bit Unicode
character. Passing characters in this range between MATLAB and generated code can result in
errors or different answers.

• For code generation, some toolbox functions accept only 7-bit ASCII characters.
• Casting a character that is not in the 7-bit ASCII codeset to a numeric type, such as double, can

produce a different result in the generated code than in MATLAB. As a best practice, for code
generation, avoid performing arithmetic with characters.

See Also

More About
• “Locale Setting Concepts for Internationalization”
• “Differences Between Generated Code and MATLAB Code” on page 19-6
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Array Size Restrictions for Code Generation
For code generation, the maximum number of elements of an array is constrained by the code
generator and the target hardware.

For fixed-size arrays and variable-size arrays that use static memory allocation, the maximum number
of elements is the smaller of:

• intmax('int32').
• The largest integer that fits in the C int data type on the target hardware.

For variable-size arrays that use dynamic memory allocation, the maximum number of elements is the
smaller of:

• intmax('int32').
• The largest power of 2 that fits in the C int data type on the target hardware.

These restrictions apply even on a 64-bit platform.

For a fixed-size array, if the number of elements exceeds the maximum, the code generator reports an
error at compile time. For a variable-size array, at run time, if the number of elements exceeds the
maximum and run-time error checks are enabled, the generated code reports an error.

See Also

More About
• “Control Run-Time Checks” on page 12-47
• “Potential Differences Reporting” on page 19-18
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Code Generation for Constants in Structures and Arrays
The code generator does not recognize constant structure fields or array elements in the following
cases:

Fields or elements are assigned inside control constructs

In the following code, the code generator recognizes that the structure fields s.a and s.b are
constants.

function y = mystruct()
s.a = 3;
s.b = 5;
y = zeros(s.a,s.b);

If any structure field is assigned inside a control construct, the code generator does not recognize the
constant fields. This limitation also applies to arrays with constant elements. Consider the following
code:

function y = mystruct(x)
s.a = 3;
if x > 1
    s.b = 4;
else
    s.b = 5;
end
y = zeros(s.a,s.b);

The code generator does not recognize that s.a and s.b are constant. If variable-sizing is enabled, y
is treated as a variable-size array. If variable-sizing is disabled, the code generator reports an error.

Constants are assigned to array elements using non-scalar indexing

In the following code, the code generator recognizes that a(1) is constant.

function y = myarray()
a = zeros(1,3);
a(1) = 20;
y = coder.const(a(1));

In the following code, because a(1) is assigned using non-scalar indexing, the code generator does
not recognize that a(1) is constant.

function y = myarray()
a = zeros(1,3);
a(1:2) = 20;
y = coder.const(a(1));

A function returns a structure or array that has constant and nonconstant elements

For an output structure that has both constant and nonconstant fields, the code generator does not
recognize the constant fields. This limitation also applies to arrays that have constant and
nonconstant elements. Consider the following code:

function y = mystruct_out(x)
s = create_structure(x);
y = coder.const(s.a);
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function s = create_structure(x)
s.a = 10;
s.b = x;

Because create_structure returns a structure s that has one constant field and one nonconstant
field, the code generator does not recognize that s.a is constant. The coder.const call fails
because s.a is not constant.
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Code Generation for Strings
Code generation supports 1-by-1 MATLAB string arrays. Code generation does not support string
arrays that have more than one element.

A 1-by-1 string array, called a string scalar, contains one piece of text, represented as a 1-by-n
character vector. An example of a string scalar is "Hello, world". For more information about
strings, see “Text in String and Character Arrays”.

Limitations
For string scalars, code generation does not support:

• Global variables
• Indexing with curly braces {}
• Missing values
• Defining input types programmatically (by using preconditioning with assert statements)
• Their use with coder.varsize

For code generation, limitations that apply to classes apply to strings. See “MATLAB Classes
Definition for Code Generation” on page 15-2.

Differences Between Generated Code and MATLAB Code
• Converting a string that contains multiple unary operators to double can produce different

results between MATLAB and the generated code. Consider this function:

function out = foo(op)
out = double(op + 1);
end

For an input value "--", the function converts the string "--1" to double. In MATLAB, the
answer is NaN. In the generated code, the answer is 1.

• Double conversion for a string with misplaced commas (commas that are not used as thousands
separators) can produce different results from MATLAB.

See Also

More About
• “Define String Scalar Inputs” on page 16-17
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Define String Scalar Inputs
You can define string scalar inputs at the command line. Programmatic specification of string scalar
input types by using preconditioning (assert statements) is not supported.

Define String Scalar Types at the Command Line
To define string scalar inputs at the command line, use one of these procedures:

• “Provide an Example String Scalar Input” on page 16-17
• “Provide a String Scalar Type” on page 16-17
• “Provide a Constant String Scalar Input” on page 16-17
• “Provide a Variable-Size String Scalar Input” on page 16-17

Alternatively, if you have a test file that calls your entry-point function with example inputs, you can
determine the input types by using coder.getArgTypes.

Provide an Example String Scalar Input

To provide an example string scalar to fiaccel, use the -args option:

fiaccel myFunction -args {"Hello, world"}

Provide a String Scalar Type

To provide a type for a string scalar to fiaccel:

1 Define a string scalar. For example:

s = "mystring";
2 Create a type from s.

t = coder.typeof(s);
3 Pass the type to fiaccel by using the -args option.

fiaccel myFunction -args {t}

Provide a Constant String Scalar Input

To specify that a string scalar input is constant, use coder.Constant with the -args option:

fiaccel myFunction -args {coder.Constant("Hello, world")}

Provide a Variable-Size String Scalar Input

To specify that a string scalar input has a variable-size:

1 Define a string scalar. For example:

s = "mystring";
2 Create a type from s.

t = coder.typeof(s);
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3 Assign the Value property of the type to a type for a variable-size character vector that has the
upper bound that you want. For example, specify that type t is variable-size with an upper bound
of 10.

t.Properties.Value = coder.typeof('a',[1 10], [0 1]);

To specify that t is variable-size with no upper bound:

t.Properties.Value = coder.typeof('a',[1 inf]);
4 Pass the type to fiaccel by using the -args option.

fiaccel myFunction -args {t}

See Also
coder.Constant | coder.typeof

More About
• “Code Generation for Strings” on page 16-16
• “Specify Properties of Entry-Point Function Inputs” on page 31-2
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Code Generation for Sparse Matrices
Sparse matrices provide efficient storage in memory for arrays with many zero elements. Sparse
matrices can provide improved performance and reduced memory usage for generated code.
Computation time on sparse matrices scales only with the number of operations on nonzero elements.

Functions for creating and manipulating sparse matrices are listed in “Sparse Matrices”. To check if a
function is supported for code generation, see the function reference page. Code generation does not
support sparse matrix inputs created by using sparse for all functions.

Input Definition
You can use coder.typeof to initialize a sparse matrix input to your function. For sparse matrices,
the code generator does not track upper bounds for variable-size dimensions. All variable-size
dimensions are treated as unbounded.

You cannot define sparse input types programmatically by using assert statements.

Code Generation Guidelines
Initialize matrices by using sparse constructors to maximize your code efficiency. For example, to
construct a 3-by-3 identity matrix, use speye(3,3) rather than sparse(eye(3,3)).

Indexed assignment into sparse matrices incurs an overhead compared to indexed assignment into
full matrices. For example:

S = speye(10);
S(7,7) = 42;

As in MATLAB, sparse matrices are stored in compressed sparse column format. When you insert a
new nonzero element into a sparse matrix, all subsequent nonzero elements must be shifted
downward, column by column. These extra manipulations can slow performance. See “Accessing
Sparse Matrices”.

Code Generation Limitations
To generate code that uses sparse matrices, dynamic memory allocation must be enabled. To store
the changing number of nonzero elements, and their values, sparse matrices use variable-size arrays
in the generated code. To change dynamic memory allocation settings, see “Control Memory
Allocation for Variable-Size Arrays” on page 29-4. Because sparse matrices use variable-size arrays
for dynamic memory allocation, limitations on “Variable-Size Data” also apply to sparse matrices.

You cannot assign sparse data to data that is not sparse. The generated code uses distinct data type
representations for sparse and full matrices. To convert to and from sparse data, use the explicit
sparse and full conversion functions.

You cannot define a sparse matrix with competing size specifications. The code generator fixes the
size of the sparse matrix when it produces the corresponding data type definition in C/C++. As an
example, the function foo causes an error in code generation:

function y = foo(n)
%#codegen
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if n > 0
    y = sparse(3,2);
else
    y = sparse(4,3);
end

Logical indexing into sparse matrices is not supported for code generation. For example, this syntax
causes an error:

S = magic(3);
S(S > 7) = 42;

For sparse matrices, you cannot delete array elements by assigning empty arrays:

S(:,2) = [];

See Also
sparse | full | coder.typeof | magic | speye

More About
• “Sparse Matrices”
• “Use Dynamically Allocated C++ Arrays in Generated Function Interfaces” (MATLAB Coder)
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Specify Array Layout in Functions and Classes
You can specialize individual MATLAB functions for row-major layout or column-major layout by
inserting coder.rowMajor or coder.columnMajor calls into the function body. Using these
function specializations, you can combine row-major data and column-major data in your generated
code. You can also specialize classes for one specific array layout. Function and class specializations
allow you to:

• Incrementally modify your code for row-major layout or column-major layout.
• Define array layout boundaries for applications that require different layouts in different

components.
• Structure the inheritance of array layout between many different functions and classes.

For MATLAB Coder entry-point (top-level) functions, all inputs and outputs must use the same array
layout. In the generated C/C++ code, the entry-point function interface accepts and returns data with
the same array layout as the function array layout specification.

Note By default, code generation uses column-major array layout.

Specify Array Layout in a Function
For an example of a specialized function, consider addMatrixRM:

function [S] = addMatrixRM(A,B) 
%#codegen
S = zeros(size(A));
coder.rowMajor; % specify row-major code
for row = 1:size(A,1) 
   for col = 1:size(A,2)  
       S(row,col) = A(row,col) + B(row,col);
   end
end

For MATLAB Coder, you can generate code for addMatrixRM by using the codegen command.

codegen addMatrixRM -args {ones(20,10),ones(20,10)} -config:lib -launchreport

Because of the coder.rowMajor call, the code generator produces code that uses data stored in
row-major layout.

Other functions called from a row-major function or column-major function inherit the same array
layout. If a called function has its own distinct coder.rowMajor or coder.columnMajor call, the
local call takes precedence.

You can mix column-major and row-major functions in the same code. The code generator inserts
transpose or conversion operations when passing data between row-major and column-major
functions. These conversion operations ensure that array elements are stored as required by
functions with different array layout specifications. For example, the inputs to a column-major
function, called from a row-major function, are converted to column-major layout before being passed
to the column-major function.
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Query Array Layout of a Function
To query the array layout of a function at compile time, use coder.isRowMajor or
coder.isColumnMajor. This query can be useful for specializing your generated code when it
involves row-major and column-major functions. For example, consider this function:

function [S] = addMatrixRouted(A,B)
 if coder.isRowMajor
     %execute this code if row-major
     S = addMatrixRM(A,B); 
 elseif coder.isColumnMajor
     %execute this code if column-major
     S = addMatrix_OptimizedForColumnMajor(A,B);
 end

This function behaves differently depending on whether it is row-major or column-major. When
addMatrixRouted is row-major, it calls the addMatrixRM function, which has efficient memory
access for row-major data. When the function is column-major, it calls a version of the addMatrixRM
function optimized for column-major data.

For example, consider this function definition. The algorithm iterates through the columns in the
outer loop and the rows in the inner loop, in contrast to the addMatrixRM function.

function [S] = addMatrix_OptimizedForColumnMajor(A,B) 
%#codegen
S = zeros(size(A));
for col = 1:size(A,2) 
   for row = 1:size(A,1)  
       S(row,col) = A(row,col) + B(row,col);
   end
end

Code generation for this function yields:

... 
/* column-major layout */
for (col = 0; col < 10; col++) {
  for (row = 0; row < 20; row++) {
     S[row + 20 * col] = A[row + 20 * col] + B[row + 20 * col];  
  }
}
...

The generated code has a stride length of only one element. Due to the specializing queries, the
generated code for addMatrixRouted provides efficient memory access for either choice of array
layout.

Specify Array Layout in a Class
You can specify array layout for a class so that object property variables are stored with a specific
array layout. To specify the array layout, place a coder.rowMajor or coder.columnMajor call in
the class constructor. If you assign an object with a specified array layout to the property of another
object, the array layout of the assigned object takes precedence.

Consider the row-major class rowMats as an example. This class contains matrix properties and a
method that consists of an element-wise addition algorithm. The algorithm in the method performs
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more efficiently for data stored in row-major layout. By specifying coder.rowMajor in the class
constructor, the generated code uses row-major layout for the property data.

classdef rowMats
    properties (Access = public)
        A;
        B;
        C;
    end
    methods
        function obj = rowMats(A,B)
            coder.rowMajor;
            if nargin == 0
                obj.A = 0;
                obj.B = 0;
                obj.C = 0;
            else
                obj.A = A;
                obj.B = B;
                obj.C = zeros(size(A));
            end
        end
        function obj = add(obj)
            for row = 1:size(obj.A,1)
                for col = 1:size(obj.A,2)
                    obj.C(row,col) = obj.A(row,col) + obj.B(row,col);
                end
            end
        end
    end
end

Use the class in a simple function doMath. The inputs and outputs of the entry-point function must all
use the same array layout.

function [out] = doMath(in1,in2)
%#codegen
out = zeros(size(in1));
myMats = rowMats(in1,in2);
myMats = myMats.add;
out = myMats.C;
end

For MATLAB Coder, you can generate code by entering:

A = rand(20,10);
B = rand(20,10);
cfg = coder.config('lib');
codegen -config cfg doMath -args {A,B} -launchreport

With default settings, the code generator assumes that the entry-point function inputs and outputs
use column-major layout, because you do not specify row-major layout for the function doMath.
Therefore, before calling the class constructor, the generated code converts in1 and in2 to row-
major layout. Similarly, it converts the doMath function output back to column-major layout.

When designing a class for a specific array layout, consider:
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• If you do not specify the array layout in a class constructor, objects inherit their array layout from
the function that calls the class constructor, or from code generation configuration settings.

• You cannot specify the array layout in a nonstatic method by using coder.rowMajor or
coder.columnMajor. Methods use the same array layout as the receiving object. Methods do not
inherit the array layout of the function that calls them. For static methods, which are used
similarly to ordinary functions, you can specify the array layout in the method.

• If you specify the array layout of a superclass, the subclass inherits this array layout specification.
You cannot specify conflicting array layouts between superclasses and subclasses.

See Also
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Code Design for Row-Major Array Layout
Outside of code generation, MATLAB uses column-major layout by default. Array layout specifications
do not affect self-contained MATLAB code. To test the efficiency of your generated code or your
MATLAB Function block, create separate versions with row-major layout and column-major layout.
Then, compare their performance.

You can design your MATLAB code to avoid potential inefficiencies related to array layout.
Inefficiencies can be caused by:

• Conversions between row-major layout and column-major layout.
• One-dimensional or linear indexing of row-major data.
• Reshaping or rearrangement of row-major data.

Array layout conversions are necessary when you mix row-major and column-major specifications in
the same code or model, or when you use linear indexing on data that is stored in row-major. When
you simulate a model or generate code for a model that uses column-major, and that contains a
MATLAB Function block that uses row-major, then the software converts input data to row-major and
output data back to column-major as needed, and vice versa.

Inefficiencies can be caused by functions or algorithms that are less optimized for a given choice of
array layout. If a function or algorithm is more efficient for a different layout, you can enforce that
layout by embedding it in another function with a coder.rowMajor or coder.columnMajor call.

Linear Indexing Uses Column-Major Array Layout
The code generator follows MATLAB column-major semantics for linear indexing. For more
information on linear indexing in MATLAB, see “Array Indexing”.

To use linear indexing on row-major data, the code generator must first recalculate the data
representation in column-major layout. This additional processing can slow performance. To improve
code efficiency, avoid using linear indexing on row-major data, or use column-major layout for code
that uses linear indexing.

For example, consider the function sumShiftedProducts, which accepts a matrix as an input and
outputs a scalar value. The function uses linear indexing on the input matrix to sum up the product of
each matrix element with an adjacent element. The output value of this operation depends on the
order in which the input elements are stored.

function mySum = sumShiftedProducts(A)
%#codegen
mySum = 0;
% create linear vector of A elements
B = A(:); 
% multiply B by B with elements shifted by one, and take sum
mySum = sum( B.*circshift(B,1) );
end

For MATLAB Coder, to generate code that uses row-major layout, enter:

codegen -config:mex sumShiftedProducts -args {ones(2,3)} -launchreport -rowmajor

For an example input, consider the matrix:
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D = reshape(1:6,3,2)'

which yields:

D =
     1     2     3
     4     5     6

If you pass this matrix as input to the generated code, the elements of A are stored in the order:

     1     2     3     4     5     6

In contrast, because the vector B is obtained by linear indexing, it is stored in the order:

     1     4     2     5     3     6

The code generator must insert a reshaping operation to rearrange the data from row-major layout
for A to column-major layout for B. This additional operation reduces the efficiency of the function for
row-major layout. The inefficiency increases with the size of the array. Because linear indexing always
uses column-major layout, the generated code for sumShiftedProducts produces the same output
result whether generated with row-major layout or column-major layout.

In general, functions that compute indices or subscripts also use linear indexing, and produce results
corresponding to data stored in column-major layout. These functions include:

• ind2sub
• sub2ind
• colon

See Also
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Defining Functions for Code Generation

• “Code Generation for Variable Length Argument Lists” on page 17-2
• “Specify Number of Entry-Point Function Input or Output Arguments to Generate” on page 17-3
• “Code Generation for Anonymous Functions” on page 17-5
• “Code Generation for Nested Functions” on page 17-6
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Code Generation for Variable Length Argument Lists
When you use varargin and varargout for code generation, there are these restrictions:

• If you use varargin to define an argument to an entry-point function, the code generator
produces the function with a fixed number of arguments. This fixed number of arguments is based
on the number of arguments that you specify when you generate code.

• You cannot write to varargin. If you want to write to input arguments, copy the values into a
local variable.

• To index into varargin and varargout, use curly braces {}, not parentheses ().
• The code generator must be able to determine the value of the index into varargin or

varargout.

See Also

More About
• “Nonconstant Index into varargin or varargout in a for-Loop” on page 49-43
• “Specify Number of Entry-Point Function Input or Output Arguments to Generate” on page 17-

3
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Specify Number of Entry-Point Function Input or Output
Arguments to Generate

You can control the number of input or output arguments in a generated entry-point function. From
one MATLAB function, you can generate entry-point functions that have different signatures.

Control Number of Input Arguments
If your entry-point function uses varargin, specify the properties for the arguments that you want in
the generated function.

Consider this function:

function [x, y] = myops(varargin)
%#codegen
if (nargin > 1)
    x = varargin{1} + varargin{2};
    y = varargin{1} * varargin{2};
else
    x = varargin{1};
    y = -varargin{1};
end

To generate a function that takes only one argument, provide one argument with -args.

fiaccel myops -args {fi(3, 1, 16, 13)} -report

You can also control the number of input arguments when the MATLAB function does not use
varargin.

Consider this function:

function [x, y] = myops(a,b)
%#codegen
if (nargin > 1)
    x = a + b;
    y = a * b;
else
    x = a;
    y = -a;
end

To generate a function that takes only one argument, provide one argument with -args.

fiaccel myops -args {fi(3, 1, 16, 13)} -report

Control the Number of Output Arguments
When you use fiaccel, you can specify the number of output arguments by using the -nargout
option.

Consider this function:

function [x, y] = myops(a,b)
%#codegen
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x = a + b;
y = a * b;
end

Generate a function that has one output argument.

fiaccel myops -args {fi(3, 1, 16, 13) fi(3, 1, 16, 13)} -nargout 1 -report

You can also use -nargout to specify the number of output arguments for an entry-point function
that uses varargout.

Rewrite myops to use varargout.

function varargout = myops(a,b)
%#codegen
varargout{1} = a + b;
varargout{2} = a * b;
end

Generate code for one output argument.

fiaccel myops -args {fi(3, 1, 16, 13) fi(3, 1, 16, 13)} -nargout 1 -report

See Also

More About
• “Code Generation for Variable Length Argument Lists” on page 17-2
• “Specify Properties of Entry-Point Function Inputs” on page 31-2
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Code Generation for Anonymous Functions
You can use anonymous functions in MATLAB code intended for code generation. For example, you
can generate code for the following MATLAB code that defines an anonymous function that finds the
square of a number.

sqr = @(x) x.^2;
a = sqr(5);

Anonymous functions are useful for creating a function handle to pass to a MATLAB function that
evaluates an expression over a range of values. For example, this MATLAB code uses an anonymous
function to create the input to the fzero function:

b = 2;
c = 3.5;
x = fzero(@(x) x^3 + b*x + c,0);

Anonymous Function Limitations for Code Generation
Anonymous functions have the code generation limitations of value classes and cell arrays.

See Also

More About
• “MATLAB Classes Definition for Code Generation” on page 15-2
• “Cell Array Limitations for Code Generation” on page 30-7
• “Parameterizing Functions”
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Code Generation for Nested Functions
You can generate code for MATLAB functions that contain nested functions. For example, you can
generate code for the function parent_fun, which contains the nested function child_fun.

function parent_fun
x = 5;
child_fun

    function child_fun
        x = x + 1;
    end

end

Nested Function Limitations for Code Generation
When you generate code for nested functions, you must adhere to the code generation restrictions for
value classes, cell arrays, and handle classes. You must also adhere to these restrictions:

• If the parent function declares a persistent variable, it must assign the persistent variable before
it calls a nested function that uses the persistent variable.

• A nested recursive function cannot refer to a variable that the parent function uses.
• If a nested function refers to a structure variable, you must define the structure by using struct.
• If a nested function uses a variable defined by the parent function, you cannot use

coder.varsize with the variable in either the parent or the nested function.

See Also

More About
• “MATLAB Classes Definition for Code Generation” on page 15-2
• “Handle Object Limitations for Code Generation” on page 15-19
• “Cell Array Limitations for Code Generation” on page 30-7
• “Code Generation for Recursive Functions” on page 14-14
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Defining MATLAB Variables for C/C++
Code Generation

• “Variables Definition for Code Generation” on page 18-2
• “Best Practices for Defining Variables for C/C++ Code Generation” on page 18-3
• “Eliminate Redundant Copies of Variables in Generated Code” on page 18-7
• “Reassignment of Variable Properties” on page 18-9
• “Reuse the Same Variable with Different Properties” on page 18-10
• “Supported Variable Types” on page 18-13
• “Edit and Represent Coder Type Objects and Properties” on page 18-14
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Variables Definition for Code Generation
In the MATLAB language, variables can change their properties dynamically at run time so you can
use the same variable to hold a value of any class, size, or complexity. For example, the following code
works in MATLAB:

function x = foo(c) %#codegen
if(c>0)
  x = 0;
else
  x = [1 2 3];
end
disp(x);
end 

However, statically-typed languages like C must be able to determine variable properties at compile
time. Therefore, for C/C++ code generation, you must explicitly define the class, size, and complexity
of variables in MATLAB source code before using them. For example, rewrite the above source code
with a definition for x:

function x = foo(c) %#codegen
x = zeros(1,3);
if(c>0)
  x = 0;
else
  x = [1 2 3];
end
disp(x);
end 

For more information, see “Best Practices for Defining Variables for C/C++ Code Generation” on
page 18-3.
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Best Practices for Defining Variables for C/C++ Code
Generation

In this section...
“Define Variables By Assignment Before Using Them” on page 18-3
“Use Caution When Reassigning Variables” on page 18-5
“Use Type Cast Operators in Variable Definitions” on page 18-5
“Define Matrices Before Assigning Indexed Variables” on page 18-5
“Index Arrays by Using Constant Value Vectors” on page 18-5

Define Variables By Assignment Before Using Them
For C/C++ code generation, you should explicitly and unambiguously define the class, size, and
complexity of variables before using them in operations or returning them as outputs. Define
variables by assignment, but note that the assignment copies not only the value, but also the size,
class, and complexity represented by that value to the new variable. For example:

Assignment: Defines:
a = 14.7; a as a real double scalar.
b = a; b with properties of a (real double scalar).
c = zeros(5,2); c as a real 5-by-2 array of doubles.
d = [1 2 3 4 5; 6 7 8 9 0]; d as a real 5-by-2 array of doubles.
y = int16(3); y as a real 16-bit integer scalar.

Define properties this way so that the variable is defined on the required execution paths during C/C
++ code generation.

The data that you assign to a variable can be a scalar, matrix, or structure. If your variable is a
structure, define the properties of each field explicitly.

Initializing the new variable to the value of the assigned data sometimes results in redundant copies
in the generated code. To avoid redundant copies, you can define variables without initializing their
values by using the coder.nullcopy construct as described in “Eliminate Redundant Copies of
Variables in Generated Code” on page 18-7.

When you define variables, they are local by default; they do not persist between function calls. To
make variables persistent, see persistent.

Example 18.1. Defining a Variable for Multiple Execution Paths

Consider the following MATLAB code:

...
if c > 0
  x = 11;
end
% Later in your code ...
if c > 0
  use(x);
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end
...

Here, x is assigned only if c > 0 and used only when c > 0. This code works in MATLAB, but
generates a compilation error during code generation because it detects that x is undefined on some
execution paths (when c <= 0).

To make this code suitable for code generation, define x before using it:

x = 0;
...
if c > 0
  x = 11;
end
% Later in your code ...
if c > 0
  use(x);
end
...

Example 18.2. Defining Fields in a Structure

Consider the following MATLAB code:

...
if c > 0 
  s.a = 11;
  disp(s);
else
  s.a = 12;
  s.b = 12;
end
% Try to use s
use(s);
...

Here, the first part of the if statement uses only the field a, and the else clause uses fields a and b.
This code works in MATLAB, but generates a compilation error during C/C++ code generation
because it detects a structure type mismatch. To prevent this error, do not add fields to a structure
after you perform certain operations on the structure. For more information, see “Structure
Definition for Code Generation” on page 25-2.

To make this code suitable for C/C++ code generation, define all fields of s before using it.

...
% Define all fields in structure s
s = struct(‘a’,0, ‘b’, 0);
if c > 0 
  s.a = 11;
  disp(s);
else
  s.a = 12;
  s.b = 12;
end
% Use s
use(s);
...
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Use Caution When Reassigning Variables
In general, you should adhere to the "one variable/one type" rule for C/C++ code generation; that is,
each variable must have a specific class, size and complexity. Generally, if you reassign variable
properties after the initial assignment, you get a compilation error during code generation, but there
are exceptions, as described in “Reassignment of Variable Properties” on page 18-9.

Use Type Cast Operators in Variable Definitions
By default, constants are of type double. To define variables of other types, you can use type cast
operators in variable definitions. For example, the following code defines variable y as an integer:

...
x = 15; % x is of type double by default.
y = uint8(x); % y has the value of x, but cast to uint8.
...

Define Matrices Before Assigning Indexed Variables
When generating C/C++ code from MATLAB, you cannot grow a variable by writing into an element
beyond its current size. Such indexing operations produce run-time errors. You must define the
matrix first before assigning values to its elements.

For example, the following initial assignment is not allowed for code generation:

g(3,2) = 14.6; % Not allowed for creating g
               % OK for assigning value once created

For more information about indexing matrices, see “Incompatibility with MATLAB in Matrix Indexing
Operations for Code Generation” on page 29-19.

Index Arrays by Using Constant Value Vectors
It is a best practice to use constant value vectors to index arrays instead of using ranges that contain
nonconstant objects.

In some cases, the code generator is unable to determine whether an expression containing the
colon operator is fixed-size or variable-size. Use constant value vectors to index arrays to prevent
them from being unnecessarily created as variable-size arrays in the generated code.

For example, the array out has been created by using the variable i indexed through the random
row vector A.

...
% extract elements i through i+5 for processing
A = rand(1,10);
out = A(i:i+5); % If i is unknown at compile time, out is variable-size
...

If i is a compile-time constant value, the code generator produces a fixed-size object for out. If i is
unknown at compile time, the code generator produces a variable-size array for out in the generated
code.
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To prevent the code generator from creating variable-size arrays, the previous code snippet is
rewritten in this pattern:
...
% extract elements i through i+5 for processing
A = rand(1,10);
out = A (i+(0:5)); % out is fixed-size, even if i is unknown at compile time
...

This pattern enables you to generate fixed-size arrays that have iterator values unknown at compile-
time. Another example of the recommended rewrite is:
width = 25;              
A = A(j-width:j+width);  % A is variable-size, if j is unknown at compile time 
fsA = A(j+(-width:width)); % This makes A fixed-size, even if j is unknown at compile time
...

See Also
coder.nullcopy | persistent

More About
• “Eliminate Redundant Copies of Variables in Generated Code” on page 18-7
• “Structure Definition for Code Generation” on page 25-2
• “Incompatibility with MATLAB in Matrix Indexing Operations for Code Generation” on page 29-
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• “Avoid Data Copies of Function Inputs in Generated Code” (MATLAB Coder)
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Eliminate Redundant Copies of Variables in Generated Code
In this section...
“When Redundant Copies Occur” on page 18-7
“How to Eliminate Redundant Copies by Defining Uninitialized Variables” on page 18-7
“Defining Uninitialized Variables” on page 18-7

When Redundant Copies Occur
During C/C++ code generation, the code generator checks for statements that attempt to access
uninitialized memory. If it detects execution paths where a variable is used but is potentially not
defined, it generates a compile-time error. To prevent these errors, define variables by assignment
before using them in operations or returning them as function outputs.

Note, however, that variable assignments not only copy the properties of the assigned data to the new
variable, but also initialize the new variable to the assigned value. This forced initialization
sometimes results in redundant copies in C/C++ code. To eliminate redundant copies, define
uninitialized variables by using the coder.nullcopy function, as described in “How to Eliminate
Redundant Copies by Defining Uninitialized Variables” on page 18-7.

How to Eliminate Redundant Copies by Defining Uninitialized
Variables
1 Define the variable with coder.nullcopy.
2 Initialize the variable before reading it.

When the uninitialized variable is an array, you must initialize all of its elements before passing
the array as an input to a function or operator — even if the function or operator does not read
from the uninitialized portion of the array.

What happens if you access uninitialized data?

Uninitialized memory contains arbitrary values. Therefore, accessing uninitialized data may lead
to segmentation violations or nondeterministic program behavior (different runs of the same
program may yield inconsistent results).

Defining Uninitialized Variables
In the following code, the assignment statement X = zeros(1,N) not only defines X to be a 1-by-5
vector of real doubles, but also initializes each element of X to zero.

function X = withoutNullcopy %#codegen

N = 5;
X = zeros(1,N);
for i = 1:N
    if mod(i,2) == 0
        X(i) = i;
    elseif mod(i,2) == 1
        X(i) = 0;
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    end
end

This forced initialization creates an extra copy in the generated code. To eliminate this overhead, use
coder.nullcopy in the definition of X:

function X = withNullcopy %#codegen

N = 5;
X = coder.nullcopy(zeros(1,N));
for i = 1:N
    if mod(i,2) == 0
        X(i) = i;
    else
        X(i) = 0;
    end
end

See Also
coder.nullcopy

More About
• “Avoid Data Copies of Function Inputs in Generated Code” (MATLAB Coder)
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Reassignment of Variable Properties
For C/C++ code generation, there are certain variables that you can reassign after the initial
assignment with a value of different class, size, or complexity:

Dynamically sized variables

A variable can hold values that have the same class and complexity but different sizes. If the size of
the initial assignment is not constant, the variable is dynamically sized in generated code. For more
information, see “Variable-Size Data”.

Variables reused in the code for different purposes

You can reassign the type (class, size, and complexity) of a variable after the initial assignment if each
occurrence of the variable can have only one type. In this case, the variable is renamed in the
generated code to create multiple independent variables. For more information, see “Reuse the Same
Variable with Different Properties” on page 18-10.
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Reuse the Same Variable with Different Properties
In this section...
“When You Can Reuse the Same Variable with Different Properties” on page 18-10
“When You Cannot Reuse Variables” on page 18-10
“Limitations of Variable Reuse” on page 18-11

For C/C++ code generation, there are certain variables that you can reassign after the initial
assignment with a value of different class, size, or complexity. A variable can hold values that have
the same class and complexity but different sizes. If the size of the initial assignment is not constant,
the variable is dynamically sized in generated code. For more information, see “Variable-Size Data”.

You can reassign the type (class, size, and complexity) of a variable after the initial assignment if each
occurrence of the variable can have only one type. In this case, the variable is renamed in the
generated code to create multiple independent variables.

When You Can Reuse the Same Variable with Different Properties
You can reuse (reassign) an input, output, or local variable with different class, size, or complexity if
the code generator can unambiguously determine the properties of each occurrence of this variable
during C/C++ code generation. If so, MATLAB creates separate uniquely named local variables in the
generated code. You can view these renamed variables in the code generation report.

A common example of variable reuse is in if-elseif-else or switch-case statements. For
example, the following function example1 first uses the variable t in an if statement, where it holds
a scalar double, then reuses t outside the if statement to hold a vector of doubles.

function y = example1(u) %#codegen
if all(all(u>0))
    % First, t is used to hold a scalar double value
    t = mean(mean(u)) / numel(u);
    u = u - t;
end
% t is reused to hold a vector of doubles
t = find(u > 0);
y = sum(u(t(2:end-1)));

When You Cannot Reuse Variables
You cannot reuse (reassign) variables if it is not possible to determine the class, size, and complexity
of an occurrence of a variable unambiguously during code generation. In this case, variables cannot
be renamed and a compilation error occurs.

For example, the following example2 function assigns a fixed-point value to x in the if statement
and reuses x to store a matrix of doubles in the else clause. It then uses x after the if-else
statement. This function generates a compilation error because after the if-else statement,
variable x can have different properties depending on which if-else clause executes.

function y = example2(use_fixpoint, data) %#codegen
  if use_fixpoint
            % x is fixed-point
      x = fi(data, 1, 12, 3);
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  else
             % x is a matrix of doubles
      x = data;
  end
  % When x is reused here, it is not possible to determine its
  % class, size, and complexity
  t = sum(sum(x));
  y = t > 0;
end

Example 18.3. Variable Reuse in an if Statement

To see how MATLAB renames a reused variable t:

1 Create a MATLAB file example1.m containing the following code.

function y = example1(u) %#codegen
if all(all(u>0))
    % First, t is used to hold a scalar double value
    t = mean(mean(u)) / numel(u);
    u = u - t;
end
% t is reused to hold a vector of doubles
t = find(u > 0);
y = sum(u(t(2:end-1)));
end

2 Generate a MEX function for example1 and produce a code generation report.

codegen -o example1x -report example1.m -args {ones(5,5)}
3 Open the code generation report.

On the Variables tab, you see two uniquely named local variables t>1 and t>2.

4 In the list of variables, click t>1. The report highlights the instances of the variable t that are
inside of the if statement. These instances of t are scalar double.

5 Click t>2. The code generation report highlights the instances of t that are outside of the if
statement. These instances of t are variable-size column vectors with an upper bound of 25.

Limitations of Variable Reuse
The following variables cannot be renamed in generated code:

• Persistent variables.
• Global variables.
• Variables passed to C code using coder.ref, coder.rref, coder.wref.
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• Variables whose size is set using coder.varsize.
• The index variable of a for-loop when it is used inside the loop body.
• The block outputs of a MATLAB Function block in a Simulink model.
• Chart-owned variables of a MATLAB function in a Stateflow chart.
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Supported Variable Types
You can use the following data types for C/C++ code generation from MATLAB:

Type Description
char Character array
complex Complex data. Cast function takes real and imaginary components
double Double-precision floating point
int8, int16, int32,
int64

Signed integer

logical Boolean true or false
single Single-precision floating point
struct Structure
uint8, uint16, uint32,
uint64

Unsigned integer

Fixed-point Fixed-point data types

 Supported Variable Types
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Edit and Represent Coder Type Objects and Properties
Passing an object to coder.typeof or passing a class name as a string scalar to coder.newtype
creates an object that represents the type of object for code generation.

The coder type object displays a succinct description of the object properties while excluding internal
state values. Nonconstant properties display their type and size, while constant properties display
only their values.

To create a coder type object, pass a compatible object to coder.typeof. For example:

t = categorical({'r','g','b'});
tType = coder.typeof(t)

The representation of variable t is stored in coder type object tType.

tType = 

   matlab.coder.type.CategoricalType
     1x3 categorical
    Categories : 3x1 homogeneous cell
       Ordinal : 1x1 logical
     Protected : 1x1 logical

Object Properties
You can edit the properties of coder type objects. You can assign scalar values to the object
properties. Values are implicitly converted to the corresponding coder type values when they are
assigned to coder type object properties. The code generator implicitly converts constants assigned
to coder type object properties to coder.Constant values. You can resize objects themselves

Resize Objects by Using coder.resize

You can resize most objects by using coder.resize. You can resize objects, its properties and create
arrays within the properties.

For example, for a timetable coder object, you can resize the object:

t = timetable((1:5)',(11:15)','SampleRate',1);
tType = coder.typeof(t);
tType = coder.resize(tType, [10 2],[1 0])

This code resizes the timetable to a :10x2 object.

tType = 

   matlab.coder.type.RegularTimetableType
     :10x2 timetable
                    Data : 1x2 homogeneous cell
             Description : 1x0 char
                UserData : 0x0 double
          DimensionNames : {'Time'}    {'Variables'}
           VariableNames : {'Var1'}    {'Var2'}
    VariableDescriptions : 1x2 homogeneous cell
           VariableUnits : 1x2 homogeneous cell
      VariableContinuity : 1x2 matlab.internal.coder.tabular.Continuity
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               StartTime : 1x1 matlab.coder.type.DurationType
              SampleRate : 1x1 double
                TimeStep : 1x1 matlab.coder.type.DurationType

The constant properties of tType display their values. The nonconstant properties display only their
type and size.

Note Not all types representing MATLAB classes are compatible with coder.resize.

Resize Objects by Editing Object Properties

You can resize the objects by editing the properties themselves. For a duration coder type object x,
edit the Size property to change the size as needed.

x = coder.typeof(duration((1:3),0,0));
x.Size = [10 10]

This code changes the size of the coder type object.

x = 

   matlab.coder.type.DurationType
     10x10 duration
    Format : 1x8 char

You can also make the coder type object variable-size by setting the VarDims flag:

x.VarDims(2) = true

The second dimension of the coder type object is upper-bounded at 10.

x = 

   matlab.coder.type.DurationType
     10x:10 duration
    Format : 1x8 char

Legacy Representation of Coder Type Objects
In R2021a, calling coder.typeof no longer returns a coder.ClassType object. If your workflow
requires the legacy representation of coder type objects, use the getCoderType function on the
variable that has the new representation of your class or object. For example, to get the legacy
representation of a datetime variable, use the variable that has the new representation tt to call
the getCoderType function:

t = datetime;
tt = coder.typeof(t);
ttLegacy = tt.getCoderType()

In the Coder Type Editor, the code generator includes the function getCoderType for coder type
objects. Use this function to return the legacy representation of coder types. See, “Create and Edit
Input Types by Using the Coder Type Editor” (MATLAB Coder)

Certain MATLAB data types provide customized type representations for MATLAB code generation. In
other cases, the type is represented using coder.ClassType.
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See Also
coder.resize | coder.newtype | coder.typeof | “Code Generation for Variable-Size Arrays”
(MATLAB Coder)
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Design Considerations for C/C++ Code
Generation

• “When to Generate Code from MATLAB Algorithms” on page 19-2
• “Which Code Generation Feature to Use” on page 19-3
• “Prerequisites for C/C++ Code Generation from MATLAB” on page 19-4
• “MATLAB Code Design Considerations for Code Generation” on page 19-5
• “Differences Between Generated Code and MATLAB Code” on page 19-6
• “Potential Differences Reporting” on page 19-18
• “Potential Differences Messages” on page 19-19
• “MATLAB Language Features Supported for C/C++ Code Generation” on page 19-23
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When to Generate Code from MATLAB Algorithms
Generating code from MATLAB algorithms for desktop and embedded systems allows you to perform
your software design, implementation, and testing completely within the MATLAB workspace. You
can:

• Verify that your algorithms are suitable for code generation
• Generate efficient, readable, and compact C/C++ code automatically, which eliminates the need to

manually translate your MATLAB algorithms and minimizes the risk of introducing errors in the
code.

• Modify your design in MATLAB code to take into account the specific requirements of desktop and
embedded applications, such as data type management, memory use, and speed.

• Test the generated code and easily verify that your modified algorithms are functionally equivalent
to your original MATLAB algorithms.

• Generate MEX functions to:

• Accelerate MATLAB algorithms in certain applications.
• Speed up fixed-point MATLAB code.

• Generate hardware description language (HDL) from MATLAB code.

When Not to Generate Code from MATLAB Algorithms
Do not generate code from MATLAB algorithms for the following applications. Use the recommended
MathWorks product instead.

To: Use:
Deploy an application that uses handle graphics MATLAB Compiler
Use Java MATLAB Compiler SDK™
Use toolbox functions that do not support code
generation

Toolbox functions that you rewrite for desktop and
embedded applications

Deploy MATLAB based GUI applications on a
supported MATLAB host

MATLAB Compiler

Deploy web-based or Windows applications MATLAB Compiler SDK
Interface C code with MATLAB MATLAB mex function
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Which Code Generation Feature to Use
To... Use... Required Product To Explore Further...
Generate MEX functions
for verifying generated
code

codegen function MATLAB Coder Try this in “Accelerate
MATLAB Algorithm by
Generating MEX Function”
(MATLAB Coder).

Produce readable,
efficient, and compact
code from MATLAB
algorithms for deployment
to desktop and embedded
systems.

MATLAB Coder app MATLAB Coder Try this in “Generate C
Code by Using the
MATLAB Coder App”
(MATLAB Coder).

codegen function MATLAB Coder Try this in “Generate C
Code at the Command
Line” (MATLAB Coder).

Generate MEX functions to
accelerate MATLAB
algorithms

MATLAB Coder app MATLAB Coder See “Accelerate MATLAB
Algorithms” (MATLAB
Coder).

codegen function MATLAB Coder

Integrate MATLAB code
into Simulink

MATLAB Function block Simulink Try this in “Call MATLAB
Function Files in MATLAB
Function Blocks”.

Speed up fixed point
MATLAB code

fiaccel function Fixed-Point Designer Learn more in “Code
Acceleration and Code
Generation from MATLAB”
on page 12-2.

Integrate custom C code
into MATLAB and generate
efficient, readable code

codegen function MATLAB Coder Learn more in “Call
Custom C/C++ Code from
the Generated Code”
(MATLAB Coder).

Integrate custom C code
into code generated from
MATLAB

coder.ceval function MATLAB Coder Learn more in
coder.ceval.

Generate HDL from
MATLAB code

MATLAB Function block Simulink and
HDL Coder

Learn more at
www.mathworks.com/
products/slhdlcoder.
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Prerequisites for C/C++ Code Generation from MATLAB
To generate C/C++ or MEX code from MATLAB algorithms, you must install the following software:

• MATLAB Coder product
• C/C++ compiler
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MATLAB Code Design Considerations for Code Generation
When writing MATLAB code that you want to convert into efficient, standalone C/C++ code, you must
consider the following:

• Data types

C and C++ use static typing. To determine the types of your variables before use, MATLAB Coder
requires a complete assignment to each variable.

• Array sizing

Variable-size arrays and matrices are supported for code generation. You can define inputs,
outputs, and local variables in MATLAB functions to represent data that varies in size at run time.

• Memory

You can choose whether the generated code uses static or dynamic memory allocation.

With dynamic memory allocation, you potentially use less memory at the expense of time to
manage the memory. With static memory, you get better speed, but with higher memory usage.
Most MATLAB code takes advantage of the dynamic sizing features in MATLAB, therefore dynamic
memory allocation typically enables you to generate code from existing MATLAB code without
modifying it much. Dynamic memory allocation also allows some programs to compile even when
upper bounds cannot be found.

Static allocation reduces the memory footprint of the generated code, and therefore is suitable for
applications where there is a limited amount of available memory, such as embedded applications.

• Speed

Because embedded applications must run in real time, the code must be fast enough to meet the
required clock rate.

To improve the speed of the generated code:

• Choose a suitable C/C++ compiler. Do not use the default compiler that MathWorks supplies
with MATLAB for Windows 64-bit platforms.

• Consider disabling run-time checks.

By default, for safety, the code generated for your MATLAB code contains memory integrity
checks and responsiveness checks. Generally, these checks result in more generated code and
slower simulation. Disabling run-time checks usually results in streamlined generated code and
faster simulation. Disable these checks only if you have verified that array bounds and
dimension checking is unnecessary.

See Also
• “Data Definition” (MATLAB Coder)“Data Definition Basics”
• “Code Generation for Variable-Size Arrays” on page 29-2
• “Control Run-Time Checks” on page 12-47
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Differences Between Generated Code and MATLAB Code
To convert MATLAB code to efficient C/C++ code, the code generator introduces optimizations that
intentionally cause the generated code to behave differently, and sometimes produce different results,
than the original source code.

Here are some of the differences:

• “Functions that have Multiple Possible Outputs” on page 19-6
• “Writing to ans Variable” on page 19-7
• “Logical Short-Circuiting” on page 19-7
• “Loop Index Overflow” on page 19-8
• “Indexing for Loops by Using Single Precision Operands” (MATLAB Coder)
• “Index of an Unentered for Loop” (MATLAB Coder)
• “Character Size” on page 19-10
• “Order of Evaluation in Expressions” on page 19-10
• “Name Resolution While Constructing Function Handles” on page 19-11
• “Termination Behavior” on page 19-13
• “Size of Variable-Size N-D Arrays” on page 19-13
• “Size of Empty Arrays” on page 19-13
• “Size of Empty Array That Results from Deleting Elements of an Array” on page 19-13
• “Binary Element-Wise Operations with Single and Double Operands” on page 19-14
• “Floating-Point Numerical Results” on page 19-15
• “NaN and Infinity” on page 19-15
• “Negative Zero” on page 19-15
• “Code Generation Target” on page 19-16
• “MATLAB Class Property Initialization” on page 19-16
• “MATLAB Classes in Nested Property Assignments That Have Set Methods” on page 19-16
• “MATLAB Handle Class Destructors” on page 19-16
• “Variable-Size Data” on page 19-17
• “Complex Numbers” on page 19-17
• “Converting Strings with Consecutive Unary Operators to double” on page 19-17

When you run your program, run-time error checks can detect some of these differences. To help you
identify and address differences before you deploy code, the code generator reports a subset of the
differences as potential differences on page 19-18.

Functions that have Multiple Possible Outputs
Certain mathematical operations, such as singular value decomposition and eigenvalue
decomposition of a matrix, can have multiple answers. Two different algorithms implementing such
an operation can return different outputs for identical input values. Two different implementations of
the same algorithm can also exhibit the same behavior.
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For such mathematical operations, the corresponding functions in the generated code and MATLAB
might return different outputs for identical input values. To see if a function has this behavior, in the
corresponding function reference page, see the C/C++ Code Generation section under Extended
Capabilities. Examples of such functions include svd and eig.

Writing to ans Variable
When you run MATLAB code that returns an output without specifying an output argument, MATLAB
implicitly writes the output to the ans variable. If the variable ans already exists in the workspace,
MATLAB updates its value to the output returned.

The code generated from such MATLAB code does not implicitly write the output to an ans variable.

For example, define the MATLAB function foo that explicitly creates an ans variable in the first line.
The function then implicitly updates the value of ans when the second line executes.

function foo %#codegen
ans = 1;
2;
disp(ans);
end

Run foo at the command line. The final value of ans, which is 2, is displayed at the command line.

foo

2

Generate a MEX function from foo.

codegen foo

Run the generated MEX function foo_mex. This function explicitly creates the ans variable and
assigns the value 1 to it. But foo_mex does not implicitly update the value of ans to 2.

foo_mex

1

Logical Short-Circuiting
Suppose that your MATLAB code has the logical operators & and | placed inside square brackets
([ and ]). For such code patterns, the generated code does not employ short-circuiting behavior for
these logical operators, but MATLAB execution might employ short-circuiting behavior. See “Logical
Short-Circuiting”.

For example, define the MATLAB function foo that uses the & operator inside square brackets in the
conditional expression of an if...end block.

function foo
if [returnsFalse() & hasSideEffects()]
end
end

function out = returnsFalse
out = false;
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end

function out = hasSideEffects
out = true;
disp('This is my string');
end

The first argument of the & operator is always false and determines the value of the conditional
expression. So, in MATLAB execution, short-circuiting is employed and the second argument is not
evaluated. So, foo does not call the hasSideEffects function during execution and does not
display anything at the command line.

Generate a MEX function for foo. Call the generated MEX function foo_mex.

foo_mex

This is my string

In the generated code, short-circuiting is not employed. So, the hasSideEffects function is called
and the string is displayed at the command line.

Loop Index Overflow
Suppose that a for-loop end value is equal to or close to the maximum or minimum value for the loop
index data type. In the generated code, the last increment or decrement of the loop index might
cause the index variable to overflow. The index overflow might result in an infinite loop.

When memory integrity checks are enabled, if the code generator detects that the loop index might
overflow, it reports an error. The software error checking is conservative. It might incorrectly report a
loop index overflow. By default, memory-integrity checks are enabled for MEX code and disabled for
standalone C/C++ code. See “Why Test MEX Functions in MATLAB?” (MATLAB Coder) and
“Generate Standalone C/C++ Code That Detects and Reports Run-Time Errors” (MATLAB Coder).

To avoid a loop index overflow, use the workarounds in this table.

Loop Conditions Causing the Potential
Overflow

Workaround

• The loop index increments by 1.
• The end value equals the maximum value of

the integer type.

If the loop does not have to cover the full range of
the integer type, rewrite the loop so that the end
value is not equal to the maximum value of the
integer type. For example, replace:

N=intmax('int16')
for k=N-10:N

with:

for k=1:10
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Loop Conditions Causing the Potential
Overflow

Workaround

• The loop index decrements by 1.
• The end value equals the minimum value of

the integer type.

If the loop does not have to cover the full range of
the integer type, rewrite the loop so that the end
value is not equal to the minimum value of the
integer type. For example, replace:

N=intmin('int32')
for k=N+10:-1:N

with:

for k=10:-1:1

• The loop index increments or decrements by
1.

• The start value equals the minimum or
maximum value of the integer type.

• The end value equals the maximum or
minimum value of the integer type.

If the loop must cover the full range of the
integer type, cast the type of the loop start, step,
and end values to a bigger integer or to double.
For example, rewrite:

M= intmin('int16');
N= intmax('int16');
for k=M:N
    % Loop body
end

as:

M= intmin('int16');
N= intmax('int16');
for k=int32(M):int32(N)
    % Loop body
end

• The loop index increments or decrements by a
value not equal to 1.

• On the last loop iteration, the loop index is not
equal to the end value.

Rewrite the loop so that the loop index in the last
loop iteration is equal to the end value.

Indexing for Loops by Using Single Precision Operands
Suppose in your MATLAB code, you are indexing a for loop that has a colon operator, where at least
one of the colon operands is a single type operand and the number of iterations is greater than
flintmax('single') = 16777216. When all these conditions are true, code generation might
generate run-time or compile-time errors because the generated code calculates different values for
the loop index variable than the values that MATLAB calculates.

For example, consider this MATLAB code:

function j = singlePIndex
n = flintmax('single') + 2;
j = single(0);
for i = single(1):single(n)
    j = i;
end
end
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This code snippet executes in MATLAB, but it causes a compile-time or run-time error because the
value of the loop index variable, i, is calculated differently in the generated code. The code generator
displays a compile-time or run-time error and stops code generation or execution to prevent this
discrepancy.

To avoid this discrepancy, replace the single type operands with double type or integer type operands.

For more information on run-time errors, see “Generate Standalone C/C++ Code That Detects and
Reports Run-Time Errors” (MATLAB Coder).

Index of an Unentered for Loop
In your MATLAB code and generated code, after a for loop execution is complete, the value of the
index variable is equal to its value during the final iteration of the for loop.

In MATLAB, if the loop does not execute, the value of the index variable is stored as [ ] (empty
matrix). In generated code, if the loop does not execute, the value of the index variable is different
than the MATLAB index variable.

• If you provide the for loop start and end variables at run time, the value of the index variable is
equal to the start of the range. For example, consider this MATLAB code:

function out = indexTest(a,b)
for i = a:b
end
out = i;
end

Suppose that a and b are passed as 1 and -1. The for loop does not execute. In MATLAB, out is
assigned [ ]. In the generated code, out is assigned the value of a, which is 1.

• If you provide the for loop start and end values before compile time, the value of the index
variable is assigned [ ] in both MATLAB and the generated code. Consider this MATLAB code:

function out = indexTest
for i = 1:-1
end
out = i;
end

In both MATLAB and the generated code, out is assigned [ ].

Character Size
MATLAB supports 16-bit characters, but the generated code represents characters in 8 bits, the
standard size for most embedded languages like C. See “Encoding of Characters in Code Generation”
on page 16-12.

Order of Evaluation in Expressions
Generated code does not enforce the order of evaluation in expressions. For most expressions, the
order of evaluation is not significant. For expressions that have side effects, the generated code might
produce the side effects in a different order from the original MATLAB code. Expressions that
produce side effects include those that:
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• Modify persistent or global variables
• Display data to the screen
• Write data to files
• Modify the properties of handle class objects

In addition, the generated code does not enforce order of evaluation of logical operators that do not
short circuit.

For more predictable results, it is good coding practice to split expressions that depend on the order
of evaluation into multiple statements.

• Rewrite

A = f1() + f2();

as

A = f1();
A = A + f2();

so that the generated code calls f1 before f2.
• Assign the outputs of a multi-output function call to variables that do not depend on one another.

For example, rewrite

[y, y.f, y.g] = foo;

as

[y, a, b] = foo;
y.f = a;
y.g = b;

• When you access the contents of multiple cells of a cell array, assign the results to variables that
do not depend on one another. For example, rewrite

[y, y.f, y.g] = z{:};

as

[y, a, b] = z{:};
y.f = a;
y.g = b;

Name Resolution While Constructing Function Handles
MATLAB and code generation follow different precedence rules for resolving names that follow the
symbol @. These rules do not apply to anonymous functions. The precedence rules are summarized in
this table.

Expression Precedence Order in MATLAB Precedence Order in Code
Generation

An expression that does not
contain periods, for example @x

Nested function, local function,
private function, path function

Local variable, nested function,
local function, private function,
path function
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Expression Precedence Order in MATLAB Precedence Order in Code
Generation

An expression that contains
exactly one period, for example
@x.y

Local variable, path function Local variable, path function
(Same as MATLAB)

An expression that contains
more than one period, for
example @x.y.z

Path function Local variable, path function

If x is a local variable that is itself a function handle, generated code and MATLAB interpret the
expression @x differently:

• MATLAB produces an error.
• Generated code interprets @x as the function handle of x itself.

Here is an example that shows this difference in behavior for an expression that contains two periods.

Suppose that your current working folder contains a package x, which contains another package y,
which contains the function z. The current working folder also contains the entry-point function foo
for which you want to generate code.

This is the definition for the file foo:

function out = foo
    x.y.z = @()'x.y.z is an anonymous function';
    out = g(x);
end

function out = g(x)
    f = @x.y.z;
    out = f();
end

This is the definition for function z:
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function out = z
    out = 'x.y.z is a package function';
end

Generate a MEX function for foo. Separately call both the generated MEX function foo_mex and the
MATLAB function foo.

codegen foo
foo_mex
foo

ans =

    'x.y.z is an anonymous function'

ans =

    'x.y.z is a package function'

The generated code produces the first output. MATLAB produces the second output. Code generation
resolves @x.y.z to the local variable x that is defined in foo. MATLAB resolves @x.y.z to z, which
is within the package x.y.

Termination Behavior
Generated code does not match the termination behavior of MATLAB source code. For example, if
infinite loops do not have side effects, optimizations remove them from generated code. As a result,
the generated code can possibly terminate even though the corresponding MATLAB code does not.

Size of Variable-Size N-D Arrays
For variable-size N-D arrays, the size function might return a different result in generated code than
in MATLAB source code. The size function sometimes returns trailing ones (singleton dimensions) in
generated code, but always drops trailing ones in MATLAB. For example, for an N-D array X with
dimensions [4 2 1 1], size(X) might return [4 2 1 1] in generated code, but always returns [4
2] in MATLAB. See “Incompatibility with MATLAB in Determining Size of Variable-Size N-D Arrays”
on page 29-16.

Size of Empty Arrays
The size of an empty array in generated code might be different from its size in MATLAB source code.
See “Incompatibility with MATLAB in Determining Size of Empty Arrays” on page 29-17.

Size of Empty Array That Results from Deleting Elements of an Array
Deleting all elements of an array results in an empty array. The size of this empty array in generated
code might differ from its size in MATLAB source code.
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Case Example Code Size of Empty Array
in MATLAB

Size of Empty
Array in Generated
Code

Delete all elements of
an m-by-n array by
using the colon
operator (:).

coder.varsize('X',[4,4],[1,1]);
X = zeros(2);
X(:) = [];

0-by-0 1-by-0

Delete all elements of a
row vector by using the
colon operator (:).

coder.varsize('X',[1,4],[0,1]);
X = zeros(1,4);
X(:) = [];

0-by-0 1-by-0

Delete all elements of a
column vector by using
the colon operator (:).

coder.varsize('X',[4,1],[1,0]);
X = zeros(4,1);
X(:) = [];

0-by-0 0-by-1

Delete all elements of a
column vector by
deleting one element at
a time.

coder.varsize('X',[4,1],[1,0]);
X = zeros(4,1);
for i = 1:4
    X(1)= [];
end

1-by-0 0-by-1

Binary Element-Wise Operations with Single and Double Operands
If your MATLAB code contains a binary element-wise operation that involves a single type operand
and a double type operand, the generated code might not produce the same result as MATLAB.

For such an operation, MATLAB casts both operands to double type and performs the operation with
the double types. MATLAB then casts the result to single type and returns it.

The generated code casts the double type operand to single type. It then performs the operation with
the two single types and returns the result.

For example, define a MATLAB function foo that calls the binary element-wise operation plus.

function out = foo(a,b)
out = a + b;
end

Define a variable s1 of single type and a variable v1 of double type. Generate a MEX function for foo
that accepts a single type input and a double type input.

s1 = single(1.4e32); 
d1 = -5.305e+32; 
codegen foo -args {s1, d1} 

Call both foo and foo_mex with inputs s1 and d1. Compare the two results.

ml = foo(s1,d1); 
mlc = foo_mex(s1,d1);
ml == mlc

ans =

  logical

   0
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The output of the comparison is a logical 0, which indicates that the generated code and MATLAB
produces different results for these inputs.

Floating-Point Numerical Results
The generated code might not produce the same floating-point numerical results as MATLAB in these:

When computer hardware uses extended precision registers

Results vary depending on how the C/C++ compiler allocates extended precision floating-point
registers. Computation results might not match MATLAB calculations because of different compiler
optimization settings or different code surrounding the floating-point calculations.

For certain advanced library functions

The generated code might use different algorithms to implement certain advanced library functions,
such as fft, svd, eig, mldivide, and mrdivide.

For example, the generated code uses a simpler algorithm to implement svd to accommodate a
smaller footprint. Results might also vary according to matrix properties. For example, MATLAB
might detect symmetric or Hermitian matrices at run time and switch to specialized algorithms that
perform computations faster than implementations in the generated code.

For implementation of BLAS library functions

For implementations of BLAS library functions, generated C/C++ code uses reference
implementations of BLAS functions. These reference implementations might produce different results
from platform-specific BLAS implementations in MATLAB.

NaN and Infinity
The generated code might not produce exactly the same pattern of NaN and Inf values as MATLAB
code when these values are mathematically meaningless. For example, if MATLAB output contains a
NaN, output from the generated code should also contain a NaN, but not necessarily in the same
place.

The bit pattern for NaN can differ between MATLAB code output and generated code output because
the C99 language standard that is used to generate code does not specify a unique bit pattern for NaN
across all implementations. Avoid comparing bit patterns across different implementations, for
example, between MATLAB output and SIL or PIL output.

Negative Zero
In a floating-point type, the value 0 has either a positive sign or a negative sign. Arithmetically, 0 is
equal to -0, but some operations are sensitive to the sign of a 0 input. Examples include rdivide,
atan2, atan2d, and angle. Division by 0 produces Inf, but division by -0 produces -Inf. Similarly,
atan2d(0,-1) produces 180, but atan2d (-0,-1) produces -180.

If the code generator detects that a floating-point variable takes only integer values of a suitable
range, then the code generator can use an integer type for the variable in the generated code. If the
code generator uses an integer type for the variable, then the variable stores -0 as +0 because an
integer type does not store a sign for the value 0. If the generated code casts the variable back to a
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floating-point type, the sign of 0 is positive. Division by 0 produces Inf, not -Inf. Similarly,
atan2d(0,-1) produces 180, not -180.

There are other contexts in which the generated code might treat -0 differently than MATLAB. For
example, suppose that your MATLAB code computes the minimum of two scalar doubles x and y by
using z = min(x,y). The corresponding line in the generated C code might be z = fmin(x,y).
The function fmin is defined in the runtime math library of the C compiler. Because the comparison
operation 0.0 == -0.0 returns true in C/C++, the compiler's implementation of fmin might return
either 0.0 or -0.0 for fmin(0.0,-0.0).

Code Generation Target
The coder.target function returns different values in MATLAB than in the generated code. The
intent is to help you determine whether your function is executing in MATLAB or has been compiled
for a simulation or code generation target. See coder.target.

MATLAB Class Property Initialization
Before code generation, at class loading time, MATLAB computes class default values. The code
generator uses the values that MATLAB computes. It does not recompute default values. If the
property definition uses a function call to compute the initial value, the code generator does not
execute this function. If the function has side effects such as modifying a global variable or a
persistent variable, then it is possible that the generated code might produce different results than
MATLAB. For more information, see “Defining Class Properties for Code Generation” on page 15-3.

MATLAB Classes in Nested Property Assignments That Have Set
Methods
When you assign a value to a handle object property, which is itself a property of another object, and
so on, then the generated code can call set methods for handle classes that MATLAB does not call.

For example, suppose that you define a set of variables such that x is a handle object, pa is an object,
pb is a handle object, and pc is a property of pb. Then you make a nested property assignment, such
as:

x.pa.pb.pc = 0;

In this case, the generated code calls the set method for the object pb and the set method for x.
MATLAB calls only the set method for pb.

MATLAB Handle Class Destructors
The behavior of handle class destructors in the generated code can be different from the behavior in
MATLAB in these situations:

• The order of destruction of several independent objects might be different in MATLAB than in the
generated code.

• The lifetime of objects in the generated code can be different from their lifetime in MATLAB.
• The generated code does not destroy partially constructed objects. If a handle object is not fully

constructed at run time, the generated code produces an error message but does not call the
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delete method for that object. For a System object, if there is a run-time error in setupImpl, the
generated code does not call releaseImpl for that object.

MATLAB does call the delete method to destroy a partially constructed object.

For more information, see “Code Generation for Handle Class Destructors” on page 15-15.

Variable-Size Data
See “Incompatibilities with MATLAB in Variable-Size Support for Code Generation” on page 29-15.

Complex Numbers
See “Code Generation for Complex Data” on page 16-8.

Converting Strings with Consecutive Unary Operators to double
Converting a string that contains multiple, consecutive unary operators to double can produce
different results between MATLAB and the generated code. Consider this function:

function out = foo(op)
out = double(op + 1);
end

For an input value "--", the function converts the string "--1" to double. In MATLAB, the answer
is NaN. In the generated code, the answer is 1.

See Also

More About
• “Potential Differences Reporting” on page 19-18
• “Potential Differences Messages” on page 19-19
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Potential Differences Reporting
Generation of efficient C/C++ code from MATLAB code sometimes results in behavior differences
between the generated code and the MATLAB code on page 19-6. When you run your program, run-
time error checks can detect some of these differences. To help you identify and address differences
before you deploy code, the code generator reports a subset of the differences as potential
differences. A potential difference is a difference that occurs at run time only under certain
conditions.

Addressing Potential Differences Messages
If the code generator detects a potential difference, it displays a message for the difference on the
Potential Differences tab of the report. To highlight the MATLAB code that corresponds to the
message, click the message.

The presence of a potential difference message does not necessarily mean that the difference will
occur when you run the generated code. To determine whether the potential difference affects your
application:

• Analyze the behavior of your MATLAB code for the range of data for your application.
• Test a MEX function generated from your MATLAB code. Use the range of data that your

application uses. If the difference occurs, the MEX function reports an error.

If your analysis or testing confirms the reported difference, consider modifying your code. Some
potential differences messages provide a workaround. For additional information about some of the
potential differences messages, see “Potential Differences Messages” on page 19-19. Even if you
modify your code to prevent a difference from occurring at run time, the code generator might still
report the potential difference.

The set of potential differences that the code generator detects is a subset of the differences that
MEX functions report as errors. It is a best practice to test a MEX function over the full range of
application data.

Disabling and Enabling Potential Differences Reporting
By default, potential differences reporting is enabled for code acceleration with fiaccel. To disable
it, in a code acceleration configuration object, set ReportPotentialDifferences to false.

See Also

More About
• “Potential Differences Messages” on page 19-19
• “Incompatibilities with MATLAB in Variable-Size Support for Code Generation” on page 29-15
• “Differences Between Generated Code and MATLAB Code” on page 19-6
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Potential Differences Messages
When you enable potential differences on page 19-18 reporting, the code generator reports potential
differences between the behavior of the generated code and the behavior of the MATLAB code.
Reviewing and addressing potential differences before you generate standalone code helps you to
avoid errors and incorrect answers in generated code.

Here are some of the potential differences messages:

• “Automatic Dimension Incompatibility” on page 19-19
• “mtimes No Dynamic Scalar Expansion” on page 19-19
• “Matrix-Matrix Indexing” on page 19-20
• “Vector-Vector Indexing” on page 19-20
• “Loop Index Overflow” (MATLAB Coder)

Automatic Dimension Incompatibility
In the generated code, the dimension to operate along is
selected automatically, and might be different from MATLAB.
Consider specifying the working dimension explicitly as a
constant value.

This restriction applies to functions that take the working dimension (the dimension along which to
operate) as input. In MATLAB and in code generation, if you do not supply the working dimension, the
function selects it. In MATLAB, the function selects the first dimension whose size does not equal 1.
For code generation, the function selects the first dimension that has a variable size or that has a
fixed size that does not equal 1. If the working dimension has a variable size and it becomes 1 at run
time, then the working dimension is different from the working dimension in MATLAB. Therefore,
when run-time error checks are enabled, an error can occur.

For example, suppose that X is a variable-size matrix with dimensions 1x:3x:5. In the generated
code, sum(X) behaves like sum(X,2). In MATLAB, sum(X) behaves like sum(X,2) unless
size(X,2) is 1. In MATLAB, when size(X,2) is 1, sum(X) behaves like sum(X,3).

To avoid this issue, specify the intended working dimension explicitly as a constant value. For
example, sum(X,2).

mtimes No Dynamic Scalar Expansion
The generated code performs a general matrix multiplication.
If a variable-size matrix operand becomes a scalar at run
time, dimensions must still agree. There will not be an
automatic switch to scalar multiplication.

Consider the multiplication A*B. If the code generator is aware that A is scalar and B is a matrix, the
code generator produces code for scalar-matrix multiplication. However, if the code generator is
aware that A and B are variable-size matrices, it produces code for a general matrix multiplication. At
run time, if A turns out to be scalar, the generated code does not change its behavior. Therefore,
when run-time error checks are enabled, a size mismatch error can occur.
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Matrix-Matrix Indexing
For indexing a matrix with a matrix, matrix1(matrix2), the
code generator assumed that the result would have the same
size as matrix2. If matrix1 and matrix2 are vectors at run
time, their orientations must match.

In matrix-matrix indexing, you use one matrix to index into another matrix. In MATLAB, the general
rule for matrix-matrix indexing is that the size and orientation of the result match the size and
orientation of the index matrix. For example, if A and B are matrices, size(A(B)) equals size(B).
When A and B are vectors, MATLAB applies a special rule. The special vector-vector indexing rule is
that the orientation of the result is the orientation of the data matrix. For example, if A is 1-by-5 and B
is 3-by-1, then A(B) is 1-by-3.

The code generator applies the same matrix-matrix indexing rules as MATLAB. If A and B are
variable-size matrices, to apply the matrix-matrix indexing rules, the code generator assumes that
size(A(B)) equals size(B). If, at run time, A and B become vectors and have different
orientations, then the assumption is incorrect. Therefore, when run-time error checks are enabled, an
error can occur.

To avoid this issue, force your data to be a vector by using the colon operator for indexing. For
example, suppose that your code intentionally toggles between vectors and regular matrices at run
time. You can do an explicit check for vector-vector indexing.

...
if isvector(A) && isvector(B)
    C = A(:);
    D = C(B(:));
else
    D = A(B);
end
...

The indexing in the first branch specifies that C and B(:) are compile-time vectors. Therefore, the
code generator applies the indexing rule for indexing one vector with another vector. The orientation
of the result is the orientation of the data vector, C.

Vector-Vector Indexing
For indexing a vector with a vector, vector1(vector2), the
code generator assumed that the result would have the same
orientation as vector1. If vector1 is a scalar at run time,
the orientation of vector2 must match vector1.

In MATLAB, the special rule for vector-vector indexing is that the orientation of the result is the
orientation of the data vector. For example, if A is 1-by-5 and B is 3-by-1, then A(B) is 1-by-3. If,
however, the data vector A is a scalar, then the orientation of A(B) is the orientation of the index
vector B.

The code generator applies the same vector-vector indexing rules as MATLAB. If A and B are variable-
size vectors, to apply the indexing rules, the code generator assumes that the orientation of B
matches the orientation of A. At run time, if A is scalar and the orientation of A and B do not match,
then the assumption is incorrect. Therefore, when run-time error checks are enabled, a run-time
error can occur.
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To avoid this issue, make the orientations of the vectors match. Alternatively, index single elements by
specifying the row and column. For example, A(row, column).

Loop Index Overflow
The generated code assumes the loop index does not overflow on
the last iteration of the loop. If the loop index overflows,
an infinite loop can occur.

Suppose that a for-loop end value is equal to or close to the maximum or minimum value for the loop
index data type. In the generated code, the last increment or decrement of the loop index might
cause the index variable to overflow. The index overflow might result in an infinite loop.

When memory integrity checks are enabled, if the code generator detects that the loop index might
overflow, it reports an error. The software error checking is conservative. It might incorrectly report a
loop index overflow. By default, memory-integrity checks are enabled for MEX code and disabled for
standalone C/C++ code. See “Why Test MEX Functions in MATLAB?” (MATLAB Coder) and
“Generate Standalone C/C++ Code That Detects and Reports Run-Time Errors” (MATLAB Coder).

To avoid a loop index overflow, use the workarounds in this table.

Loop Conditions Causing the Potential
Overflow

Workaround

• The loop index increments by 1.
• The end value equals the maximum value of

the integer type.

If the loop does not have to cover the full range of
the integer type, rewrite the loop so that the end
value is not equal to the maximum value of the
integer type. For example, replace:

N=intmax('int16')
for k=N-10:N

with:

for k=1:10

• The loop index decrements by 1.
• The end value equals the minimum value of

the integer type.

If the loop does not have to cover the full range of
the integer type, rewrite the loop so that the end
value is not equal to the minimum value of the
integer type. For example, replace:

N=intmin('int32')
for k=N+10:-1:N

with:

for k=10:-1:1
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Loop Conditions Causing the Potential
Overflow

Workaround

• The loop index increments or decrements by
1.

• The start value equals the minimum or
maximum value of the integer type.

• The end value equals the maximum or
minimum value of the integer type.

If the loop must cover the full range of the
integer type, cast the type of the loop start, step,
and end values to a bigger integer or to double.
For example, rewrite:

M= intmin('int16');
N= intmax('int16');
for k=M:N
    % Loop body
end

as:

M= intmin('int16');
N= intmax('int16');
for k=int32(M):int32(N)
    % Loop body
end

• The loop index increments or decrements by a
value not equal to 1.

• On the last loop iteration, the loop index is not
equal to the end value.

Rewrite the loop so that the loop index in the last
loop iteration is equal to the end value.

See Also

More About
• “Potential Differences Reporting” on page 19-18
• “Differences Between Generated Code and MATLAB Code” on page 19-6
• “Incompatibilities with MATLAB in Variable-Size Support for Code Generation” on page 29-15
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MATLAB Language Features Supported for C/C++ Code
Generation

MATLAB Features That Code Generation Supports
Code generation from MATLAB code supports many major language features including:

• n-dimensional arrays (see “Array Size Restrictions for Code Generation” on page 16-13)
• matrix operations, including deletion of rows and columns
• variable-size data (see “Code Generation for Variable-Size Arrays” on page 29-2)
• subscripting (see “Incompatibility with MATLAB in Matrix Indexing Operations for Code

Generation” on page 29-19)
• complex numbers (see “Code Generation for Complex Data” on page 16-8)
• numeric classes (see “Supported Variable Types” on page 18-13)
• double-precision, single-precision, and integer math
• enumerations (see “Code Generation for Enumerations” on page 20-2)
• fixed-point arithmetic (see “Code Acceleration and Code Generation from MATLAB” on page 12-2)
• program control statements if, switch, for, while, and break
• arithmetic, relational, and logical operators
• local functions
• persistent variables
• global variables
• structures (see “Structure Definition for Code Generation” on page 25-2)
• cell arrays (see “Cell Arrays”)
• tables (see “Code Generation for Tables” on page 27-2)
• timetables (see “Code Generation for Timetables” on page 28-2)
• characters (see “Encoding of Characters in Code Generation” on page 16-12)
• string scalars (see “Code Generation for Strings” on page 16-16)
• categorical arrays (see “Code Generation for Categorical Arrays” on page 21-2)
• datetime arrays (see “Code Generation for Datetime Arrays” on page 22-2)
• duration arrays (see “Code Generation for Duration Arrays” on page 23-2)
• sparse matrices (see “Code Generation for Sparse Matrices” on page 16-19)
• function handles (see “Function Handle Limitations for Code Generation” on page 24-2)
• anonymous functions (see “Code Generation for Anonymous Functions” on page 17-5)
• recursive functions (see “Code Generation for Recursive Functions” on page 14-14)
• nested functions (see “Code Generation for Nested Functions” on page 17-6)
• variable length input and output argument lists (see “Code Generation for Variable Length

Argument Lists” on page 17-2)
• subset of MATLAB toolbox functions (see “Functions and Objects Supported for C/C++ Code

Generation” on page 26-2)
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• subset of functions and System objects in several toolboxes (see “Functions and Objects
Supported for C/C++ Code Generation” on page 26-2)

• MATLAB classes (see “MATLAB Classes Definition for Code Generation” on page 15-2)
• Class aliasing
• function calls (see “Resolution of Function Calls for Code Generation” on page 14-2)

MATLAB Language Features That Code Generation Does Not Support
Code generation from MATLAB does not support the following frequently used MATLAB features (this
list is not exhaustive):

• scripts
• GPU arrays

MATLAB Coder does not support GPU arrays. However, if you have GPU Coder™, you can
generate CUDA® MEX code that takes GPU array inputs.

• calendarDuration arrays
• Java
• Map containers
• time series objects
• tall arrays
• try/catch statements
• import statements
• pattern arrays
• Function argument validation
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Code Generation for Enumerated Data

• “Code Generation for Enumerations” on page 20-2
• “Customize Enumerated Types in Generated Code” on page 20-7
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Code Generation for Enumerations
Enumerations represent a fixed set of named values. Enumerations help make your MATLAB code
more readable.

For code generation, when you use enumerations, adhere to these restrictions:

• Calls to methods of enumeration classes are not supported.
• Passing strings or character vectors to constructors of enumerations is not supported.
• The enumeration class must derive from one of these base types: int8, uint8, int16, uint16,

or int32. See “Define Enumerations for Code Generation” on page 20-2.
• You can use only a limited set of operations on enumerations. See “Allowed Operations on

Enumerations” on page 20-4.
• Use enumerations with functions that support enumerated types for code generation. See

“MATLAB Toolbox Functions That Support Enumerations” on page 20-5.

Define Enumerations for Code Generation
For code generation, the enumeration class must derive from one of these base types: int8, uint8,
int16, uint16, or int32. For example:

classdef PrimaryColors < int32
    enumeration
        Red(1),
        Blue(2),
        Yellow(4)
    end
end

If you use MATLAB Coder to generate C/C++ code, you can use the base type to control the size of an
enumerated type in the generated code. You can:

• Represent an enumerated type as a fixed-size integer that is portable to different targets.
• Reduce memory usage.
• Interface with legacy code.
• Match company standards.

Representation of Enumerated Type in Generated Code

The representation of the enumerated type in generated C/C++ code depends on the following:

• The base type of the MATLAB enumeration
• The target language (C or C++)
• If the target language is C++, the target language standard (C++03 or C++11)

Base Type is Native Integer Type

If the base type is the native integer type for the target platform (for example, int32), the code
generator produces a C/C++ enumerated type. Consider this MATLAB enumerated type definition:

classdef LEDcolor < int32
    enumeration
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        GREEN(1),
        RED(2)
    end
end

If you generate C code or C++03 code, the generated enumeration is:

enum LEDcolor
{
    GREEN = 1,
    RED
};

If you generate C++11 code, the generated code contains an enumeration class (by default) that
explicitly defines the underlying type:

enum class LEDcolor : int
{
  GREEN = 1, 
  RED
};

Base Type is Different from the Native Integer Type

Suppose that built-in integer base type for the enumeration is different from the native integer type
for the target platform. For example, consider this MATLAB enumerated type definition:

classdef LEDcolor < int16
    enumeration
        GREEN(1),
        RED(2)
    end    
end

• If you generate C code, the code generator produces a typedef statement for the enumerated
type and #define statements for the enumerated values. For example, the enumerated type
definition LEDcolor produces this C code:

typedef short LEDcolor;
#define GREEN ((LEDcolor)1)
#define RED ((LEDcolor)2)

• If you generate C++03 code, the enumeration members are converted to constants. These
constants belong to the namespace that contains the enumeration type definition in the generated
C++ code.

For example, suppose that you place the enumerated type definition LEDcolor inside the package
pkg. The default behavior of the code generator is to convert MATLAB packages to C++
namespaces. The generated C++ code is placed inside the namespace pkg:

namespace pkg {
typedef short LEDcolor;

// enum pkg_LEDcolor
const LEDcolor GREEN{1};
const LEDcolor RED{2};

}
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• C++11 allows you to specify the underlying type of an enumeration, just like MATLAB does. If you
generate C++11 code, the MATLAB enumeration class is converted to a C++ enumeration class
(by default) that explicitly defines the underlying type.

For example, suppose that you place the enumerated type definition LEDcolor inside the package
pkg. The default behavior of the code generator is to convert MATLAB packages to C++
namespaces. The generated C++11 code is placed inside the namespace pkg:

namespace pkg {
enum class LEDcolor : short
{
  GREEN = 1, // Default value
  RED
};

}

The C/C++ type in the typedef statement or the underlying type of the C++11 enumeration
depends on:

• The integer sizes defined for the production hardware in the hardware implementation object or
the project settings. See coder.HardwareImplementation.

• The setting that determines the use of built-in C types or MathWorks typedefs in the generated
code. See “Specify Data Types Used in Generated Code” (MATLAB Coder) and “Mapping MATLAB
Types to Types in Generated Code” (MATLAB Coder).

Generate C++11 Code That Contains Ordinary C Enumerations

You can change the default behavior of the code generator to produce ordinary C enumerations in the
generated C++11 code. Do one of the following:

• In the code generation configuration object, set the CppGenerateEnumClass property to false.
• In the MATLAB Coder app, in the Generate step, on the Code Appearance tab, clear the

Generate C++ enum class from MATLAB enumeration check box.

To instruct the code generator to produce ordinary C enumeration for a particular MATLAB
enumeration class in your code, include the static method generateEnumClass that returns false
in the implementation of that MATLAB enumeration class. See “Customize Enumerated Types in
Generated Code” on page 20-7.

Allowed Operations on Enumerations
For code generation, you are restricted to the operations on enumerations listed in this table.

Operation Example Notes
assignment operator: = —
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Operation Example Notes
relational operators: < > <=
>= == ~=

xon == xoff Code generation does not
support using == or ~= to test
equality between an
enumeration member and a
string array, a character array,
or a cell array of character
arrays.

cast operation double(LEDcolor.RED) —
conversion to character array or
string

y = char(LEDcolor.RED);
y1 = cast(LEDcolor.RED,'char');
y2 = string(LEDcolor.RED);

• You can convert only
compile-time scalar valued
enumerations. For example,
this code runs in MATLAB,
but produces an error in
code generation:
y2 = string(repmat(LEDcolor.RED,1,2));

• The code generator
preserves enumeration
names when the conversion
inputs are constants. For
example, consider this
enumerated type definition:
classdef AnEnum < int32
    enumeration
        zero(0),
        two(2),
        otherTwo(2)
    end
end

Generated code produces
"two" for
y = string(AnEnum.two)

and "otherTwo" for
y = string(AnEnum.two)

indexing operation m = [1 2]
n = LEDcolor(m)
p = n(LEDcolor.GREEN)

—

control flow statements: if,
switch, while

if state == sysMode.ON
    led = LEDcolor.GREEN;
else
    led = LEDcolor.RED;
end

—

MATLAB Toolbox Functions That Support Enumerations
For code generation, you can use enumerations with these MATLAB toolbox functions:

• cast
• cat
• char
• circshift
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• enumeration
• fliplr
• flipud
• histc
• intersect
• ipermute
• isequal
• isequaln
• isfinite
• isinf
• ismember
• isnan
• issorted
• length
• permute
• repmat
• reshape
• rot90
• setdiff
• setxor
• shiftdim
• sort
• sortrows
• squeeze
• string
• union
• unique

See Also

More About
• “Customize Enumerated Types in Generated Code” on page 20-7
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Customize Enumerated Types in Generated Code
For code generation, to customize an enumeration, in the static methods section of the class
definition, include customized versions of the methods listed in this table.

Method Description Default Value
Returned or Specified

When to Use

getDefaultValue Returns the default
enumerated value.

First value in the
enumeration class
definition.

For a default value that
is different than the first
enumeration value,
provide a
getDefaultValue
method that returns the
default value that you
want. See “Specify a
Default Enumeration
Value” on page 20-8.

getHeaderFile Specifies the file that
defines an externally
defined enumerated
type.

'' To use an externally
defined enumerated
type, provide a
getHeaderFile
method that returns the
path to the header file
that defines the type. In
this case, the code
generator does not
produce the class
definition. See “Specify
a Header File” on page
20-8

addClassNameToEnumNames Specifies whether the
class name becomes a
prefix in the generated
code.

false — prefix is not
used.

If you want the class
name to become a prefix
in the generated code,
set the return value of
the
addClassNameToEnum
Names method to true.
See “Include Class
Name Prefix in
Generated Enumerated
Type Value Names” on
page 20-9.

Note When generating
C++11 enumeration
classes, the code
generator ignores this
static method.
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Method Description Default Value
Returned or Specified

When to Use

generateEnumClass Specifies whether to
generate C++11
enumeration classes

true — enumeration
classes are generated in
C++11 code

When generating C+
+11 code, to instruct
the code generator to
produce ordinary C
enumeration for a
particular MATLAB
enumeration, set the
return value of
generateEnumClass
method to false. See
“Generate C++11 Code
Containing Ordinary C
Enumeration” (MATLAB
Coder).

Specify a Default Enumeration Value
If the value of a variable that is cast to an enumerated type does not match one of the
enumerated type values:

• Generated MEX reports an error.
• Generated C/C++ code replaces the value of the variable with the enumerated type default value.

Unless you specify otherwise, the default value for an enumerated type is the first value in the
enumeration class definition. To specify a different default value, add your own getDefaultValue
method to the methods section. In this example, the first enumeration member value is
LEDcolor.GREEN, but the getDefaultValue method returns LEDcolor.RED:

classdef LEDcolor < int32
    enumeration
        GREEN(1),
        RED(2)
    end
    
    methods (Static)
        function y = getDefaultValue()
            y = LEDcolor.RED;
        end
    end
end

Specify a Header File
To specify that an enumerated type is defined in an external file, provide a customized
getHeaderFile method. This example specifies that LEDcolor is defined in the external file
my_LEDcolor.h.

classdef LEDcolor < int32
    enumeration
        GREEN(1),
        RED(2)
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    end

    methods(Static)
      function y=getHeaderFile()
        y='my_LEDcolor.h';
      end
    end
end

You must provide my_LEDcolor.h. For example:

enum LEDcolor
{
    GREEN = 1,
    RED
};
typedef enum LEDcolor LEDcolor;

If you place the MATLAB enumeration LEDcolor inside the package pkg and generate C++ code,
code generation preserves the name of this enumeration and places it inside the namespace pkg in
the generated code. Therefore, in the header file that you provide, you must define this enumeration
inside the namespace pkg.

Include Class Name Prefix in Generated Enumerated Type Value
Names
By default, the generated enumerated type value name does not include the class name prefix. For
example:

enum LEDcolor
{
    GREEN = 1,
    RED
};

typedef enum LEDcolor LEDcolor;

To include the class name prefix, provide an addClassNameToEnumNames method that returns true.
For example:

classdef LEDcolor < int32
    enumeration
        GREEN(1),
        RED(2)
    end

    methods(Static)
      function y = addClassNameToEnumNames()
        y=true;
      end
    end
end

In the generated type definition, the enumerated value names include the class prefix LEDcolor.

enum LEDcolor
{
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    LEDcolor_GREEN = 1,
    LEDcolor_RED
};

typedef enum LEDcolor LEDcolor;

Generate C++11 Code Containing Ordinary C Enumeration
When you generate C++11 code, your MATLAB enumeration class is converted to a C++11
enumeration class. For example:

enum class MyEnumClass16 : short
{
  Orange = 0, // Default value
  Yellow,
  Pink
};

To generate an ordinary C enumeration instead, provide a generateEnumClass method that returns
false. For example:

classdef MyEnumClass16 < int16
    enumeration
        Orange(0),
        Yellow(1),
        Pink(2)
    end

    % particular enum opting out
    methods(Static)
        function y = generateEnumClass()
            y = false;   
        end
    end
end

Now the generated C++11 code contains an ordinary C enumeration.

enum MyEnumClass16 : short
{
  Orange = 0, // Default value
  Yellow,
  Pink
};

See Also

More About
• Modifying Superclass Methods and Properties
• “Code Generation for Enumerations” on page 20-2
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Code Generation for Categorical Arrays
In this section...
“Define Categorical Arrays for Code Generation” on page 21-2
“Allowed Operations on Categorical Arrays” on page 21-2
“MATLAB Toolbox Functions That Support Categorical Arrays” on page 21-3

Categorical arrays store data with values from a finite set of discrete categories. You can specify an
order for the categories, but it is not required. A categorical array provides efficient storage and
manipulation of nonnumeric data, while also maintaining meaningful names for the values.

When you use categorical arrays with code generation, adhere to these restrictions:

Define Categorical Arrays for Code Generation
For code generation, use the categorical function to create categorical arrays. For example,
suppose the input argument to your MATLAB function is a numeric array of arbitrary size whose
elements have values of either 1, 2, or 3. You can convert these values to the categories small,
medium, and large and turn the input array into a categorical array, as shown in this code.

function c = foo(x) %#codegen
    c = categorical(x,1:3,{'small','medium','large'});
end

Allowed Operations on Categorical Arrays
For code generation, you are restricted to the operations on categorical arrays listed in this table.

Operation Example Notes
assignment operator: = c = categorical(1:3,1:3,{'small','medium','large'});

c(1) = 'large';

c = categorical(1:3,1:3,{'small','medium','large'});
c(1) = 'large';

Code generation does not
support using the assignment
operator = to:

• Delete an element.
• Expand the size of a

categorical array.
• Add a new category, even

when the array is not
protected.

relational operators: < > <=
>= == ~=

c = categorical(1:3,'Ordinal',true);
tf = c(1) < c(2);

c = categorical(1:3,'Ordinal',true);
tf = c(1) < c(2);

Code generation supports all
relational operators.

cast to numeric type c = categorical(1:3);
double(c(1));

c = categorical(1:3);
double(c(1));

Code generation supports
casting categorical arrays to
arrays of double- or single-
precision floating-point
numbers, or to integers.
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Operation Example Notes
conversion to text c = categorical(1:3,1:3,{'small','medium','large'});

c1 = cellstr(c(1)); % One element
c2 = cellstr(c);    % Entire array

c = categorical(1:3,1:3,{'small','medium','large'});
c1 = cellstr(c(1)); % One element
c2 = cellstr(c);    % Entire array

Code generation does not
support using the char or
string functions to convert
categorical values to text.

To convert one or more
elements of a categorical array
to text, use the cellstr
function.

indexing operation c = categorical(1:3,1:3,{'small','medium','large'});
idx = [1 2];
c(idx);
idx = logical([1 1 0]);
c(idx);

c = categorical(1:3,1:3,{'small','medium','large'});
idx = [1 2];
c(idx);
idx = logical([1 1 0]);
c(idx);

Code generation supports
indexing by position, linear
indexing, and logical indexing.

concatenation c1 = categorical(1:3,1:3,{'small','medium','large'});
c2 = categorical(4:6,[2 1 4],{'medium','small','extra-large'});
c = [c1 c2];

c1 = categorical(1:3,1:3,{'small','medium','large'});
c2 = categorical(4:6,[2 1 4],{'medium','small','extra-large'});
c = [c1 c2];

Code generation supports
concatenation of categorical
arrays along any dimension.

MATLAB Toolbox Functions That Support Categorical Arrays
For code generation, you can use categorical arrays with these MATLAB toolbox functions:

• addcats
• cat
• categorical
• categories
• cellstr
• countcats
• ctranspose
• double
• eq
• ge
• gt
• histcounts
• horzcat
• int8
• int16
• int32
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• int64
• intersect
• iscategory
• iscolumn
• isempty
• isequal
• isequaln
• ismatrix
• ismember
• isordinal
• isprotected
• isrow
• isscalar
• issorted
• issortedrows
• isundefined
• isvector
• le
• length
• lt
• max
• mergecats
• min
• ndims
• ne
• numel
• permute
• removecats
• renamecats
• reordercats
• reshape
• setcats
• setdiff
• setxor
• single
• size
• sort
• sortrows
• transpose
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• uint8
• uint16
• uint32
• uint64
• union
• unique
• vertcat

See Also

More About
• “Define Categorical Array Inputs” on page 21-6
• “Categorical Array Limitations for Code Generation” on page 21-8
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Define Categorical Array Inputs
You can define categorical array inputs at the command line. Programmatic specification of
categorical input types by using preconditioning (assert statements) is not supported.

Define Categorical Array Inputs at the Command Line
Use one of these procedures:

• “Provide an Example Categorical Array Input” on page 21-6
• “Provide a Categorical Array Type” on page 21-6
• “Provide a Constant Categorical Array Input” on page 21-6

Alternatively, if you have a test file that calls your entry-point function with example inputs, you can
determine the input types by using coder.getArgTypes.

Provide an Example Categorical Array Input

Use the -args option:

C = categorical({'r','g','b'});
fiaccel myFunction -args {C}

Provide a Categorical Array Type

To provide a type for a categorical array to fiaccel:

1 Define a categorical array. For example:

C = categorical({'r','g','b'});
2 Create a type from C.

t = coder.typeof(C);
3 Pass the type to fiaccel by using the -args option.

fiaccel myFunction -args {t}

Provide a Constant Categorical Array Input

To specify that a categorical array input is constant, use coder.Constant with the -args option:

C = categorical({'r','g','b'});
fiaccel myFunction -args {coder.Constant(C)}

Representation of Categorical Arrays
A coder type object for a categorical array describes the object and its properties. Use
coder.typeof or pass categorical as a string scalar to coder.newtype.

The coder type object displays a succinct description of the object properties while excluding internal
state values. Nonconstant properties display their type and size, while constant properties display
only their values. For example:
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t = categorical({'r','g','b'});
tType = coder.typeof(t)

The representation of variable t is stored in coder type object tType.

tType = 

   matlab.coder.type.CategoricalType
     1x3 categorical
    Categories : 3x1 homogeneous cell
       Ordinal : 1x1 logical
     Protected : 1x1 logical

If your workflow requires the legacy representation of coder type objects, use the getCoderType
function on the variable that has the new representation of your class or object. See “Legacy
Representation of Coder Type Objects” (MATLAB Coder).

Resize Object Properties by Using coder.resize

You can resize most objects by using coder.resize. You can resize objects, its properties and create
arrays within the properties.

For a categorical coder object, you can resize the object properties:

t = categorical({'r','g','b'});
tType = coder.typeof(t);
tType.Categories = coder.resize(tType.Categories, [3 1],[1 0])

This code resizes the Categories property to be upper-bounded at 3 for the first dimension.

tType = 

   matlab.coder.type.CategoricalType
     1x3 categorical
    Categories : :3x1 homogeneous cell
       Ordinal : 1x1 logical
     Protected : 1x1 logical

You can also resize the object by using coder.resize. See “Edit and Represent Coder Type Objects
and Properties” (MATLAB Coder).

See Also
categorical | coder.Constant | coder.typeof

More About
• “Code Generation for Categorical Arrays” on page 21-2
• “Categorical Array Limitations for Code Generation” on page 21-8
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Categorical Array Limitations for Code Generation
When you create categorical arrays in MATLAB code that you intend for code generation, you must
specify the categories and elements of each categorical array by using the categorical function.
See “Categorical Arrays”.

For categorical arrays, code generation does not support the following inputs and operations:

• Arrays of MATLAB objects.
• Sparse matrices.
• Duplicate category names when you specify them using the categoryNames input argument of

the categorical function.
• Growth by assignment. For example, assigning a value beyond the end of an array produces an

error.

function c = foo() %#codegen
    c = categorical(1:3,1:3,{'small','medium','large'});
    c(4) = 'medium';
end

• Adding a category. For example, specifying a new category by using the = operator produces an
error, even when the categorical array is unprotected.

function c = foo() %#codegen
    c = categorical(1:3,1:3,{'small','medium','large'});
    c(1) = 'extra-large';
end

• Deleting an element. For example, assigning an empty array to an element produces an error.

function c = foo() %#codegen
    c = categorical(1:3,1:3,{'small','medium','large'});
    c(1) = [];
end

• Converting categorical values to text by using the char or string functions. To convert elements
of a categorical array to text, use the cellstr function.

Limitations that apply to classes also apply to categorical arrays. For more information, see “MATLAB
Classes Definition for Code Generation” (MATLAB Coder).

See Also
categorical | cellstr

More About
• “Code Generation for Categorical Arrays” on page 21-2
• “Define Categorical Array Inputs” on page 21-6
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Code Generation for Datetime Arrays

• “Code Generation for Datetime Arrays” on page 22-2
• “Define Datetime Array Inputs” on page 22-5
• “Datetime Array Limitations for Code Generation” on page 22-7
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Code Generation for Datetime Arrays

In this section...
“Define Datetime Arrays for Code Generation” on page 22-2
“Allowed Operations on Datetime Arrays” on page 22-2
“MATLAB Toolbox Functions That Support Datetime Arrays” on page 22-3

The values in a datetime array represent points in time using the proleptic ISO calendar.

When you use datetime arrays with code generation, adhere to these restrictions.

Define Datetime Arrays for Code Generation
For code generation, use the datetime function to create datetime arrays. For example, suppose
the input arguments to your MATLAB function are numeric arrays whose values indicate the year,
month, day, hour, minute, and second components for a point in time. You can create a datetime
array from these input arrays.

function d = foo(y,mo,d,h,mi,s) %#codegen
    d = datetime(y,mo,d,h,mi,s);
end

Allowed Operations on Datetime Arrays
For code generation, you are restricted to the operations on datetime arrays listed in this table.

Operation Example Notes
Assignment operator: = d = datetime(2019,1:12,1,12,0,0);

d(1) = datetime(2019,1,31);

d = datetime(2019,1:12,1,12,0,0);
d(1) = datetime(2019,1,31);

Code generation does not
support using the assignment
operator = to:

• Delete an element.
• Expand the size of a

datetime array.
Relational operators: < > <=
>= == ~=

d = datetime(2019,1:12,1,12,0,0);
tf = d(1) < d(2);

d = datetime(2019,1:12,1,12,0,0);
tf = d(1) < d(2);

Code generation supports
relational operators.

Indexing operation d = datetime(2019,1:12,1,12,0,0);
idx = [1 2];
d(idx);
idx = logical([1 1 0]);
d(idx);

d = datetime(2019,1:12,1,12,0,0);
idx = [1 2];
d(idx);
idx = logical([1 1 0]);
d(idx);

Code generation supports
indexing by position, linear
indexing, and logical indexing.
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Operation Example Notes
Concatenation d1 = datetime(2019,1:6,1,12,0,0);

d2 = datetime(2019,7:12,1,12,0,0);
d = [d1 d2];

d1 = datetime(2019,1:6,1,12,0,0);
d2 = datetime(2019,7:12,1,12,0,0);
d = [d1 d2];

Code generation supports
concatenation of datetime
arrays.

MATLAB Toolbox Functions That Support Datetime Arrays
For code generation, you can use datetime arrays with these MATLAB toolbox functions:

• cat
• colon
• ctranspose
• datetime
• datevec
• diff
• eq
• ge
• gt
• hms
• horzcat
• hour
• interp1
• intersect
• iscolumn
• isempty
• isequal
• isequaln
• isfinite
• isinf
• ismatrix
• ismember
• isnat
• isreal
• isrow
• isscalar
• issorted
• issortedrows
• isvector
• le
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• length
• linspace
• lt
• max
• mean
• min
• minus
• minute
• NaT
• ndims
• ne
• numel
• permute
• plus
• posixtime
• repmat
• reshape
• setdiff
• setxor
• size
• sort
• sortrows
• topkrows
• transpose
• union
• unique
• vertcat
• ymd

See Also

More About
• “Define Datetime Array Inputs” on page 22-5
• “Datetime Array Limitations for Code Generation” on page 22-7
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Define Datetime Array Inputs
You can define datetime array inputs at the command line. Programmatic specification of datetime
input types by using preconditioning (assert statements) is not supported.

Define Datetime Array Inputs at the Command Line
Use one of these procedures:

• “Provide an Example Datetime Array Input” on page 22-5
• “Provide a Datetime Array Type” on page 22-5
• “Provide a Constant Datetime Array Input” on page 22-5

Alternatively, if you have a test file that calls your entry-point function with example inputs, you can
determine the input types by using coder.getArgTypes.

Provide an Example Datetime Array Input

Use the -args option:

D = datetime(2019,1:12,1,12,0,0);
fiaccel myFunction -args {D}

Provide a Datetime Array Type

To provide a type for a datetime array to fiaccel:

1 Define a datetime array. For example:

D = datetime(2019,1:12,1,12,0,0);
2 Create a type from D.

t = coder.typeof(D);
3 Pass the type to fiaccel by using the -args option.

fiaccel myFunction -args {t}

Provide a Constant Datetime Array Input

To specify that a datetime array input is constant, use coder.Constant with the -args option:

D = datetime(2019,1:12,1,12,0,0);
fiaccel myFunction -args {coder.Constant(C)}

Representation of Datetime Arrays
A coder type object for a datetime array describes the object and its properties. Use coder.typeof
or pass datetime as a string scalar to coder.newtype.

The coder type object displays a succinct description of the object properties while excluding internal
state values. Nonconstant properties display their type and size, while constant properties display
only their values. For example:
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t = datetime(2019,1:12,1,12,0,0);
tType = coder.typeof(t)

The representation of variable t is stored in coder type object tType.

tType = 

   matlab.coder.type.DatetimeType
     1x12 datetime
      Format : 1x0 char
    TimeZone : 1x0 char

If your workflow requires the legacy representation of coder type objects, use the getCoderType
function on the variable that has the new representation of your class or object. See “Legacy
Representation of Coder Type Objects” (MATLAB Coder).

Resize Object Properties by Using coder.resize

You can resize most objects by using coder.resize. You can resize objects, its properties and create
arrays within the properties.

For a datetime coder object, you can resize the object properties:

t = datetime(2019,1:12,1,12,0,0);
tType = coder.typeof(t)
tType.Format = coder.resize(tType.Format, [1 12])

This code resizes the Format property to be a 1x12 char property.

tType = 

   matlab.coder.type.DatetimeType
     1x12 datetime
      Format : 1x12 char
    TimeZone : 1x0 char

You can also resize the object by using coder.resize. See “Edit and Represent Coder Type Objects
and Properties” (MATLAB Coder).

See Also
datetime | NaT | coder.Constant | coder.typeof

More About
• “Code Generation for Datetime Arrays” on page 22-2
• “Datetime Array Limitations for Code Generation” on page 22-7
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Datetime Array Limitations for Code Generation
When you create datetime arrays in MATLAB code that you intend for code generation, you must
specify the values by using the datetime function. See “Dates and Time”.

For datetime arrays, code generation does not support the following inputs and operations:

• Text inputs. For example, specifying a character vector as the input argument produces an error.

function d = foo() %#codegen
    d = datetime('2019-12-01');
end

• The 'Format' name-value pair argument. You cannot specify the display format by using the
datetime function, or by setting the Format property of a datetime array. To use a specific
display format, create a datetime array in MATLAB, then pass it as an input argument to a
function that is intended for code generation.

• The 'TimeZone' name-value pair argument and the TimeZone property. When you use
datetime arrays in code that is intended for code generation, they must be unzoned.

• Setting time component properties. For example, setting the Hour property in the following code
produces an error:

d = datetime;
d.Hour = 2;

• Growth by assignment. For example, assigning a value beyond the end of an array produces an
error.

function d = foo() %#codegen
    d = datetime(2019,1:12,1,12,0,0);
    d(13) = datetime(2020,1,1,12,0,0);
end

• Deleting an element. For example, assigning an empty array to an element produces an error.

function d = foo() %#codegen
    d = datetime(2019,1:12,1,12,0,0);
    d(1) = [];
end

• Converting datetime values to text by using the char, cellstr, or string functions.

Limitations that apply to classes also apply to datetime arrays. For more information, see “MATLAB
Classes Definition for Code Generation” (MATLAB Coder).

See Also
datetime | NaT

More About
• “Code Generation for Datetime Arrays” on page 22-2
• “Define Datetime Array Inputs” on page 22-5
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Code Generation for Duration Arrays

• “Code Generation for Duration Arrays” on page 23-2
• “Define Duration Array Inputs” on page 23-6
• “Duration Array Limitations for Code Generation” on page 23-8
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Code Generation for Duration Arrays
In this section...
“Define Duration Arrays for Code Generation” on page 23-2
“Allowed Operations on Duration Arrays” on page 23-2
“MATLAB Toolbox Functions That Support Duration Arrays” on page 23-3

The values in a duration array represent elapsed times in units of fixed length, such as hours,
minutes, and seconds. You can create elapsed times in terms of fixed-length (24-hour) days and fixed-
length (365.2425-day) years.

You can add, subtract, sort, compare, concatenate, and plot duration arrays.

When you use duration arrays with code generation, adhere to these restrictions.

Define Duration Arrays for Code Generation
For code generation, use the duration function to create duration arrays. For example, suppose the
input arguments to your MATLAB function are three numeric arrays of arbitrary size whose elements
specify lengths of time as hours, minutes, and seconds. You can create a duration array from these
three input arrays.

function d = foo(h,m,s) %#codegen
    d = duration(h,m,s);
end

You can use the years, days, hours, minutes, seconds, and milliseconds functions to create
duration arrays in units of years, days, hours, minutes, or seconds. For example, you can create an
array of hours from an input numeric array.

function d = foo(h) %#codegen
    d = hours(h);
end

Allowed Operations on Duration Arrays
For code generation, you are restricted to the operations on duration arrays listed in this table.

Operation Example Notes
assignment operator: = d = duration(1:3,0,0);

d(1) = hours(5);

d = duration(1:3,0,0);
d(1) = hours(5);

Code generation does not
support using the assignment
operator = to:

• Delete an element.
• Expand the size of a duration

array.
relational operators: < > <=
>= == ~=

d = duration(1:3,0,0);
tf = d(1) < d(2);

d = duration(1:3,0,0);
tf = d(1) < d(2);

Code generation supports
relational operators.
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Operation Example Notes
indexing operation d = duration(1:3,0,0);

idx = [1 2];
d(idx);
idx = logical([1 1 0]);
d(idx);

d = duration(1:3,0,0);
idx = [1 2];
d(idx);
idx = logical([1 1 0]);
d(idx);

Code generation supports
indexing by position, linear
indexing, and logical indexing.

concatenation d1 = duration(1:3,0,0);
d2 = duration(4,30,0);
d = [d1 d2];

d1 = duration(1:3,0,0);
d2 = duration(4,30,0);
d = [d1 d2];

Code generation supports
concatenation of duration
arrays.

MATLAB Toolbox Functions That Support Duration Arrays
For code generation, you can use duration arrays with these MATLAB toolbox functions:

• abs
• cat
• ceil
• colon
• cummax
• cummin
• cumsum
• ctranspose
• datevec
• days
• diff
• duration
• eps
• eq
• floor
• ge
• gt
• hms
• horzcat
• hours
• interp1
• intersect
• iscolumn
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• isempty
• isequal
• isequaln
• isfinite
• isinf
• ismatrix
• ismember
• isnan
• isreal
• isrow
• isscalar
• issorted
• issortedrows
• isvector
• ldivide
• le
• length
• linspace
• lt
• max
• mean
• median
• milliseconds
• min
• minus
• minutes
• mldivide
• mode
• mrdivide
• mod
• mtimes
• ndims
• ne
• nnz
• numel
• permute
• plus
• repmat
• rdivide

23 Code Generation for Duration Arrays

23-4



• rem
• reshape
• seconds
• setdiff
• setxor
• sign
• size
• sort
• sortrows
• std
• sum
• times
• transpose
• uminus
• union
• unique
• uplus
• vertcat
• years

See Also

More About
• “Define Duration Array Inputs” on page 23-6
• “Duration Array Limitations for Code Generation” on page 23-8
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Define Duration Array Inputs
You can define duration array inputs at the command line. Programmatic specification of duration
input types by using preconditioning (assert statements) is not supported.

Define Duration Array Inputs at the Command Line
Use one of these procedures:

• “Provide an Example Duration Array Input” on page 23-6
• “Provide a Duration Array Type” on page 23-6
• “Provide a Constant Duration Array Input” on page 23-6

Alternatively, if you have a test file that calls your entry-point function with example inputs, you can
determine the input types by using coder.getArgTypes.

Provide an Example Duration Array Input

Use the -args option:

D = duration(1:3,0,0);
fiaccel myFunction -args {D}

Provide a Duration Array Type

To provide a type for a duration array to fiaccel:

1 Define a duration array. For example:

D = duration(1:3,0,0);
2 Create a type from D.

t = coder.typeof(D);
3 Pass the type to fiaccel by using the -args option.

fiaccel myFunction -args {t}

Provide a Constant Duration Array Input

To specify that a duration array input is constant, use coder.Constant with the -args option:

D = duration(1:3,0,0);
fiaccel myFunction -args {coder.Constant(C)}

Representation of Duration Arrays
A coder type object for a duration array describes the object and its properties. Use coder.typeof
or pass duration as a string scalar to coder.newtype.

The coder type object displays a succinct description of the object properties while excluding internal
state values. Nonconstant properties display their type and size, while constant properties display
only their values. For example:

tType = coder.newtype('duration')
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A representation of an empty duration variable is stored in coder type object tType.

tType = 

   matlab.coder.type.DurationType
     1x1 duration
    Format : 1x8 char

If your workflow requires the legacy representation of coder type objects, use the getCoderType
function on the variable that has the new representation of your class or object. See “Legacy
Representation of Coder Type Objects” (MATLAB Coder).

Resize duration Properties by Editing Object Properties

You can resize most objects by editing the object properties. You can resize duration objects, its
properties and create arrays within the properties.

For a duration coder object, you can resize the object properties:

t = duration((1:3),0,0);
tType = coder.typeof(t)
tType.Format = 'DD/MM/YYYY'

This code resizes the Format property to be a 1x10 char property.

tType = 

   matlab.coder.type.DurationType
     1x3 duration
    Format : 1x10 char

You can also resize the object by using coder.resize. See “Edit and Represent Coder Type Objects
and Properties” (MATLAB Coder).

See Also
duration | coder.Constant | coder.typeof

More About
• “Code Generation for Duration Arrays” on page 23-2
• “Duration Array Limitations for Code Generation” on page 23-8
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Duration Array Limitations for Code Generation
When you create duration arrays in MATLAB code that you intend for code generation, you must
specify the durations by using the duration, years, days, hours, minutes, seconds, or
milliseconds functions. See “Dates and Time”.

For duration arrays, code generation does not support the following inputs and operations:

• Text inputs. For example, specifying a character vector as the input argument produces an error.

function d = foo() %#codegen
    d = duration('01:30:00');
end

• Growth by assignment. For example, assigning a value beyond the end of an array produces an
error.

function d = foo() %#codegen
    d = duration(1:3,0,0);
    d(4) = hours(4);
end

• Deleting an element. For example, assigning an empty array to an element produces an error.

function d = foo() %#codegen
    d = duration(1:3,0,0);
    d(1) = [];
end

• Converting duration values to text by using the char, cellstr, or string functions.

Limitations that apply to classes also apply to duration arrays. For more information, see “MATLAB
Classes Definition for Code Generation” (MATLAB Coder).

See Also
duration | years | days | hours | minutes | seconds | milliseconds

More About
• “Code Generation for Duration Arrays” on page 23-2
• “Define Duration Array Inputs” on page 23-6
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Function Handle Limitations for Code Generation
When you use function handles in MATLAB code intended for code generation, adhere to the
following restrictions:

Do not use the same bound variable to reference different function handles

In some cases, using the same bound variable to reference different function handles causes a
compile-time error. For example, this code does not compile:

function y = foo(p)
x = @plus;
if p
  x = @minus;
end
y = x(1, 2);

Do not pass function handles to or from coder.ceval

You cannot pass function handles as inputs to or outputs from coder.ceval. For example, suppose
that f and str.f are function handles:

f = @sin;
str.x = pi;
str.f = f;

The following statements result in compilation errors:

coder.ceval('foo', @sin);
coder.ceval('foo', f);
coder.ceval('foo', str);

Do not associate a function handle with an extrinsic function

You cannot create a function handle that references an extrinsic MATLAB function.

Do not pass function handles to or from extrinsic functions

You cannot pass function handles to or from feval and other extrinsic MATLAB functions.

Do not pass function handles to or from entry-point functions

You cannot pass function handles as inputs to or outputs from entry-point functions. For example,
consider this function:

function x = plotFcn(fhandle, data)

assert(isa(fhandle,'function_handle') && isa(data,'double'));

plot(data, fhandle(data));
x = fhandle(data);

In this example, the function plotFcn receives a function handle and its data as inputs. plotFcn
attempts to call the function referenced by the fhandle with the input data and plot the results.
However, this code generates a compilation error. The error indicates that the function isa does not
recognize 'function_handle' as a class name when called inside a MATLAB function to specify
properties of inputs.
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See Also

More About
• “Use the coder.extrinsic Construct” on page 14-9
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Code Generation for MATLAB Structures

• “Structure Definition for Code Generation” on page 25-2
• “Structure Operations Allowed for Code Generation” on page 25-3
• “Define Scalar Structures for Code Generation” on page 25-4
• “Define Arrays of Structures for Code Generation” on page 25-6
• “Index Substructures and Fields” on page 25-8
• “Assign Values to Structures and Fields” on page 25-10
• “Pass Large Structures as Input Parameters” on page 25-11
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Structure Definition for Code Generation
To generate efficient standalone code for structures, you must define and use structures differently
than you normally would when running your code in the MATLAB environment:

What's Different More Information
Use a restricted set of operations. “Structure Operations Allowed for Code

Generation” on page 25-3
Observe restrictions on properties and values of
scalar structures.

“Define Scalar Structures for Code Generation”
on page 25-4

Make structures uniform in arrays. “Define Arrays of Structures for Code
Generation” on page 25-6

Reference structure fields individually during
indexing.

“Index Substructures and Fields” on page 25-8

Avoid type mismatch when assigning values to
structures and fields.

“Assign Values to Structures and Fields” on page
25-10
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Structure Operations Allowed for Code Generation
To generate efficient standalone code for MATLAB structures, you are restricted to the following
operations:

• Index structure fields using dot notation
• Define primary function inputs as structures
• Pass structures to local functions
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Define Scalar Structures for Code Generation
In this section...
“Restrictions When Defining Scalar Structures by Assignment” on page 25-4
“Adding Fields in Consistent Order on Each Control Flow Path” on page 25-4
“Restriction on Adding New Fields After First Use” on page 25-4

Restrictions When Defining Scalar Structures by Assignment
When you define a scalar structure by assigning a variable to a preexisting structure, you do not need
to define the variable before the assignment. However, if you already defined that variable, it must
have the same class, size, and complexity as the structure you assign to it. In the following example, p
is defined as a structure that has the same properties as the predefined structure S:

...
S = struct('a',  0, 'b',  1, 'c',  2);
p = S;
...

Adding Fields in Consistent Order on Each Control Flow Path
When you create a structure, you must add fields in the same order on each control flow path. For
example, the following code generates a compiler error because it adds the fields of structure x in a
different order in each if statement clause:

function y = fcn(u) %#codegen
if u > 0
   x.a = 10;
   x.b = 20;
else
   x.b = 30;  % Generates an error (on variable x)
   x.a = 40;
end
y = x.a + x.b;

In this example, the assignment to x.a comes before x.b in the first if statement clause, but the
assignments appear in reverse order in the else clause. Here is the corrected code:

function y = fcn(u) %#codegen
if u > 0
   x.a = 10;
   x.b = 20;
else
   x.a = 40;
   x.b = 30;
end
y = x.a + x.b;

Restriction on Adding New Fields After First Use
You cannot add fields to a structure after you perform the following operations on the structure:
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• Reading from the structure
• Indexing into the structure array
• Passing the structure to a function

For example, consider this code:

...
x.c = 10; % Defines structure and creates field c
y = x; % Reads from structure
x.d = 20; % Generates an error
...

In this example, the attempt to add a new field d after reading from structure x generates an error.

This restriction extends across the structure hierarchy. For example, you cannot add a field to a
structure after operating on one of its fields or nested structures, as in this example:

function y = fcn(u) %#codegen

x.c = 10;
y = x.c;
x.d = 20; % Generates an error

In this example, the attempt to add a new field d to structure x after reading from the structure's
field c generates an error.
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Define Arrays of Structures for Code Generation

In this section...
“Ensuring Consistency of Fields” on page 25-6
“Using repmat to Define an Array of Structures with Consistent Field Properties” on page 25-6
“Defining an Array of Structures by Using struct” on page 25-6
“Defining an Array of Structures Using Concatenation” on page 25-7

Ensuring Consistency of Fields
For code generation, when you create an array of MATLAB structures, corresponding fields in the
array elements must have the same size, type, and complexity.

Once you have created the array of structures, you can make the structure fields variable-size by
using coder.varsize. See “Declare Variable-Size Structure Fields” (MATLAB Coder).

Using repmat to Define an Array of Structures with Consistent Field
Properties
You can create an array of structures from a scalar structure by using the MATLAB repmat function,
which replicates and tiles an existing scalar structure:

1 Create a scalar structure, as described in “Define Scalar Structures for Code Generation” on
page 25-4.

2 Call repmat, passing the scalar structure and the dimensions of the array.
3 Assign values to each structure using standard array indexing and structure dot notation.

For example, the following code creates X, a 1-by-3 array of scalar structures. Each element of the
array is defined by the structure s, which has two fields, a and b:

...
s.a = 0;
s.b = 0;
X = repmat(s,1,3);
X(1).a = 1;
X(2).a = 2;
X(3).a = 3;
X(1).b = 4;
X(2).b = 5;
X(3).b = 6;
...

Defining an Array of Structures by Using struct
To create an array of structures using the struct function, specify the field value arguments as cell
arrays. Each cell array element is the value of the field in the corresponding structure array element.
For code generation, corresponding fields in the structures must have the same type. Therefore, the
elements in a cell array of field values must have the same type.
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For example, the following code creates a 1-by-3 structure array. For each structure in the array of
structures, a has type double and b has type char.

s = struct('a', {1 2 3}, 'b', {'a' 'b' 'c'});

Defining an Array of Structures Using Concatenation
To create a small array of structures, you can use the concatenation operator, square brackets
( [ ] ), to join one or more structures into an array. See “Creating, Concatenating, and Expanding
Matrices”. For code generation, the structures that you concatenate must have the same size, class,
and complexity.

For example, the following code uses concatenation and a local function to create the elements of a 1-
by-3 structure array:

...
W = [ sab(1,2) sab(2,3) sab(4,5) ];

function s = sab(a,b)
  s.a = a;
  s.b = b;
...
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Index Substructures and Fields
Use these guidelines when indexing substructures and fields for code generation:

Reference substructure field values individually using dot notation

For example, the following MATLAB code uses dot notation to index fields and substructures:

...
substruct1.a1 = 15.2;
substruct1.a2 = int8([1 2;3 4]);

mystruct = struct('ele1',20.5,'ele2',single(100),
                  'ele3',substruct1);

substruct2 = mystruct;
substruct2.ele3.a2 = 2*(substruct1.a2);
...

The generated code indexes elements of the structures in this example by resolving symbols as
follows:

Dot Notation Symbol Resolution
substruct1.a1 Field a1 of local structure substruct1
substruct2.ele3.a1 Value of field a1 of field ele3, a substructure of local structure

substruct2
substruct2.ele3.a2(1,1) Value in row 1, column 1 of field a2 of field ele3, a substructure of local

structure substruct2

Reference field values individually in structure arrays

To reference the value of a field in a structure array, you must index into the array to the structure of
interest and then reference that structure's field individually using dot notation, as in this example:

...
y = X(1).a % Extracts the value of field a 
           % of the first structure in array X
...

To reference all the values of a particular field for each structure in an array, use this notation in a
for loop, as in this example:

...
s.a = 0;
s.b = 0;
X = repmat(s,1,5); 
for i = 1:5   
    X(i).a = i;   
    X(i).b = i+1; 
end

This example uses the repmat function to define an array of structures, each with two fields a and b
as defined by s. See “Define Arrays of Structures for Code Generation” on page 25-6 for more
information.

25 Code Generation for MATLAB Structures

25-8



Do not reference fields dynamically

You cannot reference fields in a structure by using dynamic names, which express the field as a
variable expression that MATLAB evaluates at run time (see “Generate Field Names from Variables”).
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Assign Values to Structures and Fields
When assigning values to a structure, substructure, or field for code generation, use these guidelines:

Field properties must be consistent across structure-to-structure assignments

If: Then:
Assigning one structure to another structure. Define each structure with the same number,

type, and size of fields.
Assigning one structure to a substructure of a
different structure and vice versa.

Define the structure with the same number, type,
and size of fields as the substructure.

Assigning an element of one structure to an
element of another structure.

The elements must have the same type and size.

For structures with constant fields, do not assign field values inside control flow constructs

In the following code, the code generator recognizes that the structure fields s.a and s.b are
constants.

function y = mystruct()
s.a = 3;
s.b = 5;
y = zeros(s.a,s.b);

If a field of a structure is assigned inside a control flow construct, the code generator does not
recognize that s.a and s.b are constant. Consider the following code:

function y = mystruct(x)
s.a = 3;
if x > 1
    s.b = 4;
else
    s.b = 5;
end
y = zeros(s.a,s.b);

If variable-sizing is enabled, y is treated as a variable-size array. If variable-sizing is disabled, y, the
code generator reports an error.

Do not assign mxArrays to structures

You cannot assign mxArrays to structure elements; convert mxArrays to known types before code
generation (see “Working with mxArrays” on page 14-11).

Do not assign handle classes or sparse arrays to global structure variables

Global structure variables cannot contain handle objects or sparse arrays.
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Pass Large Structures as Input Parameters
If you generate a MEX function for a MATLAB function that takes a large structure as an input
parameter, for example, a structure containing fields that are matrices, the MEX function might fail to
load. This load failure occurs because, when you generate a MEX function from a MATLAB function
that has input parameters, the code generator allocates memory for these input parameters on the
stack. To avoid this issue, pass the structure by reference to the MATLAB function. For example, if the
original function signature is:

y = foo(a, S)

where S is the structure input, rewrite the function to:

[y, S] = foo(a, S)
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Functions and Objects Supported for C/C++ Code Generation
You can generate efficient C/C++ code for a subset of MATLAB built-in functions and toolbox
functions and System objects that you call from MATLAB code.

These functions and System objects are listed in the following tables. In these tables, a  icon
before the name of a function or a System object indicates that there are specific usage notes and
limitations related to C/C++ code generation for that function or System object. To view these usage
notes and limitations, in the corresponding reference page, scroll down to the Extended
Capabilities section at the bottom and expand the C/C++ Code Generation section.

• Functions and Objects Supported for C/C++ Code Generation (Category List)
• Functions and Objects Supported for C/C++ Code Generation (Alphabetical List)

See Also

More About
• “MATLAB Language Features Supported for C/C++ Code Generation” on page 19-23
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Code Generation for Tables

• “Code Generation for Tables” on page 27-2
• “Define Table Inputs” on page 27-5
• “Table Limitations for Code Generation” on page 27-8
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Code Generation for Tables

In this section...
“Define Tables for Code Generation” on page 27-2
“Allowed Operations on Tables” on page 27-2
“MATLAB Toolbox Functions That Support Tables” on page 27-3

The table data type is a data type suitable for column-oriented or tabular data that is often stored as
columns in a text file or in a spreadsheet. Tables consist of rows and column-oriented variables. Each
variable in a table can have a different data type and a different size with one restriction: each
variable must have the same number of rows. For more information, see “Tables”.

When you use tables with code generation, adhere to these restrictions.

Define Tables for Code Generation
For code generation, use the table function. For example, suppose the input arguments to your
MATLAB function are three arrays that have the same number of rows and a cell array that has
variable names. You can create a table that contains these arrays as table variables.

function T = foo(A,B,C,vnames) %#codegen
    T = table(A,B,C,'VariableNames',vnames);
end

You can use the array2table, cell2table, and struct2table functions to convert arrays, cell
arrays, and structures to tables. For example, you can convert an input cell array to a table.

function T = foo(C,vnames) %#codegen
    T = cell2table(C,'VariableNames',vnames);
end

For code generation, you must supply table variable names when you create a table. Table variable
names do not have to be valid MATLAB identifiers. The names must be composed of ASCII characters,
but can include any ASCII characters (such as commas, dashes, and space characters).

Allowed Operations on Tables
For code generation, you are restricted to the operations on tables listed below.

Operation Example Notes
assignment operator: = T = table(A,B,C,'VariableNames',vnames);

T{:,1} = D;

T = table(A,B,C,'VariableNames',vnames);
T{:,1} = D;

Code generation does not
support using the assignment
operator = to:

• Delete a variable or a row.
• Add a variable or a row.
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Operation Example Notes
indexing operation T = table(A,B,C,'VariableNames',vnames);

T(1:5,1:3);

T = table(A,B,C,'VariableNames',vnames);
T(1:5,1:3);

Code generation supports
indexing by position, variable or
row name, and logical indexing.

Code generation supports:

• Table indexing with smooth
parentheses, ().

• Content indexing with curly
braces, {}.

• Dot notation to access a
table variable.

concatenation T1 = table(A,B,C,'VariableNames',vnames);
T2 = table(D,E,F,'VariableNames',vnames);
T = [T1 ; T2];

T1 = table(A,B,C,'VariableNames',vnames);
T2 = table(D,E,F,'VariableNames',vnames);
T = [T1 ; T2];

Code generation supports table
concatenation.

• For vertical concatenation,
tables must have variables
that have the same names in
the same order.

• For horizontal concatenation,
tables must have the same
number of rows. If the tables
have row names, then they
must have the same row
names in the same order.

MATLAB Toolbox Functions That Support Tables
For code generation, you can use tables with these MATLAB toolbox functions:

• addvars
• array2table
• cat
• cell2table
• convertvars
• height
• horzcat
• innerjoin
• intersect
• isempty
• ismember
• issortedrows
• join
• mergevars
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• movevars
• ndims
• numel
• outerjoin
• removevars
• renamevars
• rows2vars
• setdiff
• setxor
• size
• sortrows
• splitvars
• stack
• struct2table
• table
• table2array
• table2cell
• table2struct
• union
• unique
• unstack
• varfun
• vertcat
• width

See Also

More About
• “Define Table Inputs” on page 27-5
• “Table Limitations for Code Generation” on page 27-8
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Define Table Inputs
You can define table inputs at the command line. Programmatic specification of table input types by
using preconditioning (assert statements) is not supported.

Define Table Inputs at the Command Line
Use one of these procedures:

• “Provide an Example Table Input” on page 27-5
• “Provide a Table Type” on page 27-5
• “Provide a Constant Table Input” on page 27-5

Alternatively, if you have a test file that calls your entry-point function with example inputs, you can
determine the input types by using coder.getArgTypes.

Provide an Example Table Input

Use the -args option:

T = table(A,B,C,'VariableNames',vnames);
fiaccel myFunction -args {T}

Provide a Table Type

To provide a type for a table to fiaccel:

1 Define a table. For example:

T = table(A,B,C,'VariableNames',vnames);
2 Create a type from T.

t = coder.typeof(T);
3 Pass the type to fiaccel by using the -args option.

fiaccel myFunction -args {t}

Provide a Constant Table Input

To specify that a table input is constant, use coder.Constant with the -args option:

T = table(A,B,C,'VariableNames',vnames);
fiaccel myFunction -args {coder.Constant(T)}

Representation of Tables
A coder type object for a table describes the object and its properties. Use coder.typeof or pass
table as a string scalar to coder.newtype.

The coder type object displays a succinct description of the object properties while excluding internal
state values. Nonconstant properties display their type and size, while constant properties display
only their values. For example:

A = [1 2 3]';
B = [4 5 6]';
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C = [7 8 9]';
t = table(A,B,C);
tType = coder.typeof(t)

The representation of variable t is stored in coder type object tType.

tType = 

   matlab.coder.type.TableType
     3x3 table
                    Data : 1x3 homogeneous cell
             Description : 1x0 char
                UserData : 0x0 double
          DimensionNames : {'Row'}    {'Variables'}
           VariableNames : {'A'}    {'B'}    {'C'}
    VariableDescriptions : 1x3 homogeneous cell
           VariableUnits : 1x3 homogeneous cell
      VariableContinuity : 1x3 matlab.internal.coder.tabular.Continuity
                RowNames : 0x0 homogeneous cell

If your workflow requires the legacy representation of coder type objects, use the getCoderType
function on the variable that has the new representation of your class or object. See “Legacy
Representation of Coder Type Objects” (MATLAB Coder).

Resize Object Properties by Using coder.resize

You can resize most objects by using coder.resize. You can resize objects, its properties and create
arrays within the properties.

For a table coder object, you can resize the object properties:

A = [1 2 3]';
B = [4 5 6]';
C = [7 8 9]';
t = table(A,B,C);
tType = coder.typeof(t) 
tType.Description = coder.resize(tType.Description,[1 12],[0 1])

This code resizes the Description property to be a 1x:12 char property which has an upper bound
of 12.

tType = 

   matlab.coder.type.TableType
     3x3 table
                    Data : 1x3 homogeneous cell
             Description : 1x:12 char
                UserData : 0x0 double
          DimensionNames : {'Row'}    {'Variables'}
           VariableNames : {'A'}    {'B'}    {'C'}
    VariableDescriptions : 1x3 homogeneous cell
           VariableUnits : 1x3 homogeneous cell
      VariableContinuity : 1x3 matlab.internal.coder.tabular.Continuity
                RowNames : 0x0 homogeneous cell

You can also resize the object by using coder.resize. See “Edit and Represent Coder Type Objects
and Properties” (MATLAB Coder).
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See Also
table | coder.Constant | coder.typeof

More About
• “Code Generation for Tables” on page 27-2
• “Table Limitations for Code Generation” on page 27-8
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Table Limitations for Code Generation
If you create tables, modify them, or use table functions in MATLAB code that you intend for code
generation, then code generation has limitations described in the next sections. Limitations that
apply to classes also apply to tables. For more information on class limitations, see “MATLAB Classes
Definition for Code Generation” (MATLAB Coder).

Creating Tables Limitations
If your MATLAB code creates tables, then code generation has these limitations.

Inputs for Table Creation Limitations
Any inputs • Table variable names do not have to be valid

MATLAB identifiers. The names must be
composed of ASCII characters, which can
include commas, dashes, and space
characters.

Table created from input arrays • You must specify variables names by using the
'VariableNames' name-value argument
when creating tables from input arrays by
using the table, array2table, or
cell2table functions.

Table created with preallocated variables • You do not have to specify the
'VariableNames' argument when you
preallocate a table by using the table
function and the 'Size' name-value
argument.

• You can specify only the following data types
by using the 'VariableTypes' name-value
argument:

• 'double'
• 'single'
• 'doublenan' or 'doubleNaN'
• 'singlenan' or 'singleNaN'
• 'int8', 'int16', 'int32', or 'int64'
• 'uint8', 'uint16', 'uint32', or

'uint64'
• 'logical'
• 'duration'
• 'cellstr'
• 'char'

Modifying Tables Limitations
If your MATLAB code modifies data in a table or its properties, then code generation has these
limitations.
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Table Operation or Property Limitations
VariableNames, RowNames, DimensionNames,
or UserData properties

• You cannot change the VariableNames,
RowNames, DimensionNames, or UserData
properties of a table after you create it.

You can specify the 'VariableNames',
'RowNames', and 'DimensionNames' input
arguments when you create a table. These
input arguments specify the properties.

Table indices that specify variables as input
arguments to generated code

• To pass table indices that specify variables as
input arguments into generated code, first
make the indices constant by using the
coder.Constant function. If table indices
are not constant, then indexing into variables
produces an error.

Custom metadata • You cannot add custom metadata to a table.
The addprop and rmprop functions are not
supported.

Assignments that change size of table • You cannot change the size of a table by
assignments. For example, adding a new row
produces an error.

function T = foo() %#codegen
    T = table((1:3)',(1:3)','VariableNames',{'Var1','Var2'});
    T(4,2) = 5;
end

Deleting a row or a variable also produces an
error.

Vertical concatenation • When you vertically concatenate tables, they
must have the same variable names in the
same order. In MATLAB, the variable names
must be the same but can be in different
orders in the tables.

Horizontal concatenation • When you horizontally concatenate tables and
the tables have row names, they must have
the same row names in the same order. In
MATLAB, the row names must be the same
but can be in different orders in the tables.

Table variables that are N-D cell arrays • If two tables have variables that are N-D cell
arrays, then the tables cannot be vertically
concatenated.

• You cannot use curly braces to extract data
from multiple table variables that are N-D cell
arrays because this operation is horizontal
concatenation.
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Using Table Functions Limitations
If your MATLAB code uses the functions listed in the table, then code generation has these
limitations.

Function Limitations
convertvars • Function handles are not supported.

• The second and third input arguments (vars
and dataType) must be constant.

• You cannot specify dataType as 'cell',
'cellstr', or 'char'.

innerjoin • In general, the input tables cannot have any
nonkey variables with the same names.
However, you can join subsets of the input
tables if you specify the 'LeftVariables'
and 'RightVariables' name-value
arguments. Specify these arguments so that
no variable name appears in both
'LeftVariables' and 'RightVariables'.

• The values of these name-value arguments
must be constant:

• 'Keys'
• 'LeftKeys'
• 'RightKeys'
• 'LeftVariables'
• 'RightVariables'

• Nested tables are not supported.
intersect

setdiff

setxor

union

• These functions support unsorted tables in all
cases. You do not have to specify the
'stable' option.

issortedrows • The input argument vars must be constant.
• If any table variables have multiple columns,

then those variables must have fixed widths.
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Function Limitations
join • In general, input tables cannot have nonkey

variables with the same names. However, you
can join subsets of the input tables if you
specify the name-value arguments:

• 'KeepOneCopy', where you list variables
to take from the left input table only.

• 'LeftVariables' and
'RightVariables', where you list
variables to take from either the left input
table or the right input table, but not both.

• The values of these name-value arguments
must be constant:

• 'Keys'
• 'LeftKeys'
• 'RightKeys'
• 'LeftVariables'
• 'RightVariables'
• 'KeepOneCopy'

• Nested tables are not supported.
movevars • The input argument vars cannot contain

duplicate variable names.
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Function Limitations
outerjoin • Input tables cannot have key variables with

the same names unless the value of
'MergeKeys' is true (logical 1).

• In general, the input tables cannot have any
nonkey variables with the same names.
However, you can join subsets of the input
tables if you specify the 'LeftVariables'
and 'RightVariables' name-value
arguments. Specify these arguments so that
no variable name appears in both
'LeftVariables' and 'RightVariables'.

• The values of these name-value arguments
must be constant:

• 'Keys'
• 'LeftKeys'
• 'RightKeys'
• 'MergeKeys'
• 'LeftVariables'
• 'RightVariables'
• 'Type'

• Nested tables are not supported.
rows2vars • The input table cannot be variable-size.

• The 'VariableNamesSource' name-value
argument is not supported.

• The value of the 'DataVariables' name-
value argument must be constant.

• The value of the 'VariableNamingRule'
name-value argument must be constant.

• If you assign row names to the input table,
then the vector of row names must be
constant.

sortrows • The input argument vars must be constant.
• If tblA has a variable that is a cell array of

character vectors with multiple columns, then
you cannot sort the table using the values in
that variable.

splitvars • The value of the 'NewVariableNames'
name-value argument must be constant.

• The variables that are split cannot have a
variable number of columns.
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Function Limitations
stack • The second input argument, vars, must be

constant.
• The values of the 'ConstantVariables',

'NewDataVariableName', and
'IndexVariableName' name-value
arguments must be constant.

unstack • The 'NewDataVariableNames' name-value
argument must be specified. Its value must be
constant.

• The vars and ivars input arguments (data
variables and indicator variables) must be
constant.

• If you specify grouping variables and constant
variables, then they must be constant.

• If you specify an aggregation function, then it
must be constant.

• If a variable of the input table is a cell array of
character vectors, then unstack fills empty
cells in the corresponding output variable with
1-by-0 character arrays in the generated code.
In MATLAB, unstack fills such gaps with 0-
by-0 character arrays.

• The unstack function does not support code
generation when the input table has a variable
that is a heterogeneous cell array that cannot
be converted to a homogeneous cell array.

• If the input has a variable that is a
homogeneous cell array, or that can be
converted to one, then the
'AggregationFunction' name-value
argument must be specified. The default
value of 'AggregationFunction' is
'unique'. But the unique function does
not support cell arrays.
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Function Limitations
varfun • The function handle input, func, must be

constant.
• While function handles can be inputs to

varfun itself, they cannot be inputs to your
entry point functions. Specify func within the
code meant for code generation. For more
information, see “Function Handle Limitations
for Code Generation” (MATLAB Coder).

• The values for all name-value arguments must
be constant.

• The 'ErrorHandler' name-value argument
is not supported for code generation.

• Variable-size input arguments are not
supported.

• Grouping variables cannot have duplicate
values in generated code.

• You cannot specify the value of
'OutputFormat' as 'cell' if you specify
the 'GroupingVariables' name-value
argument and the function returns a different
data type for each variable specified by
'InputVariables'.

• If you specify groups and the number of
groups is not known at compile time, and that
number is zero, then empty double variables
in the output might have sizes of 1-by-0 in
generated code. In MATLAB, such variables
have sizes of 0-by-0.

See Also
array2table | cell2table | struct2table | table

More About
• “Code Generation for Tables” on page 27-2
• “Define Table Inputs” on page 27-5
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Code Generation for Timetables

• “Code Generation for Timetables” on page 28-2
• “Define Timetable Inputs” on page 28-6
• “Timetable Limitations for Code Generation” on page 28-9
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Code Generation for Timetables

In this section...
“Define Timetables for Code Generation” on page 28-2
“Allowed Operations on Timetables” on page 28-2
“MATLAB Toolbox Functions That Support Timetables” on page 28-3

The timetable data type is a data type suitable for tabular data with time-stamped rows. Like
tables, timetables consist of rows and column-oriented variables. Each variable in a timetable can
have a different data type and a different size with one restriction: each variable must have the same
number of rows.

The row times of a timetable are time values that label the rows. You can index into a timetable by
row time and variable. To index into a timetable, use smooth parentheses () to return a subtable or
curly braces {} to extract the contents. You can refer to variables and to the vector of row times by
their names. For more information, see “Timetables”.

When you use timetables with code generation, adhere to these restrictions.

Define Timetables for Code Generation
For code generation, use the timetable function. For example, suppose the input arguments to your
MATLAB function are three arrays that have the same number of rows (A, B, and C), a datetime or
duration vector containing row times (D), and a cell array that has variable names (vnames). You
can create a timetable that contains these arrays as timetable variables.

function TT = foo(A,B,C,D,vnames) %#codegen
    TT = table(A,B,C,'RowTimes',D,'VariableNames',vnames);
end

To convert arrays and tables to timetables, use the array2timetable and table2timetable
functions. For example, you can convert an input M-by-N matrix to a timetable, where each column of
the matrix becomes a variable in the timetable. Assign row times by using a duration vector.

function TT = foo(A,D,vnames) %#codegen
    TT = array2timetable(A,'RowTimes',D,'VariableNames',vnames);
end

For code generation, you must supply timetable variable names when you create a timetable.
Timetable variable names do not have to be valid MATLAB identifiers. The names must be composed
of ASCII characters, but can include any ASCII characters (such as commas, dashes, and space
characters).

The row times can have either the datetime or duration data type.

Allowed Operations on Timetables
For code generation, you are restricted to the operations on timetables listed in this table.
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Operation Example Notes
Assignment operator: = TT = timetable(A,B,C,'RowTimes',D,'VariableNames',vnames);

TT{:,1} = X;

TT = timetable(A,B,C,'RowTimes',D,'VariableNames',vnames);
TT{:,1} = X;

Code generation does not
support using the assignment
operator = to:

• Delete a variable or a row.
• Add a variable or a row.

Indexing operation D = seconds(1:10);
TT = timetable(A,B,C,'RowTimes',D,'VariableNames',vnames);
TT(seconds(3:7),1:3);

D = seconds(1:10);
TT = timetable(A,B,C,'RowTimes',D,'VariableNames',vnames);
TT(seconds(3:7),1:3);

Code generation supports
indexing by position, variable or
row time, and logical indexing.
Also, you can index using
objects created by using the
timerange or withtol
functions.

Code generation supports:

• Timetable indexing with
smooth parentheses, ().

• Content indexing with curly
braces, {}.

• Dot notation to access a
timetable variable.

Concatenation TT1 = timetable(A,B,C,'RowTimes',D1,'VariableNames',vnames);
TT2 = timetable(D,E,F,'RowTimes',D2,'VariableNames',vnames);
TT = [TT1 ; TT2];

TT1 = timetable(A,B,C,'RowTimes',D1,'VariableNames',vnames);
TT2 = timetable(D,E,F,'RowTimes',D2,'VariableNames',vnames);
TT = [TT1 ; TT2];

Code generation supports
timetable concatenation.

• For vertical concatenation,
timetables must have
variables that have the same
names in the same order.

• For horizontal concatenation,
timetables must have the
same number of rows. They
also must have the same row
times in the same order.

MATLAB Toolbox Functions That Support Timetables
For code generation, you can use timetables with these MATLAB toolbox functions:

• addvars
• array2timetable
• cat
• convertvars
• height
• horzcat
• innerjoin
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• intersect
• isempty
• ismember
• isregular
• issorted
• issortedrows
• join
• mergevars
• movevars
• ndims
• numel
• outerjoin
• removevars
• renamevars
• rows2vars
• retime
• setdiff
• setxor
• size
• sortrows
• splitvars
• stack
• synchronize
• table2timetable
• timerange
• timetable
• timetable2table
• union
• unique
• unstack
• varfun
• vertcat
• width
• withtol

See Also

More About
• “Define Timetable Inputs” on page 28-6
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• “Timetable Limitations for Code Generation” on page 28-9

 Code Generation for Timetables

28-5



Define Timetable Inputs
You can define timetable inputs at the command line. Programmatic specification of timetable input
types by using preconditioning (assert statements) is not supported.

Define Timetable Inputs at the Command Line
Use one of these procedures:

• “Provide an Example Timetable Input” on page 28-6
• “Provide a Timetable Type” on page 28-6
• “Provide a Constant Timetable Input” on page 28-6

Alternatively, if you have a test file that calls your entry-point function with example inputs, you can
determine the input types by using coder.getArgTypes.

Provide an Example Timetable Input

Use the -args option:

TT = timetable(A,B,C,'RowTimes',D,'VariableNames',vnames);
fiaccel myFunction -args {TT}

Provide a Timetable Type

To provide a type for a timetable to fiaccel:

1 Define a timetable. For example:

TT = timetable(A,B,C,'RowTimes',D,'VariableNames',vnames);
2 Create a type from T.

t = coder.typeof(TT);
3 Pass the type to fiaccel by using the -args option.

fiaccel myFunction -args {t}

Provide a Constant Timetable Input

To specify that a timetable input is constant, use coder.Constant with the -args option:

TT = timetable(A,B,C,'RowTimes',D,'VariableNames',vnames);
fiaccel myFunction -args {coder.Constant(TT)}

Representation of Timetables
A coder type object for a timetable describes the object and its properties. Use coder.typeof or
pass timetable as a string scalar to coder.newtype.

The coder type object displays a succinct description of the object properties while excluding internal
state values. Nonconstant properties display their type and size, while constant properties display
only their values. For example:
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t = timetable((1:5)',(11:15)','SampleRate',1);
tType = coder.typeof(t)

The representation of variable t is stored in coder type object tType.

tType = 

   matlab.coder.type.RegularTimetableType
     5x2 timetable
                    Data : 1x2 homogeneous cell
             Description : 1x0 char
                UserData : 0x0 double
          DimensionNames : {'Time'}    {'Variables'}
           VariableNames : {'Var1'}    {'Var2'}
    VariableDescriptions : 1x2 homogeneous cell
           VariableUnits : 1x2 homogeneous cell
      VariableContinuity : 1x2 matlab.internal.coder.tabular.Continuity
               StartTime : 1x1 matlab.coder.type.DurationType
              SampleRate : 1x1 double
                TimeStep : 1x1 matlab.coder.type.DurationType

Define a regular timetable by specifying the SampleRate or TimeStep. You can also define an
irregular timetable by specifying the RowTimes. For example:

t1 = timetable((1:3)','RowTimes',seconds(1:3));
t1Type = coder.typeof(t)

The representation of irregular table t1 is stored in coder type object t1Type.

t1Type = 

   matlab.coder.type.TimetableType
     3x1 timetable
                    Data : 1x1 homogeneous cell
             Description : 1x0 char
                UserData : 0x0 double
          DimensionNames : {'Time'}    {'Variables'}
           VariableNames : {'Var1'}
    VariableDescriptions : 1x1 homogeneous cell
           VariableUnits : 1x1 homogeneous cell
      VariableContinuity : 1x1 matlab.internal.coder.tabular.Continuity
                RowTimes : 3x1 matlab.coder.type.DurationType

If your workflow requires the legacy representation of coder type objects, use the getCoderType
function on the variable that has the new representation of your class or object. See “Legacy
Representation of Coder Type Objects” (MATLAB Coder).

Resize Object Properties by Using coder.resize

You can resize most objects by using coder.resize. You can resize objects, its properties and create
arrays within the properties.

For a timetable coder object, you can resize the object properties:

t = timetable((1:5)',(11:15)','SampleRate',1);
tType = coder.typeof(t);
tType.UserData = coder.resize(tType.UserData,[10 1],[1 0])
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This code resizes the UserData property to be a :10x1 double property. The first dimension is
upper-bound at10.

tType = 

   matlab.coder.type.RegularTimetableType
     5x2 timetable
                    Data : 1x2 homogeneous cell
             Description : 1x0 char
                UserData : :10x1 double
          DimensionNames : {'Time'}    {'Variables'}
           VariableNames : {'Var1'}    {'Var2'}
    VariableDescriptions : 1x2 homogeneous cell
           VariableUnits : 1x2 homogeneous cell
      VariableContinuity : 1x2 matlab.internal.coder.tabular.Continuity
               StartTime : 1x1 matlab.coder.type.DurationType
              SampleRate : 1x1 double
                TimeStep : 1x1 matlab.coder.type.DurationType

You can also resize the object by using coder.resize. See “Edit and Represent Coder Type Objects
and Properties” (MATLAB Coder).

See Also
timetable | coder.Constant | coder.typeof

More About
• “Code Generation for Timetables” on page 28-2
• “Timetable Limitations for Code Generation” on page 28-9
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Timetable Limitations for Code Generation
If you create timetables, modify them, or use timetable functions in MATLAB code that you intend for
code generation, then code generation has limitations described in the next sections. Limitations that
apply to classes also apply to timetables. For more information on class limitations, see “MATLAB
Classes Definition for Code Generation” (MATLAB Coder).

Creating Timetables Limitations
If your MATLAB code creates timetables, then code generation has these limitations.

Inputs for Timetable Creation Limitations
Any inputs • The name of the first dimension of a timetable

is 'Time' unless you specify it by using the
'DimensionNames' name-value argument.

The name of the first dimension is also the
name of the vector of row times, which you
can refer to by using dot notation.

• To create a regular timetable when the
'SampleRate', 'StartTime', or
'TimeStep' name-value arguments are
passed in by an entry point function, first use
the coder.Constant function to make the
values constant. If you do not make them
constant, then the row times are considered to
be irregular.

• If you create a regular timetable, and you
attempt to set irregular row times, then an
error is produced.

• If you create an irregular timetable, then it
remains irregular even if you set its sample
rate or time step.

• Timetable variable names do not have to be
valid MATLAB identifiers. The names must be
composed of ASCII characters, which can
include commas, dashes, and space
characters.

Timetable created from input arrays • You must specify variables names by using the
'VariableNames' name-value argument
when creating timetables from input arrays by
using the timetable or array2timetable
functions.
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Inputs for Timetable Creation Limitations
Timetable created with preallocated variables • You do not have to specify the

'VariableNames' argument when you
preallocate a timetable by using the
timetable function and the 'Size' name-
value argument.

• You can specify only the following data types
by using the 'VariableTypes' name-value
argument:

• 'double'
• 'single'
• 'doublenan' or 'doubleNaN'
• 'singlenan' or 'singleNaN'
• 'int8', 'int16', 'int32', or 'int64'
• 'uint8', 'uint16', 'uint32', or

'uint64'
• 'logical'
• 'datetime'
• 'duration'
• 'cellstr'
• 'char'

Modifying Timetables Limitations
If your MATLAB code modifies data in a timetable, its row times, or its properties, then code
generation has these limitations.

Timetable Operation or Property Limitations
VariableNames, DimensionNames, or
UserData properties

• After you create a timetable, you cannot
change the VariableNames,
DimensionNames, or UserData properties.

When you create a timetable, you can specify
the 'VariableNames', 'DimensionNames',
and 'RowTimes' input arguments to set the
properties having those names.
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Timetable Operation or Property Limitations
Timetable indices as input arguments to
generated code

• To pass timetable indices that specify
variables into generated code as input
arguments, first use the coder.Constant
function to make the indices into the second
dimension of the timetable constant. If indices
into the second dimension are not constant,
then indexing into variables produces an
error.

• If a timetable has row times that are
duration values, and you index into it by
using either duration values or an object
produced by the timerange or withtol
functions, then the output is nonconstant with
a variable number of rows.

• If a regular timetable has row times that are
duration values, and you index into it by
using either duration values or an object
produced by the timerange or withtol
functions, then the output is considered to be
irregular.

Custom metadata • You cannot add custom metadata to a
timetable. The addprop and rmprop
functions are not supported.

Assignments that change size of timetable • You cannot change the size of a timetable by
assignments. For example, this call to add a
new row produces an error.

function TT = foo() %#codegen
    TT = timetable((1:3)',(1:3)','RowTimes',seconds([0,5,10]),...
                   'VariableNames',{'Var1','Var2'});
    TT{4,:} = [5,5];
end

Deleting a row or a variable by assignment
also produces an error.

• You cannot add a new row by using a new row
time in an assignment. For example, this call
to add a new row by using a new row time
instead of a numeric index does not produce
an error, but also does not add the new row.

function TT = foo() %#codegen
    TT = timetable((1:3)',(1:3)','RowTimes',seconds([0,5,10]),...
                   'VariableNames',{'Var1','Var2'});
    TT{seconds(15),:} = [5,5];
end
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Timetable Operation or Property Limitations
Vertical concatenation • When you vertically concatenate timetables,

they must have the same variable names in
the same order. In MATLAB, the variable
names must be the same but can be in
different orders in the timetables.

Horizontal concatenation • When you horizontally concatenate timetables,
they must have the same row times in the
same order. In MATLAB, the row times must
be the same but can be in different orders in
the timetables.

Timetable variables that are N-D cell arrays • If two timetables have variables that are N-D
cell arrays, then you cannot vertically
concatenate the timetables.

• You cannot use curly braces to extract data
from multiple timetable variables that are N-D
cell arrays because this operation is horizontal
concatenation.

Using Timetable Functions Limitations
If your MATLAB code uses the functions listed in the table, then code generation has these
limitations.

Function Limitations
convertvars • Function handles are not supported.

• The second and third input arguments (vars
and dataType) must be constant.

• You cannot specify dataType as 'cell',
'cellstr', or 'char'.
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Function Limitations
innerjoin • In general, the input timetables cannot have

any nonkey variables with the same names.
However, you can join subsets of the input
timetables if you specify the
'LeftVariables' and 'RightVariables'
name-value arguments. Specify these
arguments so that no variable name appears
in both 'LeftVariables' and
'RightVariables'.

• The values of these name-value arguments
must be constant:

• 'Keys'
• 'LeftKeys'
• 'RightKeys'
• 'LeftVariables'
• 'RightVariables'

• Nested timetables are not supported.
intersect

setdiff

setxor

union

• These functions support unsorted timetables
in all cases. You do not have to specify the
'stable' option.

isregular • Use coder.Constant to make the input
argument timeComponent constant.

• The input argument timeComponent cannot
be a calendar unit. If you specify it, then its
value must be 'time'.

issortedrows • The input argument vars must be constant.
• If any timetable variables have multiple

columns, then those variables must have fixed
widths.
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Function Limitations
join • In general, input timetables cannot have

nonkey variables with the same names.
However, you can join subsets of the input
timetables if you specify the name-value
arguments:

• 'KeepOneCopy', where you list variables
to take from the left input timetable only.

• 'LeftVariables' and
'RightVariables', where you list
variables to take from either the left input
timetable or the right input timetable, but
not both.

• The values of these name-value arguments
must be constant:

• 'Keys'
• 'LeftKeys'
• 'RightKeys'
• 'LeftVariables'
• 'RightVariables'
• 'KeepOneCopy'

• Nested timetables are not supported.
movevars • The input argument vars cannot contain

duplicate variable names.
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Function Limitations
outerjoin • Input timetables cannot have key variables

with the same names unless the value of
'MergeKeys' is true (logical 1).

• In general, the input timetables cannot have
any nonkey variables with the same names.
However, you can join subsets of the input
timetables if you specify the
'LeftVariables' and 'RightVariables'
name-value arguments. Specify these
arguments so that no variable name appears
in both 'LeftVariables' and
'RightVariables'.

• The values of these name-value arguments
must be constant:

• 'Keys'
• 'LeftKeys'
• 'RightKeys'
• 'MergeKeys'
• 'LeftVariables'
• 'RightVariables'
• 'Type'

• Nested timetables are not supported.
retime

synchronize

• The row times of the output timetable are
considered to be irregular, even when
synchronized to row times that have a regular
time step.

• The 'makima' interpolation method is not
supported.

• If the VariableContinuity properties of
the input timetables are not constant, then
this function ignores them.

• The 'weekly', 'monthly', and
'quarterly' time steps are not supported.

• If the input timetables have row times that
are datetime values, then the 'daily'
and 'yearly' time steps also are not
supported.

sortrows • The input argument vars must be constant.
• If tblA has a variable that is a cell array of

character vectors with multiple columns, then
you cannot sort the timetable using the values
in that variable.
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Function Limitations
splitvars • The value of the 'NewVariableNames'

name-value argument must be constant.
• The variables that are split cannot have a

variable number of columns.
stack • The second input argument, vars, must be

constant.
• The values of the 'ConstantVariables',

'NewDataVariableName', and
'IndexVariableName' name-value
arguments must be constant.

timerange • The input argument unitOfTime is not
supported.
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Function Limitations
unstack • The 'NewDataVariableNames' name-value

argument must be specified. Its value must be
constant.

• The vars and ivars input arguments (data
variables and indicator variables) must be
constant.

• If you specify grouping variables and constant
variables, then they must be constant.

• If you specify an aggregation function, then it
must be constant.

• If the input is a timetable with regular row
times and you specify grouping variables that
do not include the row times, then the output
timetable might have irregular row times.
Even though the intervals between output row
times might look the same, the output
timetable considers the vector of row times to
be irregular.

• If a variable of the input timetable is a cell
array of character vectors, then unstack fills
empty cells in the corresponding output
variable with 1-by-0 character arrays in the
generated code. In MATLAB, unstack fills
such gaps with 0-by-0 character arrays.

• The unstack function does not support code
generation when the input timetable has a
variable that is a heterogeneous cell array
that cannot be converted to a homogeneous
cell array.

• If the input has a variable that is a
homogeneous cell array, or that can be
converted to one, then the
'AggregationFunction' name-value
argument must be specified. The default
value of 'AggregationFunction' is
'unique'. But the unique function does
not support cell arrays.
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Function Limitations
varfun • The function handle input, func, must be

constant.
• While function handles can be inputs to

varfun itself, they cannot be inputs to your
entry point functions. Specify func within the
code meant for code generation. For more
information, see “Function Handle Limitations
for Code Generation” (MATLAB Coder).

• The values for all name-value arguments must
be constant.

• The 'ErrorHandler' name-value argument
is not supported for code generation.

• Variable-size input arguments are not
supported.

• If you specify 'GroupingVariables', then
the output is always an irregular timetable.

• Grouping variables cannot have duplicate
values in generated code.

• You cannot specify the value of
'OutputFormat' as 'cell' if you specify
the 'GroupingVariables' name-value
arguments and the function returns a different
data type for each variable specified by
'InputVariables'.

• If you specify groups and the number of
groups is not known at compile-time, and that
number turns out to be zero, then empty
double variables in the output might have
sizes of 1-by-0 in generated code. In MATLAB,
such variables have sizes of 0-by-0.

See Also
array2timetable | table2timetable | timetable

More About
• “Code Generation for Timetables” on page 28-2
• “Define Timetable Inputs” on page 28-6

28 Code Generation for Timetables

28-18



Code Generation for Variable-Size Data

• “Code Generation for Variable-Size Arrays” on page 29-2
• “Control Memory Allocation for Variable-Size Arrays” on page 29-4
• “Specify Upper Bounds for Variable-Size Arrays” on page 29-6
• “Define Variable-Size Data for Code Generation” on page 29-8
• “Diagnose and Fix Variable-Size Data Errors” on page 29-12
• “Incompatibilities with MATLAB in Variable-Size Support for Code Generation” on page 29-15
• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” on page 29-22
• “Generate Code With Implicit Expansion Enabled” on page 29-27
• “Optimize Implicit Expansion in Generated Code” on page 29-30
• “Representation of Arrays in Generated Code” on page 29-34
• “Control Memory Allocation for Fixed-Size Arrays” on page 29-38
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Code Generation for Variable-Size Arrays
For code generation, an array dimension is fixed-size or variable-size. If the code generator can
determine the size of the dimension and that the size of the dimension does not change, then the
dimension is fixed-size. When all dimensions of an array are fixed-size, the array is a fixed-size array.
In the following example, Z is a fixed-size array.

function Z = myfcn()
Z = zeros(1,4);
end

The size of the first dimension is 1 and the size of the second dimension is 4.

If the code generator cannot determine the size of a dimension or the code generator determines that
the size changes, then the dimension is variable-size. When at least one of its dimensions is variable-
size, an array is a variable-size array.

A variable-size dimension is either bounded or unbounded. A bounded dimension has a fixed upper
size. An unbounded dimension does not have a fixed upper size.

In the following example, the second dimension of Z is bounded, variable-size. It has an upper bound
of 16.

function s = myfcn(n)
if (n > 0)
    Z = zeros(1,4);
else
    Z = zeros(1,16);
end
s = length(Z);

In the following example, if the value of n is unknown at compile time, then the second dimension of Z
is unbounded.

function s = myfcn(n)
Z = rand(1,n);
s = sum(Z);
end

You can define variable-size arrays by:

• Using constructors, such as zeros, with a nonconstant dimension
• Assigning multiple, constant sizes to the same variable before using it
• Declaring all instances of a variable to be variable-size by using coder.varsize

For more information, see “Define Variable-Size Data for Code Generation” on page 29-8.

You can control whether variable-size arrays are allowed for code generation. See “Enabling and
Disabling Support for Variable-Size Arrays” on page 29-3.

Memory Allocation for Variable-Size Arrays
For fixed-size arrays and variable-size arrays whose size is less than a threshold, the code generator
allocates memory statically on the stack. For unbounded, variable-size arrays and variable-size arrays
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whose size is greater than or equal to a threshold, the code generator allocates memory dynamically
on the heap.

You can control whether dynamic memory allocation is allowed or when it is used for code
generation. See “Control Memory Allocation for Variable-Size Arrays” on page 29-4.

The code generator represents dynamically allocated data as a structure type called emxArray. The
code generator generates utility functions that create and interact with emxArrays. If you use
Embedded Coder, you can customize the generated identifiers for the emxArray types and utility
functions. See “Identifier Format Control” (Embedded Coder).

Enabling and Disabling Support for Variable-Size Arrays
By default, support for variable-size arrays is enabled. To modify this support:

• In a code configuration object, set the EnableVariableSizing parameter to true or false.

Variable-Size Arrays in a Code Generation Report
You can tell whether an array is fixed-size or variable-size by looking at the Size column of the
Variables tab in a code generation report.

A colon (:) indicates that a dimension is variable-size. A question mark (?) indicates that the size is
unbounded. For example, a size of 1-by-:? indicates that the size of the first dimension is fixed-size 1
and the size of the second dimension is unbounded, variable-size. Italics indicates that the code
generator produced a variable-size array, but the size of the array does not change during execution.

See Also

More About
• “Control Memory Allocation for Variable-Size Arrays” on page 29-4
• “Specify Upper Bounds for Variable-Size Arrays” on page 29-6
• “Define Variable-Size Data for Code Generation” on page 29-8
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Control Memory Allocation for Variable-Size Arrays
Dynamic memory allocation allocates memory on the heap as needed at run-time, instead of
allocating memory statically on the stack. Dynamic memory allocation is beneficial when:

• You do not know the upper bound of an array.
• You do not want to allocate memory on the stack for large arrays.

Dynamic memory allocation and the freeing of this memory can result in slower execution of the
generated code. To control the use of dynamic memory allocation for variable-size arrays, you can:

• Provide upper bounds for variable-size arrays on page 29-4.
• Disable dynamic memory allocation on page 29-4.
• Configure the code generator to use dynamic memory allocation for arrays bigger than a threshold

on page 29-4.

Provide Upper Bounds for Variable-Size Arrays
For an unbounded variable-size array, the code generator allocates memory dynamically on the heap.
For a variable-size array with upper bound, whose size, in bytes, is less than the dynamic memory
allocation threshold, the code generator allocates memory statically on the stack. To prevent dynamic
memory allocation:

1 Specify upper bounds for a variable-size array. See “Specify Upper Bounds for Variable-Size
Arrays” on page 29-6.

2 Make sure that the size of the array, in bytes, is less than the dynamic memory allocation
threshold. See “Configure Code Generator to Use Dynamic Memory Allocation for Arrays Bigger
Than a Threshold” on page 29-4.

Disable Dynamic Memory Allocation
By default, dynamic memory allocation for variable-size arrays is enabled. To disable it, in a
configuration object for fixed-point acceleration, set the
DynamicMemoryAllocationForVariableSizeArrays parameter to 'Never'.

If you disable dynamic memory allocation, you must provide upper bounds for variable-size arrays.

Configure Code Generator to Use Dynamic Memory Allocation for
Arrays Bigger Than a Threshold
Instead of disabling dynamic memory allocation for all variable-size arrays, you can specify for which
size arrays the code generator uses dynamic memory allocation.

Use the dynamic memory allocation threshold to:

• Disable dynamic memory allocation for smaller arrays. For smaller arrays, static memory
allocation can speed up generated code. However, static memory allocation can lead to unused
storage space. You can decide that the unused storage space is not a significant consideration for
smaller arrays.

• Enable dynamic memory allocation for larger arrays. For larger arrays, when you use dynamic
memory allocation, you can significantly reduce storage requirements.
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To instruct the code generator to use dynamic memory allocation for variable-size arrays whose size
is greater than or equal to the threshold, in the configuration object, set the
DynamicMemoryAllocationForVariableSizeArrays to 'Threshold'.

The default dynamic memory allocation threshold is 64 kilobytes. To change the threshold, in a
configuration object for fixed-point acceleration, set the DynamicMemoryAllocationThreshold.

See Also

More About
• “Code Generation for Variable-Size Arrays” on page 29-2
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Specify Upper Bounds for Variable-Size Arrays
Specify upper bounds for an array when:

• Dynamic memory allocation is disabled.

If dynamic memory allocation is disabled, you must specify upper bounds for all arrays.
• You do not want the code generator to use dynamic memory allocation for the array.

Specify upper bounds that result in an array size (in bytes) that is less than the dynamic memory
allocation threshold.

Specify Upper Bounds for Variable-Size Inputs
This command specifies that the input to function foo is a matrix of real doubles with two variable
dimensions. The upper bound for the first dimension is 3. The upper bound for the second dimension
is 100.

To specify upper bounds for variable-size inputs, use the coder.typeof construct with the fiaccel
-args option. For example:

fiaccel foo -args {coder.typeof(fi(0),[3 100],1)}

This command specifies that the input to function foo is a matrix of fi types with two variable
dimensions. The upper bound for the first dimension is 3. The upper bound for the second dimension
is 100.

Specify Upper Bounds for Local Variables
When using static allocation, the code generator uses a sophisticated analysis to calculate the upper
bounds of local data. However, when the analysis fails to detect an upper bound or calculates an
upper bound that is not precise enough for your application, you must specify upper bounds explicitly
for local variables.

Constrain the Value of Variables That Specify the Dimensions of Variable-Size Arrays

To constrain the value of variables that specify the dimensions of variable-size arrays, use the assert
function with relational operators. For example:

function y = dim_need_bound(n) %#codegen
assert (n <= 5);
L= ones(n,n);
M = zeros(n,n);
M = [L; M];
y = M;

This assert statement constrains input n to a maximum size of 5. L is variable-size with upper
bounds of 5 in each dimension. M is variable-size with an upper bound of 10 in the first dimension and
5 in the second dimension.

Specify the Upper Bounds for All Instances of a Local Variable

To specify the upper bounds for all instances of a local variable in a function, use the
coder.varsize function. For example:
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function Y = example_bounds1(u) %#codegen
Y = [1 2 3 4 5];
coder.varsize('Y',[1 10]);
if (u > 0)
    Y = [Y Y+u];
else
    Y = [Y Y*u];
end

The second argument of coder.varsize specifies the upper bound for each instance of the variable
specified in the first argument. In this example, the argument [1 10] indicates that for every
instance of Y:

• The first dimension is fixed at size 1.
• The second dimension can grow to an upper bound of 10.

See Also
coder.varsize | coder.typeof

More About
• “Code Generation for Variable-Size Arrays” on page 29-2
• “Define Variable-Size Data for Code Generation” on page 29-8
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Define Variable-Size Data for Code Generation
For code generation, before using variables in operations or returning them as outputs, you must
assign them a specific class, size, and complexity. Generally, after the initial assignment, you cannot
reassign variable properties. Therefore, after assigning a fixed size to a variable or structure field,
attempts to grow the variable or structure field might cause a compilation error. In these cases, you
must explicitly define the data as variable-size by using one of these methods.

Method See
Assign the data from a variable-size matrix
constructor such as:

• ones
• zeros
• repmat

“Use a Matrix Constructor with Nonconstant
Dimensions” on page 29-8

Assign multiple, constant sizes to the same
variable before using (reading) the variable.

“Assign Multiple Sizes to the Same Variable” on
page 29-8

Define all instances of a variable to be variable-
size.

“Define Variable-Size Data Explicitly by Using
coder.varsize” on page 29-9

Use a Matrix Constructor with Nonconstant Dimensions
You can define a variable-size matrix by using a constructor with nonconstant dimensions. For
example:

function s = var_by_assign(u) %#codegen
y = ones(3,u);
s = numel(y);

If you are not using dynamic memory allocation, you must also add an assert statement to provide
upper bounds for the dimensions. For example:

function s = var_by_assign(u) %#codegen
assert (u < 20);
y = ones(3,u);
s = numel(y);

Assign Multiple Sizes to the Same Variable
Before you use (read) a variable in your code, you can make it variable-size by assigning multiple,
constant sizes to it. When the code generator uses static allocation on the stack, it infers the upper
bounds from the largest size specified for each dimension. When you assign the same size to a given
dimension across all assignments, the code generator assumes that the dimension is fixed at that size.
The assignments can specify different shapes and sizes.

When the code generator uses dynamic memory allocation, it does not check for upper bounds. It
assumes that the variable-size data is unbounded.

Inferring Upper Bounds from Multiple Definitions with Different Shapes
function s = var_by_multiassign(u) %#codegen
if (u > 0)
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    y = ones(3,4,5);
else
    y = zeros(3,1);
end
s = numel(y);

When the code generator uses static allocation, it infers that y is a matrix with three dimensions:

• The first dimension is fixed at size 3
• The second dimension is variable-size with an upper bound of 4
• The third dimension is variable-size with an upper bound of 5

When the code generator uses dynamic allocation, it analyzes the dimensions of y differently:

• The first dimension is fixed at size 3.
• The second and third dimensions are unbounded.

Define Variable-Size Data Explicitly by Using coder.varsize
To explicitly define variable-size data, use the function coder.varsize. Optionally, you can also
specify which dimensions vary along with their upper bounds. For example:

• Define B as a variable-size 2-dimensional array, where each dimension has an upper bound of 64.

coder.varsize('B', [64 64]);
• Define B as a variable-size array:

coder.varsize('B');

When you supply only the first argument, coder.varsize assumes that all dimensions of B can
vary and that the upper bound is size(B).

Specify Which Dimensions Vary

You can use the function coder.varsize to specify which dimensions vary. For example, the
following statement defines B as an array whose first dimension is fixed at 2, but whose second
dimension can grow to a size of 16:

coder.varsize('B',[2, 16],[0 1])

.

The third argument specifies which dimensions vary. This argument must be a logical vector or a
double vector containing only zeros and ones. Dimensions that correspond to zeros or false have
fixed size. Dimensions that correspond to ones or true vary in size. coder.varsize usually treats
dimensions of size 1 as fixed. See “Define Variable-Size Matrices with Singleton Dimensions” on page
29-10.

Allow a Variable to Grow After Defining Fixed Dimensions

Function var_by_if defines matrix Y with fixed 2-by-2 dimensions before the first use (where the
statement Y = Y + u reads from Y). However, coder.varsize defines Y as a variable-size matrix,
allowing it to change size based on decision logic in the else clause:

function Y = var_by_if(u) %#codegen
if (u > 0)
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    Y = zeros(2,2);
    coder.varsize('Y');
    if (u < 10)
        Y = Y + u;
    end
else
    Y = zeros(5,5);
end

Without coder.varsize, the code generator infers Y to be a fixed-size, 2-by-2 matrix. It generates a
size mismatch error.

Define Variable-Size Matrices with Singleton Dimensions

A singleton dimension is a dimension for which size(A,dim) = 1. Singleton dimensions are fixed in
size when:

• You specify a dimension with an upper bound of 1 in coder.varsize expressions.

For example, in this function, Y behaves like a vector with one variable-size dimension:

function Y = dim_singleton(u) %#codegen
Y = [1 2];
coder.varsize('Y', [1 10]);
if (u > 0)
    Y = [Y 3];
else
    Y = [Y u];
end

• You initialize variable-size data with singleton dimensions by using matrix constructor expressions
or matrix functions.

For example, in this function, X and Y behave like vectors where only their second dimensions are
variable-size.

function [X,Y] = dim_singleton_vects(u) %#codegen
Y = ones(1,3);
X = [1 4];
coder.varsize('Y','X');
if (u > 0)
    Y = [Y u];
else
    X = [X u];
end

You can override this behavior by using coder.varsize to specify explicitly that singleton
dimensions vary. For example:

function Y = dim_singleton_vary(u) %#codegen
Y = [1 2];
coder.varsize('Y', [1 10], [1 1]);
if (u > 0)
    Y = [Y Y+u];
else
    Y = [Y Y*u];
end
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In this example, the third argument of coder.varsize is a vector of ones, indicating that each
dimension of Y varies in size.

Define Variable-Size Structure Fields

To define structure fields as variable-size arrays, use a colon (:) as the index expression. The colon
(:) indicates that all elements of the array are variable-size. For example:

function y=struct_example() %#codegen

d = struct('values', zeros(1,0), 'color', 0);
data = repmat(d, [3 3]);
coder.varsize('data(:).values');

for i = 1:numel(data)
    data(i).color = rand-0.5;
    data(i).values = 1:i;
end

y = 0;
for i = 1:numel(data)
    if data(i).color > 0
        y = y + sum(data(i).values);
    end
end

The expression coder.varsize('data(:).values') defines the field values inside each element
of matrix data to be variable-size.

Here are other examples:

• coder.varsize('data.A(:).B')

In this example, data is a scalar variable that contains matrix A. Each element of matrix A
contains a variable-size field B.

• coder.varsize('data(:).A(:).B')

This expression defines field B inside each element of matrix A inside each element of matrix data
to be variable-size.

See Also
coder.varsize | coder.typeof

More About
• “Code Generation for Variable-Size Arrays” on page 29-2
• “Specify Upper Bounds for Variable-Size Arrays” on page 29-6
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Diagnose and Fix Variable-Size Data Errors

Diagnosing and Fixing Size Mismatch Errors
Issue: Assigning Variable-Size Matrices to Fixed-Size Matrices

You cannot assign variable-size matrices to fixed-size matrices in generated code. Consider this
example:

function Y = example_mismatch1(n) %#codegen
assert(n < 10);
B = ones(n,n);
A = magic(3);
A(1) = mean(A(:));
if (n == 3)
    A = B;
end
Y = A;

Compiling this function produces this error:

??? Dimension 1 is fixed on the left-hand side 
but varies on the right ...

There are several ways to fix this error:

• Allow matrix A to grow by adding the coder.varsize construct:

function Y = example_mismatch1_fix1(n) %#codegen
coder.varsize('A');
assert(n < 10);
B = ones(n,n);
A = magic(3);
A(1) = mean(A(:));
if (n == 3)
    A = B;
end
Y = A;

• Explicitly restrict the size of matrix B to 3-by-3 by modifying the assert statement:

function Y = example_mismatch1_fix2(n) %#codegen
coder.varsize('A');
assert(n == 3)
B = ones(n,n);
A = magic(3);
A(1) = mean(A(:));
if (n == 3)
    A = B;
end
Y = A;

• Use explicit indexing to make B the same size as A:

function Y = example_mismatch1_fix3(n) %#codegen
assert(n < 10);
B = ones(n,n);
A = magic(3);
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A(1) = mean(A(:));
if (n == 3)
    A = B(1:3, 1:3);
end
Y = A;

Issue: Empty Matrix Reshaped to Match Variable-Size Specification

If you assign an empty matrix [] to variable-size data, MATLAB might silently reshape the data in
generated code to match a coder.varsize specification. For example:

function Y = test(u) %#codegen
Y = [];
coder.varsize('Y', [1 10]);
if u < 0
    Y = [Y u];
end

In this example, coder.varsize defines Y as a column vector of up to 10 elements, so its first
dimension is fixed at size 1. The statement Y = [] designates the first dimension of Y as 0, creating
a mismatch. The right hand side of the assignment is an empty matrix and the left hand side is a
variable-size vector. In this case, MATLAB reshapes the empty matrix Y = [] in generated code to Y
= zeros(1,0) so it matches the coder.varsize specification.

Issue: Assigning Implicitly Expanded Outputs to Fixed-Size Variable

If you assign the implicitly expanded output of a binary operation or function to a variable of different
size, the code generator might produce an error. For example:

function out = test(n) %#codegen
x = ones(n,1);
if mod(n,2) == 1
    y = ones(n,n);
    x = y + x;
end 
out = out + x(2);
end

In this example, x is an unbounded vector. Due to implicit expansion, the plus operation on x and y
results in an unbounded matrix (Inf-by-Inf). Assigning an unbounded matrix to x, which is an
unbounded vector, results in an error.

If you want to use the implicitly expanded output, assign the output to a new variable with the same
size as the output.

If you want x to retain its size and not apply implicit expansion in the generated code, use
coder.sameSizeBinaryOp to apply the operation. You can also call
coder.noImplicitExpansionInFunction in your function body to disable implicit expansion in
the code generated for that function.

Implicit expansion automatically expands the operands to apply binary operations on arrays of
compatible sizes. See “Generate Code With Implicit Expansion Enabled” (MATLAB Coder), “Optimize
Implicit Expansion in Generated Code” (MATLAB Coder), and “Compatible Array Sizes for Basic
Operations”.
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Diagnosing and Fixing Errors in Detecting Upper Bounds
Issue: Using Nonconstant Dimensions in a Matrix Constructor

You can define variable-size data by assigning a variable to a matrix with nonconstant dimensions. For
example:

function y = dims_vary(u) %#codegen
if (u > 0)
    y = ones(3,u);
else
    y = zeros(3,1);
end

However, compiling this function generates an error because you did not specify an upper bound for
u.

There are several ways to fix the problem:

• Enable dynamic memory allocation and recompile. During code generation, MATLAB does not
check for upper bounds when it uses dynamic memory allocation for variable-size data.

• If you do not want to use dynamic memory allocation, add an assert statement before the first
use of u:

function y = dims_vary_fix(u) %#codegen
assert (u < 20);
if (u > 0)
    y = ones(3,u);
else
    y = zeros(3,1);
end
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Incompatibilities with MATLAB in Variable-Size Support for
Code Generation

In this section...
“Incompatibility with MATLAB for Scalar Expansion” on page 29-15
“Incompatibility with MATLAB in Determining Size of Variable-Size N-D Arrays” on page 29-16
“Incompatibility with MATLAB in Determining Size of Empty Arrays” on page 29-17
“Incompatibility with MATLAB in Determining Class of Empty Arrays” on page 29-18
“Incompatibility with MATLAB in Matrix-Matrix Indexing” on page 29-18
“Incompatibility with MATLAB in Vector-Vector Indexing” on page 29-19
“Incompatibility with MATLAB in Matrix Indexing Operations for Code Generation” on page 29-19
“Incompatibility with MATLAB in Concatenating Variable-Size Matrices” on page 29-20
“Differences When Curly-Brace Indexing of Variable-Size Cell Array Inside Concatenation Returns
No Elements” on page 29-20

Incompatibility with MATLAB for Scalar Expansion
Scalar expansion is a method of converting scalar data to match the dimensions of vector or matrix
data. If one operand is a scalar and the other is not, scalar expansion applies the scalar to every
element of the other operand.

During code generation, scalar expansion rules apply except when operating on two variable-size
expressions. In this case, both operands must be the same size. The generated code does not perform
scalar expansion even if one of the variable-size expressions turns out to be scalar at run time.
Therefore, when run-time error checks are enabled, a run-time error can occur.

Consider this function:

function y = scalar_exp_test_err1(u) %#codegen
y = ones(3);
switch u
    case 0
        z = 0;
    case 1
        z = 1;
    otherwise
        z = zeros(3);
end
y(:) = z;

When you generate code for this function, the code generator determines that z is variable size with
an upper bound of 3.
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If you run the MEX function with u equal to 0 or 1, the generated code does not perform scalar
expansion, even though z is scalar at run time. Therefore, when run-time error checks are enabled, a
run-time error can occur.

scalar_exp_test_err1_mex(0)
Subscripted assignment dimension mismatch: [9] ~= [1].

Error in scalar_exp_test_err1 (line 11)
y(:) = z;

To avoid this issue, use indexing to force z to be a scalar value.

function y = scalar_exp_test_err1(u) %#codegen
y = ones(3);
switch u
    case 0
        z = 0;
    case 1
        z = 1;
    otherwise
        z = zeros(3);
end
y(:) = z(1);

Incompatibility with MATLAB in Determining Size of Variable-Size N-D
Arrays
For variable-size N-D arrays, the size function can return a different result in generated code than in
MATLAB. In generated code, size(A) returns a fixed-length output because it does not drop trailing
singleton dimensions of variable-size N-D arrays. By contrast, size(A) in MATLAB returns a
variable-length output because it drops trailing singleton dimensions.

For example, if the shape of array A is :?x:?x:? and size(A,3)==1, size(A) returns:

• Three-element vector in generated code
• Two-element vector in MATLAB code

Workarounds

If your application requires generated code to return the same size of variable-size N-D arrays as
MATLAB code, consider one of these workarounds:

• Use the two-argument form of size.

For example, size(A,n) returns the same answer in generated code and MATLAB code.
• Rewrite size(A):

B = size(A);
X = B(1:ndims(A));

This version returns X with a variable-length output. However, you cannot pass a variable-size X to
matrix constructors such as zeros that require a fixed-size argument.
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Incompatibility with MATLAB in Determining Size of Empty Arrays
The size of an empty array in generated code might be different from its size in MATLAB source code.
The size might be 1x0 or 0x1 in generated code, but 0x0 in MATLAB. Therefore, you should not write
code that relies on the specific size of empty matrices.

For example, consider the following code:

function y = foo(n) %#codegen
x = [];
i = 0;
while (i < 10)
    x = [5 x];
    i = i + 1;
end
if n > 0
    x = [];
end
y = size(x);
end

Concatenation requires its operands to match on the size of the dimension that is not being
concatenated. In the preceding concatenation, the scalar value has size 1x1 and x has size 0x0. To
support this use case, the code generator determines the size for x as [1 x :?]. Because there is
another assignment x = [] after the concatenation, the size of x in the generated code is 1x0
instead of 0x0.

This behavior persists while determining the size of empty character vectors which are denoted as
''. For example, consider the following code:

function out = string_size
out = size('');
end

Here, the value of out might be 1x0 or 0x1 in generated code, but 0x0 in MATLAB.

For incompatibilities with MATLAB in determining the size of an empty array that results from
deleting elements of an array, see “Size of Empty Array That Results from Deleting Elements of an
Array” on page 19-13.

Workaround

If your application checks whether a matrix is empty, use one of these workarounds:

• Rewrite your code to use the isempty function instead of the size function.
• Instead of using x=[] to create empty arrays, create empty arrays of a specific size using zeros.

For example:

function y = test_empty(n) %#codegen
x = zeros(1,0);
i=0;
while (i < 10)
    x = [5 x];
    i = i + 1;
end
if n > 0
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    x = zeros(1,0);
end
y=size(x);
end

Incompatibility with MATLAB in Determining Class of Empty Arrays
The class of an empty array in generated code can be different from its class in MATLAB source code.
Therefore, do not write code that relies on the class of empty matrices.

For example, consider the following code:

function y = fun(n)
x = [];
if n > 1
    x = ['a' x];
end
y=class(x);
end 

fun(0) returns double in MATLAB, but char in the generated code. When the statement n > 1 is
false, MATLAB does not execute x = ['a' x]. The class of x is double, the class of the empty
array. However, the code generator considers all execution paths. It determines that based on the
statement x = ['a' x], the class of x is char.

Workaround

Instead of using x=[] to create an empty array, create an empty array of a specific class. For
example, use blanks(0) to create an empty array of characters.

function y = fun(n)
x = blanks(0);
if n > 1
    x = ['a' x];
end
y=class(x);
end

Incompatibility with MATLAB in Matrix-Matrix Indexing
In matrix-matrix indexing, you use one matrix to index into another matrix. In MATLAB, the general
rule for matrix-matrix indexing is that the size and orientation of the result match the size and
orientation of the index matrix. For example, if A and B are matrices, size(A(B)) equals size(B).
When A and B are vectors, MATLAB applies a special rule. The special vector-vector indexing rule is
that the orientation of the result is the orientation of the data matrix. For example, if A is 1-by-5 and B
is 3-by-1, then A(B) is 1-by-3.

The code generator applies the same matrix-matrix indexing rules as MATLAB. If A and B are
variable-size matrices, to apply the matrix-matrix indexing rules, the code generator assumes that
size(A(B)) equals size(B). If, at run time, A and B become vectors and have different
orientations, then the assumption is incorrect. Therefore, when run-time error checks are enabled, an
error can occur.
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To avoid this issue, force your data to be a vector by using the colon operator for indexing. For
example, suppose that your code intentionally toggles between vectors and regular matrices at run
time. You can do an explicit check for vector-vector indexing.

...
if isvector(A) && isvector(B)
    C = A(:);
    D = C(B(:));
else
    D = A(B);
end
...

The indexing in the first branch specifies that C and B(:) are compile-time vectors. Therefore, the
code generator applies the indexing rule for indexing one vector with another vector. The orientation
of the result is the orientation of the data vector, C.

Incompatibility with MATLAB in Vector-Vector Indexing
In MATLAB, the special rule for vector-vector indexing is that the orientation of the result is the
orientation of the data vector. For example, if A is 1-by-5 and B is 3-by-1, then A(B) is 1-by-3. If,
however, the data vector A is a scalar, then the orientation of A(B) is the orientation of the index
vector B.

The code generator applies the same vector-vector indexing rules as MATLAB. If A and B are variable-
size vectors, to apply the indexing rules, the code generator assumes that the orientation of B
matches the orientation of A. At run time, if A is scalar and the orientation of A and B do not match,
then the assumption is incorrect. Therefore, when run-time error checks are enabled, a run-time
error can occur.

To avoid this issue, make the orientations of the vectors match. Alternatively, index single elements by
specifying the row and column. For example, A(row, column).

Incompatibility with MATLAB in Matrix Indexing Operations for Code
Generation
The following limitation applies to matrix indexing operations for code generation:

• Initialization of the following style:

for i = 1:10
    M(i) = 5;
end

In this case, the size of M changes as the loop is executed. Code generation does not support
increasing the size of an array over time.

For code generation, preallocate M.

M = zeros(1,10);
for i = 1:10
    M(i) = 5;
end
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The following limitation applies to matrix indexing operations for code generation when dynamic
memory allocation is disabled:

• M(i:j) where i and j change in a loop

During code generation, memory is not dynamically allocated for the size of the expressions that
change as the program executes. To implement this behavior, use for-loops as shown:

...
M = ones(10,10);
for i=1:10
    for j = i:10
        M(i,j) = 2*M(i,j);
    end
end
...

Note The matrix M must be defined before entering the loop.

Incompatibility with MATLAB in Concatenating Variable-Size Matrices
For code generation, when you concatenate variable-size arrays, the dimensions that are not being
concatenated must match exactly.

Differences When Curly-Brace Indexing of Variable-Size Cell Array
Inside Concatenation Returns No Elements
Suppose that:

• c is a variable-size cell array.
• You access the contents of c by using curly braces. For example, c{2:4}.
• You include the results in concatenation. For example, [a c{2:4} b].
• c{I} returns no elements. Either c is empty or the indexing inside the curly braces produces an

empty result.

For these conditions, MATLAB omits c{I} from the concatenation. For example, [a c{I} b]
becomes [a b]. The code generator treats c{I} as the empty array [c{I}]. The concatenation
becomes [...[c{i}]...]. This concatenation then omits the array [c{I}]. So that the properties
of [c{I}] are compatible with the concatenation [...[c{i}]...], the code generator assigns the
class, size, and complexity of [c{I}] according to these rules:

• The class and complexity are the same as the base type of the cell array.
• The size of the second dimension is always 0.
• For the rest of the dimensions, the size of Ni depends on whether the corresponding dimension in

the base type is fixed or variable size.

• If the corresponding dimension in the base type is variable size, the dimension has size 0 in the
result.

• If the corresponding dimension in the base type is fixed size, the dimension has that size in the
result.
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Suppose that c has a base type with class int8 and size:10x7x8x:?. In the generated code, the
class of [c{I}] is int8. The size of [c{I}] is 0x0x8x0. The second dimension is 0. The first and
last dimensions are 0 because those dimensions are variable size in the base type. The third
dimension is 8 because the size of the third dimension of the base type is a fixed size 8.

Inside concatenation, if curly-brace indexing of a variable-size cell array returns no elements, the
generated code can have the following differences from MATLAB:

• The class of [...c{i}...] in the generated code can differ from the class in MATLAB.

When c{I} returns no elements, MATLAB removes c{I} from the concatenation. Therefore, c{I}
does not affect the class of the result. MATLAB determines the class of the result based on the
classes of the remaining arrays, according to a precedence of classes. See “Valid Combinations of
Unlike Classes”. In the generated code, the class of [c{I}] affects the class of the result of the
overall concatenation [...[c{I}]...] because the code generator treats c{I} as [c{I}]. The
previously described rules determine the class of [c{I}].

• In the generated code, the size of [c{I}] can differ from the size in MATLAB.

In MATLAB, the concatenation [c{I}] is a 0x0 double. In the generated code, the previously
described rules determine the size of [c{I}].
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Variable-Sizing Restrictions for Code Generation of Toolbox
Functions

In this section...
“Common Restrictions” on page 29-22
“Toolbox Functions with Restrictions for Variable-Size Data” on page 29-22

Common Restrictions
The following common restrictions apply to multiple toolbox functions, but only for code generation.
To determine which of these restrictions apply to specific library functions, see the table in “Toolbox
Functions with Restrictions for Variable-Size Data” on page 29-22.

Variable-length vector restriction

Inputs to the library function must be variable-length vectors or fixed-size vectors. A variable-length
vector is a variable-size array that has the shape 1x:n or :nx1 (one dimension is variable sized and
the other is fixed at size 1). Other shapes are not permitted, even if they are vectors at run time.

Automatic dimension restriction

This restriction applies to functions that take the working dimension (the dimension along which to
operate) as input. In MATLAB and in code generation, if you do not supply the working dimension, the
function selects it. In MATLAB, the function selects the first dimension whose size does not equal 1.
For code generation, the function selects the first dimension that has a variable size or that has a
fixed size that does not equal 1. If the working dimension has a variable size and it becomes 1 at run
time, then the working dimension is different from the working dimension in MATLAB. Therefore,
when run-time error checks are enabled, an error can occur.

For example, suppose that X is a variable-size matrix with dimensions 1x:3x:5. In the generated
code, sum(X) behaves like sum(X,2). In MATLAB, sum(X) behaves like sum(X,2) unless
size(X,2) is 1. In MATLAB, when size(X,2) is 1, sum(X) behaves like sum(X,3).

To avoid this issue, specify the intended working dimension explicitly as a constant value. For
example, sum(X,2).

Array-to-vector restriction

The function issues an error when a variable-size array that is not a variable-length vector assumes
the shape of a vector at run time. To avoid the issue, specify the input explicitly as a variable-length
vector instead of a variable-size array.

Array-to-scalar restriction

The function issues an error if a variable-size array assumes a scalar value at run time. To avoid this
issue, specify scalars as fixed size.

Toolbox Functions with Restrictions for Variable-Size Data
The following table list functions that have code generation restrictions for variable-size data. For
additional restrictions for these functions, and restrictions for all functions and objects supported for
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code generation, see “Functions and Objects Supported for C/C++ Code Generation” (MATLAB
Coder).

Function Restrictions for Variable-Size Data
all • See “Automatic dimension restriction” on page 29-22.

• An error occurs if you pass the first argument a variable-size
matrix that is 0-by-0 at run time.

any • See “Automatic dimension restriction” on page 29-22.
• An error occurs if you pass the first argument a variable-size

matrix that is 0-by-0 at run time.
cat • Dimension argument must be a constant.
conv • See “Variable-length vector restriction” on page 29-22.

• Input vectors must have the same orientation, either both row
vectors or both column vectors.

cov • For cov(X), see “Array-to-vector restriction” on page 29-22.
cross • Variable-size array inputs that become vectors at run time must

have the same orientation.
deconv • For both arguments, see “Variable-length vector restriction” on

page 29-22.
detrend • For first argument for row vectors only, see “Array-to-vector

restriction” on page 29-22.
diag • See “Array-to-vector restriction” on page 29-22.
diff • See “Automatic dimension restriction” on page 29-22.

• Length of the working dimension must be greater than the
difference order input when the input is variable sized. For
example, if the input is a variable-size matrix that is 3-by-5 at
run time, diff(x,2,1) works but diff(x,5,1) generates a
run-time error.

fft • See “Automatic dimension restriction” on page 29-22.
filter • For first and second arguments, see “Variable-length vector

restriction” on page 29-22.
• See “Automatic dimension restriction” on page 29-22.

hist • For second argument, see “Variable-length vector restriction” on
page 29-22.

• For second input argument, see “Array-to-scalar restriction” on
page 29-22.

histc • See “Automatic dimension restriction” on page 29-22.
ifft • See “Automatic dimension restriction” on page 29-22.
ind2sub • First input (the size vector input) must be fixed size.
interp1 • For the xq input, see “Array-to-vector restriction” on page 29-22.

• If v becomes a row vector at run time, the array to vector
restriction on page 29-22 applies. If v becomes a column vector
at run time, this restriction does not apply.

 Variable-Sizing Restrictions for Code Generation of Toolbox Functions

29-23



Function Restrictions for Variable-Size Data
interpft • See “Automatic dimension restriction” on page 29-22.
ipermute • Order input must be fixed size.
issorted • See “Automatic dimension restriction” on page 29-22.
magic • Argument must be a constant.

• Output can be fixed-size matrices only.
max • See “Automatic dimension restriction” on page 29-22.
maxk • See “Automatic dimension restriction” on page 29-22.
mean • See “Automatic dimension restriction” on page 29-22.

• An error occurs if you pass as the first argument a variable-size
matrix that is 0-by-0 at run time.

median • See “Automatic dimension restriction” on page 29-22.
• An error occurs if you pass as the first argument a variable-size

matrix that is 0-by-0 at run time.
min • See “Automatic dimension restriction” on page 29-22.
mink • See “Automatic dimension restriction” on page 29-22.
mode • See “Automatic dimension restriction” on page 29-22.

• An error occurs if you pass as the first argument a variable-size
matrix that is 0-by-0 at run time.

mtimes Consider the multiplication A*B. If the code generator is aware that
A is scalar and B is a matrix, the code generator produces code for
scalar-matrix multiplication. However, if the code generator is
aware that A and B are variable-size matrices, it produces code for a
general matrix multiplication. At run time, if A turns out to be
scalar, the generated code does not change its behavior. Therefore,
when run-time error checks are enabled, a size mismatch error can
occur.

nchoosek • The second input, k, must be a fixed-size scalar.
• The second input, k, must be a constant for static allocation. If

you enable dynamic allocation, the second input can be a
variable.

• You cannot create a variable-size array by passing in a variable,
k, unless you enable dynamic allocation.

permute • Order input must be fixed-size.
planerot • Input must be a fixed-size, two-element column vector. It cannot

be a variable-size array that takes on the size 2-by-1 at run time.
poly • See “Variable-length vector restriction” on page 29-22.
polyfit • For first and second arguments, see “Variable-length vector

restriction” on page 29-22.
prod • See “Automatic dimension restriction” on page 29-22.

• An error occurs if you pass as the first argument a variable-size
matrix that is 0-by-0 at run time.
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Function Restrictions for Variable-Size Data
rand • For an upper-bounded variable N, rand(1,N) produces a

variable-length vector of 1x:M where M is the upper bound on N.
• For an upper-bounded variable N, rand([1 N]) may produce a

variable-length vector of :1x:M where M is the upper bound on
N.

randi • For an upper-bounded variable N, randi(imax,1,N) produces
a variable-length vector of 1x:M where M is the upper bound on
N.

• For an upper-bounded variable N, randi(imax,[1 N]) may
produce a variable-length vector of :1x:M where M is the upper
bound on N.

randn • For an upper-bounded variable N, randn(1,N) produces a
variable-length vector of 1x:M where M is the upper bound on N.

• For an upper-bounded variable N, randn([1 N]) may produce
a variable-length vector of :1x:M where M is the upper bound on
N.

reshape • If the input is a variable-size array and the output array has at
least one fixed-length dimension, do not specify the output
dimension sizes in a size vector sz. Instead, specify the output
dimension sizes as scalar values, sz1,...,szN. Specify fixed-
size dimensions as constants.

• When the input is a variable-size empty array, the maximum
dimension size of the output array (also empty) cannot be larger
than that of the input.

roots • See “Variable-length vector restriction” on page 29-22.
shiftdim • If you do not supply the second argument, the number of shifts is

determined at compilation time by the upper bounds of the
dimension sizes. Therefore, at run time the number of shifts is
constant.

• An error occurs if the dimension that is shifted to the first
dimension has length 1 at run time. To avoid the error, supply
the number of shifts as the second input argument (must be a
constant).

• First input argument must have the same number of dimensions
when you supply a positive number of shifts.

sort • See “Automatic dimension restriction” on page 29-22.
std • See “Automatic dimension restriction” on page 29-22.

• An error occurs if you pass a variable-size matrix with 0-by-0
dimensions at run time.

sub2ind • First input (the size vector input) must be fixed size.
sum • See “Automatic dimension restriction” on page 29-22.

• An error occurs if you pass as the first argument a variable-size
matrix that is 0-by-0 at run time.
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Function Restrictions for Variable-Size Data
trapz • See “Automatic dimension restriction” on page 29-22.

• An error occurs if you pass as the first argument a variable-size
matrix that is 0-by-0 at run time.

typecast • See “Variable-length vector restriction” on page 29-22 on first
argument.

var • See “Automatic dimension restriction” on page 29-22.
• An error occurs if you pass a variable-size matrix with 0-by-0

dimensions at run time.
vecnorm • See “Automatic dimension restriction” on page 29-22.
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Generate Code With Implicit Expansion Enabled
Implicit expansion refers to the automatic size change of compatible operands to apply element-wise
operations. Two dimensions have compatible sizes if, for every dimension, the dimension sizes of the
arrays are either the same or one of them is singleton. See “Compatible Array Sizes for Basic
Operations”.

Implicit expansion in the generated code is enabled by default. Code generated with implicit
expansion enabled might differ from code generated with implicit expansion disabled in these ways:

• Output size
• Additional code generation
• Performance variation

For variable-size dynamic arrays, the generated code exhibits these changes to accomplish implicit
expansion at run-time.

For fixed-size and constant arrays, because the values and sizes of the operands are known at compile
time, the code generated to calculate the implicitly expanded output does not require additional code
generation or cause performance variations.

To control implicit expansion in the generated code, see “Optimize Implicit Expansion in Generated
Code” (MATLAB Coder).

Output Size
Implicit expansion automatically expands the operands to apply element-wise operations. For
example, consider these input types of compatible size:

a_type = coder.typeof(1,[2 1]);
b_type = coder.typeof(1,[2 inf]);

A binary operation on these two operands with implicit expansion enabled automatically expands the
second dimension of a_type to result in an output size of 2-by-Inf. With implicit expansion disabled,
the second dimension of a_type is not automatically expanded, and the output size is 2-by-1.

For existing workflows created with implicit expansion disabled in the generated code, generating
code for the same MATLAB code with implicit expansion enabled might generate size mismatch
errors or change the size of outputs from binary operations and functions. To troubleshoot size
mismatch errors, see “Diagnose and Fix Variable-Size Data Errors” (MATLAB Coder).

Additional Code Generation
Implicit expansion enables the operands to be automatically expanded if the operand sizes are
compatible. To perform this size change, the generated code introduces code that allows the
operands to be expanded.

For example, consider the following code snippet. The function vector_sum finds the sum of two
arrays.

function out = vector_sum(a,b)
out = a + b;
end
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Consider the variable-size dynamic array defined here:

c_type = coder.typeof(1,[1 Inf]);

Generate code for vector_sum by using this command:

codegen vector_sum -args {c_type, c_type} -config:lib -report

The generated code for this function with and without implicit expansion is listed in this table.

Generated Code With Implicit Expansion
Disabled

Generated Code With Implicit Expansion
Enabled

void vector_sum(const emxArray_real_T *a, const emxArray_real_T *b, emxArray_real_T *out){
  int i;
  int loop_ub;
  i = out->size[0] * out->size[1];
  out->size[0] = 1;
  out->size[1] = b->size[1];
  emxEnsureCapacity_real_T(out, i);
  loop_ub = b->size[1];
  for (i = 0; i < loop_ub; i++) {
    out->data[i] = b->data[i] + a->data[i]; 
  }
}

static void plus(emxArray_real_T *out, const emxArray_real_T *b, const emxArray_real_T *a)
{
  int i;
  ....
 if (a->size[1] == 1) {
    out->size[1] = b->size[1];
  } else {
    out->size[1] = a->size[1];
  }
  ....
  if (a->size[1] == 1) {
    loop_ub = b->size[1];
  } 
  else {
  loop_ub = a->size[1];
  }
  for (i = 0; i < loop_ub; i++) {
    out->data[i] = b->data[i * stride_0_1] + a->data[i * stride_1_1];
  }
}
void vector_sum(const emxArray_real_T *a, const emxArray_real_T *b, emxArray_real_T *out)
{
  int i;
  int loop_ub;
  if (b->size[1] == a->size[1]) {
    i = out->size[0] * out->size[1];
    out->size[0] = 1;
    out->size[1] = b->size[1];
    emxEnsureCapacity_real_T(out, i);
    loop_ub = b->size[1];
    for (i = 0; i < loop_ub; i++) {
      out->data[i] = b->data[i] + a->data[i];
    }
  } else {
    plus(out, b, a);
  }
}

With implicit expansion enabled, the code generator creates a supporting function, in this case plus,
to carry out the size change and to calculate the output.

In most cases, the supporting function carrying out implicit expansion is named after the binary
operation it is assisting. In the previous example, if the expression out = a + b is changed to out
= a - b, the name of the supporting function changes to minus.
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Some supporting functions might also be named as expand_op, where op refers to the binary
operation. In the previous example, if the expression out = a + b is replaced with out =
max(a,b), the name of the supporting function in the generated code changes to expand_max.

If multiple operations in an expression require implicit expansion, the generated code includes a
supporting function that is named binary_expand_op. The supporting functions change the size of
the operand and apply the binary operations.

If you want to apply specific binary operations and functions without implicit expansion, use
coder.sameSizeBinaryOp. The code generated to apply this function does not include additional
code to expand the operands. The output of this function does not expand the operands in MATLAB.
This function does not support scalar expansion. Operands must be of the same size.

If you want to disable implicit expansion inside a function for all binary operations within that
function in the generated code, call coder.noImplicitExpansionInFunction in the required
function. Implicit expansion in MATLAB code is still enabled.

Performance Variation
Code generated with implicit expansion enabled might perform differently than when implicit
expansion is disabled. Depending on the input to the generated code that uses implicit expansion, the
code might take longer to evaluate the output.

If the generated code does not match the performance requirements of your workflow due to implicit
expansion, generate code for your project by turning off implicit expansion for specific binary
operations, specific function bodies, or for your whole project. See “Optimize Implicit Expansion in
Generated Code” (MATLAB Coder).

Note Before disabling implicit expansion, ensure that the external code does not use implicit
expansion. Disabling implicit expansion for an entire project might cause errors when generating
code if your project includes MATLAB code from external sources.

See Also
coder.noImplicitExpansionInFunction | coder.sameSizeBinaryOp

Related Examples
• “Compatible Array Sizes for Basic Operations”
• “Diagnose and Fix Variable-Size Data Errors” (MATLAB Coder)
• “Optimize Implicit Expansion in Generated Code” (MATLAB Coder)
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Optimize Implicit Expansion in Generated Code
Implicit expansion in the generated code is enabled by default. The code generator introduces
modifications in the generated code to perform implicit expansion. The changes in the generated
code might result in additional code to expand the operands. The expansion of the operands might
affect the performance of the generated code. See “Generate Code With Implicit Expansion Enabled”
(MATLAB Coder).

Implicit expansion might change the size of the outputs from the supported operators and functions
causing size and type mismatch errors in your workflow.

For fine-grained control of where implicit expansion is enabled in the generated code, use the
following functions in your MATLAB code:

• coder.noImplicitExpansionInFunction
• coder.sameSizeBinaryOp

For example, consider this code snippet. The function vector_sum finds the sum of two arrays of
compatible sizes.

function out = vector_sum(a,b)
out = b + a;
end

The types of operands a and b are defined as:

a_type = coder.typeof(1,[2 1])       %size: 2x1
b_type = coder.typeof(1,[2 Inf])     %size: 2x:inf

Without Implicit Expansion With Implicit Expansion
Without implicit expansion, the size of the out
variable is calculated as 2x1.

With implicit expansion, the size of the variable
out is calculated as 2x:?.
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These code snippets outline the changes in the generated code for the function vector_sum, while
implicit expansion is disabled and enabled. To generate the code, the types of operands a and b are
defined as:

a_type = coder.typeof(1,[1 Inf])       %size: 1x:inf
b_type = coder.typeof(1,[1 Inf])       %size: 1x:inf

Generated Code With Implicit Expansion
Disabled

Generated Code With Implicit Expansion
Enabled

void vector_sum(const emxArray_real_T *a, const emxArray_real_T *b,
                emxArray_real_T *out)
{
  int i;
  int loop_ub;
  i = out->size[0] * out->size[1];
  out->size[0] = 1;
  out->size[1] = b->size[1];
  emxEnsureCapacity_real_T(out, i);
  loop_ub = b->size[1];
  for (i = 0; i < loop_ub; i++) {
    out->data[i] = b->data[i] + a->data[i];
  }
}

static void plus(emxArray_real_T *out, const emxArray_real_T *b,
                 const emxArray_real_T *a)
{
  int i;
  ....
  if (a->size[1] == 1) {
    out->size[1] = b->size[1];
  } else {
    out->size[1] = a->size[1];
  }
  ....
  if (a->size[1] == 1) {
    loop_ub = b->size[1];
  } else {
    loop_ub = a->size[1];
  }
  for (i = 0; i < loop_ub; i++) {
    out->data[i] = b->data[i * stride_0_1] + a->data[i * stride_1_1];
  }
}
void vector_sum(const emxArray_real_T *a, const emxArray_real_T *b,
                emxArray_real_T *out)
{
  int i;
  int loop_ub;
  if (b->size[1] == a->size[1]) {
    i = out->size[0] * out->size[1];
    out->size[0] = 1;
    out->size[1] = b->size[1];
    emxEnsureCapacity_real_T(out, i);
    loop_ub = b->size[1];
    for (i = 0; i < loop_ub; i++) {
      out->data[i] = b->data[i] + a->data[i];
    }
  } else {
    plus(out, b, a);
  }
}

Disable Implicit Expansion in Specified Function by Using
coder.noImplicitExpansionInFunction
If you require implicit expansion in your project but not in specific functions, disable implicit
expansion for the generated code of that function by calling
coder.noImplicitExpansionInFunction within the function.

For example, the code generated for vector_sum does not apply implicit expansion.
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MATLAB Code Generated Code with
coder.sameSizeBinaryOp

function out = vector_sum(a,b)
coder.noImplicitExpansionInFunction();
out = a + b;
end

a = coder.typeof(1,[1 Inf])    %size: 1x:inf
b = coder.typeof(1,[1 Inf])    %size: 1x:inf
codegen vector_sum -launchreport -args {a,b} -config:lib

void vector_sum(const emxArray_real_T *a, const emxArray_real_T *b,
                emxArray_real_T *out)
{
  int i;
  int loop_ub;
  i = out->size[0] * out->size[1];
  out->size[0] = 1;
  out->size[1] = a->size[1];
  emxEnsureCapacity_real_T(out, i);
  loop_ub = a->size[1];
  for (i = 0; i < loop_ub; i++) {
    out->data[i] = a->data[i] + b->data[i];
  }
}

Note coder.noImplicitExpansionInFunction does not disable implicit expansion in your
MATLAB code. It disables implicit expansion only in the generated code.

Disable Implicit Expansion for Specific Binary Operation by Using
coder.sameSizeBinaryOp
Use the function coder.sameSizeBinaryOp to perform an error check to ensure that the operands
are the same size and prevent the code generator from generating implicitly expanded code for that
function.

For example, this code snippet applies the plus operation by using coder.sameSizeBinaryOp
without implicit expansion.

MATLAB Code Generated Code
function out = vector_sum(a,b)
out = coder.sameSizeBinaryOp(@plus, a, b);
end

a = coder.typeof(1,[1 Inf])    %size: 1x:inf
b = coder.typeof(1,[1 Inf])    %size: 1x:inf
codegen vector_sum -launchreport -args {a,b} -config:lib

void vector_sum(const emxArray_real_T *a, const emxArray_real_T *b,
                emxArray_real_T *out)
{
  int i;
  int loop_ub;
  i = out->size[0] * out->size[1];
  out->size[0] = 1;
  out->size[1] = a->size[1];
  emxEnsureCapacity_real_T(out, i);
  loop_ub = a->size[1];
  for (i = 0; i < loop_ub; i++) {
    out->data[i] = a->data[i] + b->data[i];
  }
}

coder.sameSizeBinaryOp does not support scalar expansion. Operands given to
coder.sameSizeBinaryOp must be of the same size.
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Disable Implicit Expansion in your Project
If you do not require implicit expansion in your generated code or do not want the modifications to
affect your generated code, turn it off by setting the EnableImplicitExpansion flag in your
coder.config object to false. This flag is set to true by default.

cfg = coder.config;
cfg.EnableImplicitExpansion = false;

Disable implicit expansion in your Simulink model by setting the model-wide parameter Enable
Implicit Expansion in MATLAB functions to false. Alternatively, use this command:

set_param(gcs,'EnableImplicitExpansion',false);

Note Before turning off implicit expansion, ensure that the external code does not use implicit
expansion. Disabling implicit expansion for an entire project might cause errors when generating
code if your project includes MATLAB code from external sources.

See Also
coder.noImplicitExpansionInFunction | coder.sameSizeBinaryOp

Related Examples
• “Generate Code With Implicit Expansion Enabled” (MATLAB Coder)
• “Compatible Array Sizes for Basic Operations”
• “Diagnose and Fix Variable-Size Data Errors” (MATLAB Coder)
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Representation of Arrays in Generated Code
The code generator produces C/C++ array definitions that depend on the array element type and
whether the array uses static or dynamic memory allocation. Use the generated array
implementations to interface your arrays with the generated code.

Memory allocation for arrays require different implementations:

• For a fixed-size array or a variable-size array whose size is bounded within a predefined memory
threshold, the generated C/C++ definition consists of a fixed-size array of elements and a size
vector that stores the total number of array elements. In some cases, the fixed-size element array
and the size vector are stored within a structure. The memory for this array comes from the
program stack and is statically allocated.

• For an array whose size is unbounded at compile time, or whose bounds exceed the predefined
threshold, the generated C definition consists of a data structure called an emxArray. The
generated C++ definition consists of a coder::array class template.

The predefined threshold size (in bytes) is specified in your configuration objects. The default value of
the parameter is 65536. See DynamicMemoryAllocationThreshold in coder.MexCodeConfig,
coder.CodeConfig, or coder.EmbeddedCodeConfig.

For dynamically allocated arrays, the run-time allocated size is set based on the current array size.
During program execution, as run-time allocated size is exceeded, the generated code reallocates
additional memory space from the heap and adds it to the dynamic array storage.

This table lists a few typical cases for array representation in the generated code.

Algorithm Description and
Array Size

MATLAB Function Generated C/C++ Code

Create a fixed-size 1-by-500 row
vector. The array is the output
of the MATLAB function

The generated code allocates
memory to a fixed-size vector on
the program stack.

function B = create_vec0 %#codegen
B = zeros(1,500);
end

void create_vec0(double B[500])
{
  memset(&B[0], 0, 500U * sizeof(double));
}

The array is the input to the
function in the generated code.

Create a fixed-size 1-by-20 row
vector. Declare the array as
variable-size with bounds at 500
elements. Assign this variable-
size array to the input array.

This array is bound within the
size threshold and is the input
to the function in the generated
code.

function create_vec1(B) %#codegen
A = zeros(1,20);
coder.varsize('A',[1 500],[0 1]);
B = A;
end

void create_vec1(double B_data[], int B_size[2])
{
  int i;
  B_size[0] = 1;
  B_size[1] = 20;
  for (i = 0; i < 20; i++) {
    B_data[i] = 1.0;
  }
}

Note The generated code
includes the inputs in the
function parameters.
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Algorithm Description and
Array Size

MATLAB Function Generated C/C++ Code

Create a local fixed-size 1-
by-20000 row vector. Declare
the array as variable-size with
bounds at 30,000 elements.

The variable-size array exceeds
the predefined dynamic memory
allocation threshold. This array
is stored on heap memory.

The generated code includes the
output array in the function
parameter.

function B = create_vec2() %#codegen
A = ones(1,20000);
coder.varsize("A",[1 30000], [0 1]);
B = [1 A];
end

C:

void create_vec2(emxArray_real_T *B)
{
  double *B_data;
  int i;
  i = B->size[0] * B->size[1];
  B->size[0] = 1;
  B->size[1] = 20001;
  emxEnsureCapacity_real_T(B, i);
  B_data = B->data;
  B_data[0] = 1.0;
  for (i = 0; i < 20000; i++) {
    B_data[i + 1] = 1.0;
  }
}

C++:

void create_vec2(coder::array<double, 2U> &B)
{
  B.set_size(1, 20001);
  B[0] = 1.0;
  for (int i{0}; i < 20000; i++) {
    B[i + 1] = 1.0;
  }
}
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Algorithm Description and
Array Size

MATLAB Function Generated C/C++ Code

Create an array that has the
size determined by an
unbounded integer input.

The generated array size is
unknown and unbounded at
compile time.

function y = create_vec3(n) %#codegen
y = ones(1,n,'int8');

C:

void create_vec3(double n, emxArray_int8_T *y)
{
  int i;
  int loop_ub_tmp;
  signed char *y_data;
  i = y->size[0] * y->size[1];
  y->size[0] = 1;
  loop_ub_tmp = (int)n;
  y->size[1] = (int)n;
  emxEnsureCapacity_int8_T(y, i);
  y_data = y->data;
  for (i = 0; i < loop_ub_tmp; i++) {
    y_data[i] = 1;
  }
}

C++:

void create_vec3(double n, coder::array<signed char, 2U> &y)
{
  int loop_ub_tmp;
  loop_ub_tmp = static_cast<int>(n);
  y.set_size(1, loop_ub_tmp);
  for (int i{0}; i < loop_ub_tmp; i++) {
    y[i] = 1;
  }
}

To learn about the emxArray data structure, see “Use C Arrays in the Generated Function
Interfaces” (MATLAB Coder).

To learn about the coder::array class template, see “Use Dynamically Allocated C++ Arrays in
Generated Function Interfaces” (MATLAB Coder).

Customize Interface Generation
By default, the generated C++ code uses the coder::array template to implement dynamically
allocated arrays. You can choose to generate C++ code that uses the C style emxArray data
structure to implement dynamically allocated arrays. To generate C style emxArray data structures,
do either of the following:

• In a code configuration object (coder.MexCodeConfig, coder.CodeConfig, or
coder.EmbeddedCodeConfig), set the DynamicMemoryAllocationInterface parameter to
'C'.

• Alternatively, In the MATLAB Coder app, on the Memory tab, set Dynamic memory allocation
interface to Use C style EmxArray.

To create dynamically allocated arrays for variable-size arrays in the generated code, do either of the
following:
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• Set theDynamicMemoryAllocationForVariableSizeArrays flag to 'Always' or
'Threshold'.

• Alternatively, in the MATLAB Coder App, on the Memory tab, select the required option in the
drop-down list for the Dynamic memory allocation for variable size arrays option.

You can also create dynamically allocated arrays for fixed-size arrays. Do either of the following:

• Set the DynamicMemoryAllocationForFixedSizeArrays flag to 'Always' or 'Threshold'.
• Alternatively, in the MATLAB Coder App, on the Memory tab, select the required option in the

drop-down list for the Dynamic memory allocation for fixed size arrays option.

By default, arrays that are bounded within a threshold size do not use dynamic allocation in the
generated code. Alternatively, you can disable dynamic memory allocation and change the dynamic
memory allocation threshold. See “Control Memory Allocation for Variable-Size Arrays” (MATLAB
Coder).

See Also
coder.config | coder.MexCodeConfig | coder.CodeConfig | coder.EmbeddedCodeConfig

Related Examples
• “Use C Arrays in the Generated Function Interfaces” (MATLAB Coder)
• “Use Dynamically Allocated C++ Arrays in Generated Function Interfaces” (MATLAB Coder)
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Control Memory Allocation for Fixed-Size Arrays
Dynamic memory allocation for fixed-size arrays allocates memory for the array on the heap instead
of allocating memory on the program stack. Consider using dynamic memory allocation when:

• The fixed-size arrays are large and you do not want to allocate memory on the stack.
• Your target hardware memory is limited and you do not want to allocate memory for the arrays on

the program stack.

For larger arrays, you can significantly reduce storage requirements. Dynamic memory allocation
might result in slower execution of the generated code.

Enable Dynamic Memory Allocation for All Fixed-Size Arrays
By default, dynamic memory allocation for fixed-size arrays is disabled. To enable it:

• In a configuration object for code generation, set the
DynamicMemoryAllocationForFixedSizeArrays parameter to 'Always'.

• Alternatively, in the app, under Memory settings, set Dynamic memory allocation fixed-sized
arrays to 'Always'.

The code generator dynamically allocates memory on the heap for all fixed-size arrays whose size is
greater than 64 bytes.

Enable Dynamic Memory Allocation for Arrays Bigger Than a Threshold
Instead of allocating all fixed-size arrays dynamically on the heap, you can specify the threshold size
above which memory is dynamically allocated. To instruct the code generator to use dynamic memory
allocation for fixed-size arrays whose size is greater than or equal to the threshold:

• In the configuration object, set the DynamicMemoryAllocationForFixedSizeArrays to
'Threshold'.

• In the MATLAB Coder app, in the Memory settings, set Dynamic memory allocation for fixed-
sized arrays to For arrays with max size at or above threshold.

To instruct the code generator to use dynamic memory allocation for fixed-size arrays whose size is
greater than or equal to the threshold, in the configuration object, set the
DynamicMemoryAllocationForFixedSizeArrays to 'Threshold'.

The default dynamic memory allocation threshold is 64 kilobytes. To change the threshold, in a
configuration object for fixed-point acceleration, set the DynamicMemoryAllocationThreshold.

See Also
coder.EmbeddedCodeConfig | coder.MexCodeConfig | coder.CodeConfig

Related Examples
• “Control Memory Allocation for Variable-Size Arrays” (MATLAB Coder)
• “Representation of Arrays in Generated Code” (MATLAB Coder)
• “Use C Arrays in the Generated Function Interfaces” (MATLAB Coder)
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• “Use Dynamically Allocated C++ Arrays in Generated Function Interfaces” (MATLAB Coder)
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Code Generation for Cell Arrays

• “Code Generation for Cell Arrays” on page 30-2
• “Control Whether a Cell Array Is Variable-Size” on page 30-4
• “Define Cell Array Inputs” on page 30-6
• “Cell Array Limitations for Code Generation” on page 30-7
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Code Generation for Cell Arrays
When you generate code from MATLAB code that contains cell arrays, the code generator classifies
the cell arrays as homogeneous or heterogeneous. This classification determines how a cell array is
represented in the generated code. It also determines how you can use the cell array in MATLAB
code from which you generate code.

When you use cell arrays in MATLAB code that is intended for code generation, you must adhere to
certain restrictions. See “Cell Array Limitations for Code Generation” on page 30-7.

Homogeneous vs. Heterogeneous Cell Arrays
A homogeneous cell array has these characteristics:

• The cell array is represented as an array in the generated code.
• All elements have the same properties. The type associated with the cell array specifies the

properties of all elements rather than the properties of individual elements.
• The cell array can be variable-size.
• You can index into the cell array with an index whose value is determined at run time.

A heterogeneous cell array has these characteristics:

• The cell array is represented as a structure in the generated code. Each element is represented as
a field of the structure.

• The elements can have different properties. The type associated with the cell array specifies the
properties of each element individually.

• The cell array cannot be variable-size.
• You must index into the cell array with a constant index or with for-loops that have constant

bounds.

The code generator uses heuristics to determine the classification of a cell array as homogeneous or
heterogeneous. It considers the properties (class, size, complexity) of the elements and other factors,
such as how you use the cell array in your program. Depending on how you use a cell array, the code
generator can classify a cell array as homogeneous in one case and heterogeneous in another case.
For example, consider the cell array {1 [2 3]}. The code generator can classify this cell array as a
heterogeneous 1-by-2 cell array. The first element is double scalar. The second element is a 1-by-2
array of doubles. However, if you index into this cell array with an index whose value is determined at
run time, the code generator classifies it as a homogeneous cell array. The elements are variable-size
arrays of doubles with an upper bound of 2.

Controlling Whether a Cell Array Is Homogeneous or Heterogeneous
For cell arrays with certain characteristics, you cannot control the classification as homogeneous or
heterogeneous:

• If the elements have different classes, the cell array must be heterogeneous.
• If the cell array is variable-size, it must be homogeneous.
• If you index into the cell array with an index whose value is determined at run time, the cell array

must be homogeneous.
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For other cell arrays, you can control the classification as homogeneous or heterogeneous.

To control the classification of cell arrays that are entry-point function inputs, use the
coder.CellType methods makeHomogeneous and makeHeterogeneous.

To control the classification of cell arrays that are not entry-point function inputs:

• If the cell array elements have the same class, you can force a cell array to be homogeneous by
using coder.varsize. See “Control Whether a Cell Array Is Variable-Size” on page 30-4.

Cell Arrays in Reports
To see whether a cell array is homogeneous or heterogeneous, view the variable in the code
generation report.

For a homogeneous cell array, the report has one entry that specifies the properties of all elements.
The notation {:} indicates that all elements of the cell array have the same properties.

For a heterogeneous cell array, the report has an entry for each element. For example, for a
heterogeneous cell array c with two elements, the entry for c{1} shows the properties for the first
element. The entry for c{2} shows the properties for the second element.

See Also
coder.CellType | coder.varsize

More About
• “Control Whether a Cell Array Is Variable-Size” on page 30-4
• “Cell Array Limitations for Code Generation” on page 30-7
• “Code Generation Reports” on page 12-26
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Control Whether a Cell Array Is Variable-Size
The code generator classifies a variable-size cell array as homogeneous. The cell array elements must
have the same class. In the generated code, the cell array is represented as an array.

If a cell array is an entry-point function input, to make it variable-size, use coder.typeof or
coder.newtype to create a type for a variable-size cell array. For example, to create a type for a cell
array whose first dimension is fixed and whose second dimension has an upper bound of 10, use this
code:

 t = coder.typeof({1 2 3}, [1 10], [0 1])

See “Specify Variable-Size Cell Array Inputs” on page 12-43.

If a cell array is not an entry-point function input, to make it variable-size:

• Create the cell array by using the cell function. For example:

function z = mycell(n, j)
%#codegen
x = cell(1,n);   
for i = 1:n
    x{i} = i;
end
z = x{j};
end

For code generation, when you create a variable-size cell array by using cell, you must adhere to
certain restrictions. See “Definition of Variable-Size Cell Array by Using cell” on page 30-8.

• Grow the cell array. For example:

function z = mycell(n)
%#codegen
c = {1 2 3};
for i = 1:n
    c{end + 1} = 1;
end
z = c{n};
end

• Force the cell array to be variable-size by using coder.varsize. Consider this code:

function y =  mycellfun()
%#codegen
c = {1 2 3};
coder.varsize('c', [1 10]);
y = c;
end

Without coder.varsize, c is fixed-size with dimensions 1-by-3. With coder.varsize, c is
variable-size with an upper bound of 10.

Sometimes, using coder.varsize changes the classification of a cell array from heterogeneous
to homogeneous. Consider this code:

function y =  mycell()
%#codegen

30 Code Generation for Cell Arrays

30-4



c = {1 [2 3]};
y = c{2};
end

The code generator classifies c as heterogeneous because the elements have different sizes. c is
fixed-size with dimensions 1-by-2. If you use coder.varsize with c, it becomes homogeneous.
For example:

function y =  mycell()
%#codegen
c = {1 [2 3]};
coder.varsize('c', [1 10], [0 1]);
y = c{2};
end

c becomes a variable-size homogeneous cell array with dimensions 1-by-:10.

To force c to be homogeneous, but not variable-size, specify that none of the dimensions vary. For
example:

function y =  mycell()
%#codegen
c = {1 [2 3]};
coder.varsize('c', [1 2], [0 0]);
y = c{2};
end

See Also
coder.CellType | coder.varsize

More About
• “Code Generation for Cell Arrays” on page 30-2
• “Cell Array Limitations for Code Generation” on page 30-7
• “Code Generation for Variable-Size Arrays” on page 29-2
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Define Cell Array Inputs
To define types for cell arrays that are inputs to entry-point functions, use one of these approaches:

Define Types See
At the command line “Specify Cell Array Inputs at the Command Line”

on page 12-41
Programmatically in the MATLAB file “Define Input Properties Programmatically in

MATLAB File” on page 12-34

See Also
coder.CellType

More About
• “Code Generation for Cell Arrays” on page 30-2
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Cell Array Limitations for Code Generation
When you use cell arrays in MATLAB code that is intended for code generation, you must adhere to
these restrictions:

• “Cell Array Element Assignment” on page 30-7
• “Variable-Size Cell Arrays” on page 30-8
• “Definition of Variable-Size Cell Array by Using cell” on page 30-8
• “Cell Array Indexing” on page 30-11
• “Growing a Cell Array by Using {end + 1}” on page 30-12
• “Cell Array Contents” on page 30-12
• “Passing Cell Arrays to External C/C++ Functions” on page 30-13

Cell Array Element Assignment
You must assign a cell array element on all execution paths before you use it. For example:

function z = foo(n)
%#codegen
c = cell(1,3);
if n < 1
    c{2} = 1;
    
else
    c{2} = n;
end
z = c{2};
end

The code generator considers passing a cell array to a function or returning it from a function as a
use of all elements of the cell array. Therefore, before you pass a cell array to a function or return it
from a function, you must assign all of its elements. For example, the following code is not allowed
because it does not assign a value to c{2} and c is a function output.

function c = foo()
%#codegen
c = cell(1,3);
c{1} = 1;
c{3} = 3;
end

The assignment of values to elements must be consistent on all execution paths. The following code is
not allowed because y{2} is double on one execution path and char on the other execution path.

function y = foo(n)
y = cell(1,3)
if n > 1;
    y{1} = 1
    y{2} = 2;
    y{3} = 3;
else
    y{1} = 10;
    y{2} = 'a';
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    y{3} = 30;
end

Variable-Size Cell Arrays
• coder.varsize is not supported for heterogeneous cell arrays.
• If you use the cell function to define a fixed-size cell array, you cannot use coder.varsize to

specify that the cell array has a variable size. For example, this code causes a code generation
error because x = cell(1,3) makes x a fixed-size,1-by-3 cell array.

...
x = cell(1,3);           
coder.varsize('x',[1 5])
...

You can use coder.varsize with a cell array that you define by using curly braces. For example:

...
x = {1 2 3}; 
coder.varsize('x',[1 5])
...

• To create a variable-size cell array by using the cell function, use this code pattern:

function mycell(n)
%#codegen
x = cell(1,n);   
for i = 1:n
    x{i} = i;
end
end

See “Definition of Variable-Size Cell Array by Using cell” on page 30-8.

To specify upper bounds for the cell array, use coder.varsize.

function mycell(n)
%#codegen
x = cell(1,n);   
for i = 1:n
    x{i} = i;
coder.varsize('x',[1,20]);
end
end

Definition of Variable-Size Cell Array by Using cell
For code generation, before you use a cell array element, you must assign a value to it. When you use
cell to create a variable-size cell array, for example, cell(1,n), MATLAB assigns an empty matrix
to each element. However, for code generation, the elements are unassigned. For code generation,
after you use cell to create a variable-size cell array, you must assign all elements of the cell array
before any use of the cell array. For example:

function z = mycell(n, j)
%#codegen
x = cell(1,n);   
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for i = 1:n
    x{i} = i;
end
z = x{j};
end

The code generator analyzes your code to determine whether all elements are assigned before the
first use of the cell array. If the code generator detects that some elements are not assigned, code
generation fails with an error message. For example, modify the upper bound of the for-loop to j.

function z = mycell(n, j)
%#codegen
x = cell(1,n);   
for i = 1:j %<- Modified here
    x{i} = i;
end
z = x{j};
end

With this modification and with inputs j less than n, the function does not assign values to all of the
cell array elements. Code generation produces the error:

Unable to determine that every element of 'x{:}' is assigned
before this line.

Sometimes, even though your code assigns all elements of the cell array, the code generator reports
this message because the analysis does not detect that all elements are assigned. See “Unable to
Determine That Every Element of Cell Array Is Assigned” on page 49-39.

To avoid this error, follow these guidelines:

• When you use cell to define a variable-size cell array, write code that follows this pattern:

function z = mycell(n, j)
%#codegen
x = cell(1,n);   
for i = 1:n
    x{i} = i;
end
z = x{j};
end

Here is the pattern for a multidimensional cell array:

function z = mycell(m,n,p)
%#codegen
x = cell(m,n,p);
for i = 1:m
    for j =1:n
        for k = 1:p
            x{i,j,k} = i+j+k;
        end
    end
end
z = x{m,n,p};
end

• Increment or decrement the loop counter by 1.
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• Define the cell array within one loop or one set of nested loops. For example, this code is not
allowed:

function z = mycell(n, j)
x = cell(1,n);
for i = 1:5
    x{i} = 5;
end
for i = 6:n
    x{i} = 5;
end
z = x{j};
end            

• Use the same variables for the cell dimensions and loop initial and end values. For example, code
generation fails for the following code because the cell creation uses n and the loop end value
uses m:

function z = mycell(n, j)
x = cell(1,n);
m = n;
for i = 1:m
    x{i} = 2;
end
z = x{j};
end               

Rewrite the code to use n for the cell creation and the loop end value:

function z = mycell(n, j)
x = cell(1,n);
for i = 1:n
    x{i} = 2;
end
z = x{j};
end

• Create the cell array with this pattern:

x = cell(1,n)

Assign the cell array to a field of a structure or a property of an object by initializing a temporary
variable with the required cell. For example:

t = cell(1,n)
for i = 1:n
    t{i} = i+1;
end
myObj.prop = t;

Do not assign a cell array to a field of a structure or a property of an object directly. For example,
this code is not allowed:

myObj.prop = cell(1,n);
for i = 1:n
    myObj.prop{i} = i+1;
end

Do not use the cell function inside the cell array constructor {}. For example, this code is not
allowed:
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x = {cell(1,n)};
• The cell array creation and the loop that assigns values to the cell array elements must be

together in a unique execution path. For example, the following code is not allowed.

function z = mycell(n)
if n > 3
    c = cell(1,n);
else
    c = cell(n,1);
end
for i = 1:n
    c{i} = i;
end
z = c{n};
end

To fix this code, move the assignment loop inside the code block that creates the cell array.

function z = cellerr(n)
if n > 3
    c = cell( 1,n);
    for i = 1:n
        c{i} = i;
    end
else
    c = cell(n,1);
    for i = 1:n
        c{i} = i;
    end
end
z = c{n};
end

Cell Array Indexing
• You cannot index cell arrays by using smooth parentheses(). Consider indexing cell arrays by

using curly braces{} to access the contents of the cell.
• You must index into heterogeneous cell arrays by using constant indices or by using for-loops

with constant bounds.

For example, the following code is not allowed.

x = {1, 'mytext'};
disp(x{randi});

You can index into a heterogeneous cell array in a for-loop with constant bounds because the
code generator unrolls the loop. Unrolling creates a separate copy of the loop body for each loop
iteration, which makes the index in each loop iteration constant. However, if the for-loop has a
large body or it has many iterations, the unrolling can increase compile time and generate
inefficient code.

If A and B are constant, the following code shows indexing into a heterogeneous cell array in a
for-loop with constant bounds.

x = {1, 'mytext'};
for i = A:B
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     disp(x{i});
end

Growing a Cell Array by Using {end + 1}
To grow a cell array X, you can use X{end + 1}. For example:

...
X = {1 2};
X{end + 1} = 'a';
...

When you use {end + 1} to grow a cell array, follow these restrictions:

• Use only {end + 1}. Do not use {end + 2}, {end + 3}, and so on.
• Use {end + 1} with vectors only. For example, the following code is not allowed because X is a

matrix, not a vector:

...
X = {1 2; 3 4};
X{end + 1} = 5;

...
• Use {end + 1} only with a variable. In the following code, {end + 1} does not cause {1 2 3}

to grow. In this case, the code generator treats {end + 1} as an out-of-bounds index into X{2}.

...
X = {'a' { 1 2 3 }};
X{2}{end + 1} = 4;
...

• When {end + 1} grows a cell array in a loop, the cell array must be variable-size. Therefore, the
cell array must be homogeneous on page 30-2.

This code is allowed because X is homogeneous.

...
X = {1  2};
for i=1:n
    X{end + 1} = 3;
end
...

This code is not allowed because X is heterogeneous.

...
X = {1 'a' 2 'b'};
for i=1:n
    X{end + 1} = 3;
end
...

Cell Array Contents
Cell arrays cannot contain mxarrays. In a cell array, you cannot store a value that an extrinsic
function returns.
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Passing Cell Arrays to External C/C++ Functions
You cannot pass a cell array to coder.ceval. If a variable is an input argument to coder.ceval,
define the variable as an array or structure instead of as a cell array.

See Also

More About
• “Code Generation for Cell Arrays” on page 30-2
• “Differences Between Generated Code and MATLAB Code” on page 19-6
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Specify Properties of Entry-Point Function Inputs
In this section...
“Why You Must Specify Input Properties” on page 31-2
“Properties to Specify” on page 31-2
“Rules for Specifying Properties of Primary Inputs” on page 31-3
“Methods for Defining Properties of Primary Inputs” on page 31-4
“Define Input Properties by Example at the Command Line” on page 31-4
“Specify Constant Inputs at the Command Line” on page 31-6
“Specify Variable-Size Inputs at the Command Line” on page 31-7

Why You Must Specify Input Properties
Fixed-Point Designer must determine the properties of all variables in the MATLAB files at compile
time. To infer variable properties in MATLAB files, Fixed-Point Designer must be able to identify the
properties of the inputs to the primary function, also known as the top-level or entry-point function.
Therefore, if your primary function has inputs, you must specify the properties of these inputs, to
Fixed-Point Designer. If your primary function has no input parameters, Fixed-Point Designer can
compile your MATLAB file without modification. You do not need to specify properties of inputs to
local functions or external functions called by the primary function.

Note Your primary function cannot be within a package. Create a wrapper function as the primary
function outside the package. Call the desired function within the new function as the primary
function.

Properties to Specify
If your primary function has inputs, you must specify the following properties for each input.

For Specify properties
 Class Size Complexity numerictype fimath
Fixed-point inputs

Each field in a
structure input

Specify properties for each field according to its class

When a primary input is a structure, the code generator treats each field as a separate input.
Therefore, you must specify properties for all fields of a primary structure input in the order
that they appear in the structure definition:

• For each field of input structures, specify class, size, and complexity.
• For each field that is fixed-point class, also specify numerictype, and fimath.

Other inputs   

Default Property Values

Fixed-Point Designer assigns the following default values for properties of primary function inputs.
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Property Default
class double
size scalar
complexity real
numerictype No default
fimath MATLAB default fimath object

Supported Classes

The following table presents the class names supported by Fixed-Point Designer.

Class Name Description
logical Logical array of true and false values
char Character array
int8 8-bit signed integer array
uint8 8-bit unsigned integer array
int16 16-bit signed integer array
uint16 16-bit unsigned integer array
int32 32-bit signed integer array
uint32 32-bit unsigned integer array
int64 64-bit signed integer array
uint64 64–bit unsigned integer array
single Single-precision floating-point or fixed-point number

array
double Double-precision floating-point or fixed-point number

array
struct Structure array
embedded.fi Fixed-point number array

Rules for Specifying Properties of Primary Inputs
When specifying the properties of primary inputs, follow these rules:

• The order of elements in the cell array must correspond to the order in which inputs appear in the
primary function signature. For example, the first element in the cell array defines the properties
of the first primary function input.

• To generate fewer arguments than those arguments that occur in the MATLAB function, specify
properties for only the number of arguments that you want in the generated function.

• If the MATLAB function has input arguments, to generate a function that has no input arguments,
pass an empty cell array to -args.

• For each primary function input whose class is fixed point (fi), specify the input numerictype
and fimath properties.

• For each primary function input whose class is struct, specify the properties of each of its fields
in the order that they appear in the structure definition.
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Methods for Defining Properties of Primary Inputs

Method Advantages Disadvantages
 • If you are working in a project, easy

to use
• Does not alter original MATLAB code
• saves the definitions in the project file

• Not efficient for specifying memory-
intensive inputs such as large
structures and arrays

“Define Input Properties
by Example at the
Command Line” on page
31-4

Note If you define input
properties
programmatically in the
MATLAB file, you cannot
use this method

• Easy to use
• Does not alter original MATLAB code
• Designed for prototyping a function

that has a few primary inputs

• Must be specified at the command
line every time you invoke fiaccel
(unless you use a script)

• Not efficient for specifying memory-
intensive inputs such as large
structures and arrays

“Define Input Properties
Programmatically in the
MATLAB File” (MATLAB
Coder)

• Integrated with MATLAB code; no
need to redefine properties each time
you invoke

• Provides documentation of property
specifications in the MATLAB code

• Efficient for specifying memory-
intensive inputs such as large
structures

• Uses complex syntax
• project files do not currently

recognize properties defined
programmatically. If you are using a
project, you must reenter the input
types in the project.

Define Input Properties by Example at the Command Line
• “Command-Line Option -args” on page 31-4
• “Rules for Using the -args Option” on page 31-4
• “Specifying Properties of Primary Inputs by Example” on page 31-5
• “Specifying Properties of Primary Fixed-Point Inputs by Example” on page 31-5

Command-Line Option -args

The fiaccel function provides a command-line option -args for specifying the properties of
primary (entry-point) function inputs as a cell array of example values or types. The cell array can be
a variable or literal array of constant values. Using this option, you specify the properties of inputs at
the same time as you generate code for the MATLAB function with fiaccel.

You can also create coder.Type objects interactively by using the Coder Type Editor. See “Create
and Edit Input Types by Using the Coder Type Editor” (MATLAB Coder).

Rules for Using the -args Option

When using the -args command-line option to define properties by example, follow these rules:
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• The order of elements in the cell array must correspond to the order in which inputs appear in the
primary function signature. For example, the first element in the cell array defines the properties
of the first primary function input.

• To generate fewer arguments than those arguments that occur in the MATLAB function, specify
properties for only the number of arguments that you want in the generated function.

• If the MATLAB function has input arguments, to generate a function that has no input arguments,
pass an empty cell array to -args.

• For each primary function input whose class is fixed point (fi), specify the input numerictype
and fimath properties.

• For each primary function input whose class is struct, specify the properties of each of its fields
in the order that they appear in the structure definition.

Specifying Properties of Primary Inputs by Example

Consider a function that adds its two inputs:

function y = emcf(u,v) %#codegen
% The directive %#codegen indicates that you
% intend to generate code for this algorithm
y = u + v;

The following examples show how to specify different properties of the primary inputs u and v by
example at the command line:

• Use a literal cell array of constants to specify that both inputs are real, scalar, fixed-point values:

fiaccel -o emcfx emcf ...
   -args {fi(0,1,16,15),fi(0,1,16,15)}

• Use a literal cell array of constants to specify that input u is an unsigned 16-bit, 1-by-4 vector and
input v is a scalar, fixed-point value:

fiaccel -o emcfx emcf ...
   -args {zeros(1,4,'uint16'),fi(0,1,16,15)}

• Assign sample values to a cell array variable to specify that both inputs are real, unsigned 8-bit
integer vectors:

a = fi([1;2;3;4],0,8,0)
b = fi([5;6;7;8],0,8,0)
ex = {a,b}
fiaccel -o emcfx emcf -args ex

Specifying Properties of Primary Fixed-Point Inputs by Example

Consider a function that calculates the square root of a fixed-point number:

function y = sqrtfi(x) %#codegen
y = sqrt(x);

To specify the properties of the primary fixed-point input x by example on the MATLAB command
line, follow these steps:

1 Define the numerictype properties for x, as in this example:

T = numerictype('WordLength',32,...
   'FractionLength',23,'Signed',true);
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2 Define the fimath properties for x, as in this example:

F = fimath('SumMode','SpecifyPrecision',...
    'SumWordLength',32,'SumFractionLength',23,...
    'ProductMode','SpecifyPrecision', ...
     ProductWordLength',32,'ProductFractionLength',23);

3 Create a fixed-point variable with the numerictype and fimath properties you defined, as in
this example:

myeg = { fi(4.0,T,F) };
4 Compile the function sqrtfi using the fiaccel command, passing the variable myeg as the

argument to the-args option, as in this example:

fiaccel sqrtfi -args myeg;

Specify Constant Inputs at the Command Line
If you know that your primary inputs do not change at run time, you can reduce overhead in the
generated code by specifying that the primary inputs are constant values. Constant inputs are
commonly used for flags that control how an algorithm executes and values that specify the sizes or
types of data.

To specify that inputs are constants, use the -args command-line option with a coder.Constant
object. To specify that an input is a constant with the size, class, complexity, and value of
constant_input, use the following syntax:

-args {coder.Constant(constant_input)}

Calling Functions with Constant Inputs

fiaccel compiles constant function inputs into the generated code. As a result, the MEX function
signature differs from the MATLAB function signature. At run time, you supply the constant argument
to the MATLAB function, but not to the MEX function.

For example, consider the following function identity which copies its input to its output:

function y = identity(u) %#codegen
y = u;

To generate a MEX function identity_mex with a constant input, type the following command at the
MATLAB prompt:

fiaccel -o identity_mex identity...
    -args {coder.Constant(fi(0.1,1,16,15))}

To run the MATLAB function, supply the constant argument as follows:

identity(fi(0.1,1,16,15))

You get the following result:

ans =

    0.1000

Now, try running the MEX function with this command:
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identity_mex

You should get the same answer.

Specifying a Structure as a Constant Input

Suppose that you define a structure tmp in the MATLAB workspace to specify the dimensions of a
matrix, as follows:

tmp = struct('rows', 2, 'cols', 3);

The following MATLAB function rowcol accepts a structure input p to define matrix y:

function y = rowcol(u,p) %#codegen
y = fi(zeros(p.rows,p.cols),1,16,15) + u;

The following example shows how to specify that primary input u is a double scalar variable and
primary input p is a constant structure:

fiaccel rowcol ...
   -args {fi(0,1,16,15),coder.Constant(tmp)}

To run this code, use

u = fi(0.5,1,16,15)
y_m = rowcol(u,tmp)

y_mex = rowcol_mex(u)

Specify Variable-Size Inputs at the Command Line
Variable-size data is data whose size might change at run time. MATLAB supports bounded and
unbounded variable-size data for code generation. Bounded variable-size data has fixed upper
bounds. This data can be allocated statically on the stack or dynamically on the heap. Unbounded
variable-size data does not have fixed upper bounds. This data must be allocated on the heap. You can
define inputs to have one or more variable-size dimensions — and specify their upper bounds — using
the -args option and coder.typeof function:

-args {coder.typeof(example_value, size_vector, variable_dims)}

Specifies a variable-size input with:

• Same class and complexity as example_value
• Same size and upper bounds as size_vector
• Variable dimensions specified by variable_dims

When you enable dynamic memory allocation, you can specify Inf in the size vector for dimensions
with unknown upper bounds at compile time.

When variable_dims is a scalar, it is applied to all the dimensions, with the following exceptions:

• If the dimension is 1 or 0, which are fixed.
• If the dimension is unbounded, which is always variable size.
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Specifying a Variable-Size Vector Input

1 Write a function that computes the sum of every n elements of a vector A and stores them in a
vector B:

function B = nway(A,n) %#codegen
% Compute sum of every N elements of A and put them in B.

coder.extrinsic('error');
Tb = numerictype(1,32,24);
if ((mod(numel(A),n) == 0) && ...
  (n>=1 && n<=numel(A)))
    B = fi(zeros(1,numel(A)/n),Tb);
    k = 1; 
    for i = 1 : numel(A)/n
        B(i) = sum(A(k + (0:n-1)));
        k = k + n;
    end
else
    B = fi(zeros(1,0),Tb);
    error('n<=0 or does not divide evenly');
end

2 Specify the first input A as a fi object. Its first dimension stays fixed in size and its second
dimension can grow to an upper bound of 100. Specify the second input n as a double scalar.

fiaccel nway ...
-args {coder.typeof(fi(0,1,16,15,'SumMode','KeepLSB'),[1 100],1),0}...
-report

3 As an alternative, assign the coder.typeof expression to a MATLAB variable, then pass the
variable as an argument to -args:

vareg = coder.typeof(fi(0,1,16,15,'SumMode','KeepLSB'),[1 100],1)
fiaccel nway -args {vareg, double(0)} -report

See Also

More About
• “Specify Objects as Inputs” on page 15-25
• “Specify Cell Array Inputs at the Command Line” on page 12-41
• “Specify Number of Entry-Point Function Input or Output Arguments to Generate” on page 17-3
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Define Input Properties Programmatically in the MATLAB File
For code generation, you can use the MATLAB assert function to define properties of primary
function inputs directly in your MATLAB file.

How to Use assert with MATLAB Coder
Use the assert function to invoke standard MATLAB functions for specifying the class, size, and
complexity of primary function inputs.

When specifying input properties using the assert function, use one of the following methods. Use
the exact syntax that is provided; do not modify it.

• “Specify Any Class” on page 31-9
• “Specify fi Class” on page 31-9
• “Specify Structure Class” on page 31-10
• “Specify Cell Array Class” on page 31-10
• “Specify Fixed Size” on page 31-10
• “Specify Scalar Size” on page 31-11
• “Specify Upper Bounds for Variable-Size Inputs” on page 31-11
• “Specify Inputs with Fixed- and Variable-Size Dimensions” on page 31-11
• “Specify Size of Individual Dimensions” on page 31-12
• “Specify Real Input” on page 31-12
• “Specify Complex Input” on page 31-12
• “Specify numerictype of Fixed-Point Input” on page 31-12
• “Specify fimath of Fixed-Point Input” on page 31-13
• “Specify Multiple Properties of Input” on page 31-13

Specify Any Class

assert ( isa ( param, 'class_name') )

Sets the input parameter param to the MATLAB class class_name. For example, to set the class of
input U to a 32-bit signed integer, call:

... 
assert(isa(U,'int32'));
...

Specify fi Class

assert ( isfi ( param ) )
assert ( isa ( param, 'embedded.fi' ) )

Sets the input parameter param to the MATLAB class fi (fixed-point numeric object). For example, to
set the class of input U to fi, call:

... 
assert(isfi(U));
...
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or

...
assert(isa(U,'embedded.fi'));
...

You must specify both the fi class and the numerictype. See “Specify numerictype of Fixed-Point
Input” on page 31-12. You can also set the fimath properties, see “Specify fimath of Fixed-Point
Input” on page 31-13. If you do not set the fimath properties, codegen uses the MATLAB default
fimath value.

Specify Structure Class
assert ( isstruct ( param ) )
assert ( isa ( param, 'struct' ) )

Sets the input parameter param to the MATLAB class struct (structure). For example, to set the
class of input U to a struct, call:

...
assert(isstruct(U));
...

or

...
assert(isa(U, 'struct'));
...

If you set the class of an input parameter to struct, you must specify the properties of all fields in
the order that they appear in the structure definition.

Specify Cell Array Class
assert(iscell( param))
assert(isa(param, 'cell'))

Sets the input parameter param to the MATLAB class cell (cell array). For example, to set the class
of input C to a cell, call:

...
assert(iscell(C));
...

or

...
assert(isa(C, 'cell'));
...

To specify the properties of cell array elements, see “Specifying Properties of Cell Arrays” on page
31-15.

Specify Fixed Size
assert ( all ( size (param) == [dims ] ) )

Sets the input parameter param to the size that dimensions dims specifies. For example, to set the
size of input U to a 3-by-2 matrix, call:
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...
assert(all(size(U)== [3 2]));
...

Specify Scalar Size

assert ( isscalar (param ) )
assert ( all ( size (param) == [ 1 ] ) )

Sets the size of input parameter param to scalar. To set the size of input U to scalar, call:

...
assert(isscalar(U));
...

or

...
assert(all(size(U)== [1]));
...

Specify Upper Bounds for Variable-Size Inputs

assert ( all(size(param)<=[N0 N1 ...]));
assert ( all(size(param)<[N0 N1 ...]));

Sets the upper-bound size of each dimension of input parameter param. To set the upper-bound size
of input U to be less than or equal to a 3-by-2 matrix, call:

assert(all(size(U)<=[3 2]));

Note You can also specify upper bounds for variable-size inputs using coder.varsize.

Specify Inputs with Fixed- and Variable-Size Dimensions

assert ( all(size(param)>=[M0 M1 ...]));
assert ( all(size(param)<=[N0 N1 ...]));

When you use assert(all(size(param)>=[M0 M1 ...])) to specify the lower-bound size of
each dimension of an input parameter:

• You must also specify an upper-bound size for each dimension of the input parameter.
• For each dimension, k, the lower-bound Mk must be less than or equal to the upper-bound Nk.
• To specify a fixed-size dimension, set the lower and upper bound of a dimension to the same value.
• Bounds must be nonnegative.

To fix the size of the first dimension of input U to 3 and set the second dimension as variable size with
upper bound of 2, call:

assert(all(size(U)>=[3 0]));
assert(all(size(U)<=[3 2]));
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Specify Size of Individual Dimensions

assert (size(param, k)==Nk);
assert (size(param, k)<=Nk);
assert (size(param, k)<Nk);

You can specify individual dimensions and all dimensions simultaneously. You can also specify
individual dimensions instead of specifying all dimensions simultaneously. The following rules apply:

• You must specify the size of each dimension at least once.
• The last dimension specification takes precedence over earlier specifications.

Sets the upper-bound size of dimension k of input parameter param. To set the upper-bound size of
the first dimension of input U to 3, call:

assert(size(U,1)<=3)

To fix the size of the second dimension of input U to 2, call:

assert(size(U,2)==2)

Specify Real Input

assert ( isreal (param ) )

Specifies that the input parameter param is real. To specify that input U is real, call:

...
assert(isreal(U));
...

Specify Complex Input

assert ( ~isreal (param ) )

Specifies that the input parameter param is complex. To specify that input U is complex, call:

...
assert(~isreal(U));
...

Specify numerictype of Fixed-Point Input

assert ( isequal ( numerictype ( fiparam ), T ) )

Sets the numerictype properties of fi input parameter fiparam to the numerictype object T. For
example, to specify the numerictype property of fixed-point input U as a signed numerictype
object T with 32-bit word length and 30-bit fraction length, use the following code:

%#codegen
...
% Define the numerictype object.
T = numerictype(1, 32, 30);

% Set the numerictype property of input U to T.
assert(isequal(numerictype(U),T));
...
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Specifying the numerictype for a variable does not automatically specify that the variable is fixed
point. You must specify both the fi class and the numerictype.

Specify fimath of Fixed-Point Input

assert ( isequal ( fimath ( fiparam ), F ) )

Sets the fimath properties of fi input parameter fiparam to the fimath object F. For example, to
specify the fimath property of fixed-point input U so that it saturates on integer overflow, use the
following code:

%#codegen
...
% Define the fimath object.
F = fimath('OverflowMode','saturate');

% Set the fimath property of input U to F.
assert(isequal(fimath(U),F));
... 

If you do not specify the fimath properties using assert, codegen uses the MATLAB default
fimath value.

Specify Multiple Properties of Input

assert ( function1 ( params ) && 
         function2 ( params ) && 
         function3 ( params ) && ... )

Specifies the class, size, and complexity of one or more inputs using a single assert function call.
For example, the following code specifies that input U is a double, complex, 3-by-3 matrix, and input V
is a 16-bit unsigned integer:

%#codegen
...
assert(isa(U,'double') && 
       ~isreal(U) && 
       all(size(U) == [3 3]) && 
       isa(V,'uint16'));
... 

Rules for Using assert Function
When using the assert function to specify the properties of primary function inputs, follow these
rules:

• Call assert functions at the beginning of the primary function, before control-flow operations
such as if statements or subroutine calls.

• Do not call assert functions inside conditional constructs, such as if, for, while, and switch
statements.

• For a fixed-point input, you must specify both the fi class and the numerictype. See “Specify
numerictype of Fixed-Point Input” on page 31-12. You can also set the fimath properties. See
“Specify fimath of Fixed-Point Input” on page 31-13. If you do not set the fimath properties,
codegen uses the MATLAB default fimath value.
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• If you set the class of an input parameter to struct, you must specify the class, size, and
complexity of all fields in the order that they appear in the structure definition.

• When you use assert(all(size(param)>=[M0 M1 ...])) to specify the lower-bound size of
each dimension of an input parameter:

• You must also specify an upper-bound size for each dimension of the input parameter.
• For each dimension, k, the lower-bound Mk must be less than or equal to the upper-bound Nk.
• To specify a fixed-size dimension, set the lower and upper bound of a dimension to the same

value.
• Bounds must be nonnegative.

• If you specify individual dimensions, the following rules apply:

• You must specify the size of each dimension at least once.
• The last dimension specification takes precedence over earlier specifications.

Specifying General Properties of Primary Inputs
In the following code excerpt, a primary MATLAB function mcspecgram takes two inputs:
pennywhistle and win. The code specifies the following properties for these inputs.

Input Property Value
pennywhistle class int16

size 220500-by-1 vector
complexity real (by default)

win class double
size 1024-by-1 vector
complexity real (by default)

%#codegen
function y = mcspecgram(pennywhistle,win)
nx = 220500;
nfft = 1024;
assert(isa(pennywhistle,'int16'));
assert(all(size(pennywhistle) == [nx 1]));
assert(isa(win, 'double'));
assert(all(size(win) == [nfft 1]));
...

Alternatively, you can combine property specifications for one or more inputs inside assert
commands:

%#codegen
function y = mcspecgram(pennywhistle,win)
nx = 220500;
nfft = 1024;
assert(isa(pennywhistle,'int16') && all(size(pennywhistle) == [nx 1]));
assert(isa(win, 'double') && all(size(win) == [nfft 1]));
...
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Specifying Properties of Primary Fixed-Point Inputs
To specify fixed-point inputs, you must install Fixed-Point Designer software.

In the following example, the primary MATLAB function mcsqrtfi takes one fixed-point input x. The
code specifies the following properties for this input.

Property Value
class fi
numerictype numerictype object T, as specified in the primary function
fimath fimath object F, as specified in the primary function
size scalar
complexity real (by default)

function y = mcsqrtfi(x) %#codegen
T = numerictype('WordLength',32,'FractionLength',23,...
                'Signed',true);
F = fimath('SumMode','SpecifyPrecision',...
           'SumWordLength',32,'SumFractionLength',23,...
           'ProductMode','SpecifyPrecision',...
           'ProductWordLength',32,'ProductFractionLength',23);
assert(isfi(x));
assert(isequal(numerictype(x),T));
assert(isequal(fimath(x),F));

y = sqrt(x);

You must specify both the fi class and the numerictype.

Specifying Properties of Cell Arrays
To specify the class cell (cell array), use one of the following syntaxes:

assert(iscell(param))
assert(isa( param, 'cell'))

For example, to set the class of input C to cell, use:

...
assert(iscell(C));
...

or

...
assert(isa(C, 'cell'));
...

You can also specify the size of the cell array and the properties of the cell array elements. The
number of elements that you specify determines whether the cell array is homogeneous or
heterogeneous. See “Code Generation for Cell Arrays” (MATLAB Coder).

If you specify the properties of the first element only, the cell array is homogeneous. For example, the
following code specifies that C is a 1x3 homogeneous cell array whose elements are 1x1 double.
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...
assert(isa(C, 'cell'));
assert(all(size(C) == [1  3]));
assert(isa(C{1}, 'double'));
...

If you specify the properties of the first element only, but also assign a structure type name to the cell
array, the cell array is heterogeneous. Each element has the properties of the first element. For
example, the following code specifies that C is a 1x3 heterogeneous cell array. Each element is a 1x1
double.

...
assert(isa(C, 'cell'));
assert(all(size(C) == [1  3]));
assert(isa(C{1}, 'double'));
coder.cstructname(C, 'myname');
...

If you specify the properties of each element, the cell array is heterogeneous. For example, the
following code specifies a 1x2 heterogeneous cell array whose first element is 1x1 char and whose
second element is 1x3 double.

...
assert(isa(C, 'cell'));
assert(all(size(C) == [1  2]));
assert(isa(C{1}, 'char'));
assert(all(size(C{2}) == [1 3]));
assert(isa(C{2}, 'double'));
...

If you specify more than one element, you cannot specify that the cell array is variable size, even if all
elements have the same properties. For example, the following code specifies a variable-size cell
array. Because the code specifies the properties of the first and second elements, code generation
fails.

...
assert(isa(C, 'cell'));
assert(all(size(C) <= [1  2]));
assert(isa(C{1}, 'double'));
assert(isa(C{2}, 'double'));
...

In the previous example, if you specify the first element only, you can specify that the cell array is
variable-size. For example:

...
assert(isa(C, 'cell'));
assert(all(size(C) <= [1  2]));
assert(isa(C{1}, 'double'));
...

Specifying Class and Size of Scalar Structure
Suppose that you define S as the following scalar MATLAB structure:

S = struct('r',double(1),'i',int8(4));
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The following code specifies the properties of the function input S and its fields:

function y = fcn(S)  %#codegen

% Specify the class of the input as struct.
assert(isstruct(S));

% Specify the class and size of the fields r and i
% in the order in which you defined them.
assert(isa(S.r,'double'));
assert(isa(S.i,'int8');
...

In most cases, when you do not explicitly specify values for properties, MATLAB Coder uses defaults
—except for structure fields. The only way to name a field in a structure is to set at least one of its
properties. At a minimum, you must specify the class of a structure field.

Specifying Class and Size of Structure Array
For structure arrays, you must choose a representative element of the array for specifying the
properties of each field. For example, assume that you have defined S as the following 1-by-2 array of
MATLAB structures:

S = struct('r',{double(1), double(2)},'i',{int8(4), int8(5)});

The following code specifies the class and size of each field of structure input S by using the first
element of the array:

%#codegen
function y = fcn(S)

% Specify the class of the input S as struct.
assert(isstruct(S));

% Specify the size of the fields r and i
% based on the first element of the array.
assert(all(size(S) == [1 2]));
assert(isa(S(1).r,'double'));
assert(isa(S(1).i,'int8'));

The only way to name a field in a structure is to set at least one of its properties. At a minimum, you
must specify the class of all fields.
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Create and Edit Input Types by Using the Coder Type Editor
Fixed-Point Designer must determine the properties of all variables in the MATLAB files at compile
time. To infer variable properties in MATLAB files, Fixed-Point Designer must be able to identify the
properties if the inputs to the top-level MATLAB functions, also known as entry-point functions.
Therefore, if your entry-point function has inputs, you must specify the properties of these inputs.

One of the ways to specify the properties of an input argument is by using a coder.Type object that
contains information about class, size, and complexity (and sometimes other properties) of the
argument. You can create and edit coder.Type objects programmatically at the command line, or
interactively by using the Coder Type Editor.

For more information about creating coder.Type objects at the command line, see coder.typeof
and coder.newtype.

Note To create and edit composite types such as structures and cell arrays, or types that have many
customizable parameters such as embedded.fi, use the Coder Type Editor. Examples of such types
are shown later in this topic.

Open the Coder Type Editor
To launch the Coder Type Editor, do one of the following:

• Launch an empty type editor by using the coderTypeEditor command:

coderTypeEditor

• Open the type editor pre-populated with coder.Type objects corresponding to the workspace
variables var1, var2, and var3 by typing:

coderTypeEditor var1 var2 var3

• Open a coder.Type object myType that already exists in your base MATLAB workspace:

• Double click myType in the workspace.
• Display myType at the command line and click the Edit Type Object link that appears at the

end of the display.
• Use this command at the MATLAB command line:

open myType

Common Editor Actions
By using the toolstrip buttons in the type editor, you can perform these actions:

• Create a new type by clicking New Type and specifying the type, size, complexity, and other
properties of the coder.Type object.

• Convert an existing variable to a type by clicking From Variable and specifying a variable that
already exists in the base workspace.

• Create a new type from an example value by clicking From Example and entering MATLAB code
that the software converts to a coder.Type object.
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• Load all coder.Type objects from the base workspace to the Type Browser pane of the type
editor by clicking Load All.

• Edit an existing type by selecting it in the Type Browser and modifying its properties.
• Save all coder.Type objects in the type editor by clicking Save All.
• Remove a selected type from Type Browser by clicking Delete. Alternatively, remove all types

from the Type Browser by clicking Delete > Delete all. Deleting a coder.Type object from the
Type Browser does not delete the object from the base MATLAB workspace.

• Export a MATLAB script that contains the code to recreate all the types by clicking Share >
MATLAB Script. Or, create a MAT file that contains all the types by clicking Share > MAT File.

•
Undo and redo your last action in the type editor by using the  buttons.

These are some additional actions that you can perform in the Coder Type Editor:

• In both the Type Browser pane and the Type Properties pane, copy a type object and paste it
either as a new type or a field of an existing structure type. You can also copy the properties of
one existing type into another existing type.

• Change the order of fields of a structure type. View the type in the properties pane and use drag-
and-drop action.

Type Browser Pane
The Type Browser pane shows the name, class, and size of the coder.Type objects that are
currently loaded in the type editor. For composite types such as structures, cell arrays, or classes, you
can expand the display of the code.Type object in the Type Browser pane. The expanded view
shows the name, class, and complexity of the individual fields or properties of the composite type.

Visual Indicators on the Type Browser

Indicator Description
expander The type has fields or properties that you can see

by clicking the expander.
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Indicator Description
{:} Homogeneous cell array (all elements have the

same properties).
{n} nth element of a heterogeneous cell array.
:n Variable-size dimension with an upper bound of n.
:inf Variable-size dimension that is unbounded.

Type Properties Pane
The type properties pane displays the class (data type), size, and other properties of the coder.Type
object that is currently selected in the Type Browser. For composite types such as structures and
classes, this pane also shows the name, class, and size of each constituent field or property.

To edit the name, class, and size of a field in place, double-click the item.
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Alternatively, click a field. The view in the type editor pane changes to display the properties of that
field. Edit name, class(data type), size, or other properties in the pane.

The breadcrumb shows the nested path to the field that is currently open in the type properties pane.
Click a field in the breadcrumb to display it in the pane. You can also edit the name of a type directly
in the breadcrumb.

MATLAB Code Pane
The MATLAB Code pane displays the MATLAB script that creates the coder.Type object that is
currently selected in the Type Browser. To automate the creation of this type, copy this script and
include it in your build script.
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See Also
coderTypeEditor | coder.typeof | coder.newtype

More About
• “Specify Properties of Entry-Point Function Inputs” on page 31-2
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System Objects Supported for Code
Generation

32



Code Generation for System Objects
You can generate C and C++ code for a subset of System objects provided by the following toolboxes.

Toolbox Name See
Communications Toolbox™ “System Objects in MATLAB Code Generation”

(MATLAB Coder)
Computer Vision Toolbox “System Objects in MATLAB Code Generation”

(MATLAB Coder)
DSP System Toolbox “System Objects in MATLAB Code Generation”

(MATLAB Coder)
Image Acquisition Toolbox • imaq.VideoDevice

• “Code Generation with VideoDevice System
Object” (Image Acquisition Toolbox)

Phased Array System Toolbox™ “Code Generation” (Phased Array System
Toolbox)

System Identification Toolbox™ “Generate Code for Online Parameter Estimation
in MATLAB” (System Identification Toolbox)

WLAN Toolbox™ “System Objects in MATLAB Code Generation”
(MATLAB Coder)

To use these System objects, you need to install the requisite toolbox. For a list of System objects
supported for C and C++ code generation, see “Functions and Objects Supported for C/C++ Code
Generation” on page 26-2.

System objects are MATLAB object-oriented implementations of algorithms. They extend MATLAB by
enabling you to model dynamic systems represented by time-varying algorithms. System objects are
well integrated into the MATLAB language, regardless of whether you are writing simple functions,
working interactively in the command window, or creating large applications.

In contrast to MATLAB functions, System objects automatically manage state information, data
indexing, and buffering, which is particularly useful for iterative computations or stream data
processing. This enables efficient processing of long data sets. For general information about
MATLAB objects, see “Classes”.
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Half Precision in MATLAB

• “Half Precision Code Generation Support” on page 33-2
• “Generate Native Half-Precision C Code Using MATLAB Coder” on page 33-13
• “What is Half Precision?” on page 33-19

33



Half Precision Code Generation Support
To assign a half-precision data type to a number or variable, use the half constructor. A half-
precision data type occupies 16 bits of memory, but its floating-point representation enables it to
handle wider dynamic ranges than integer or fixed-point data types of the same size. For more
information, see “Floating-Point Numbers” on page 35-20.

A subset of MATLAB functions are supported for use with half-precision inputs. Additionally, some
functions support code generation with half-precision data types. C and C++ code generation
requires MATLAB Coder. CUDA code generation for NVIDIA® GPUs requires GPU Coder. Supported
functions appear in alphabetical order in the following table. For general information regarding code
generation with half precision, see half.

Function MATLAB Simulation
Support

C/C++ Code
Generation Support

GPU Code Generation
Support

abs ✔ ✔ ✔

acos ✔ ✔ ✔

acosh ✔ ✔ ✔

activations ✔ ✔

Half inputs are cast to
single precision and
computations are
performed in single
precision.

✔

Half inputs are cast to
single precision and
computations are
performed in single
precision. To perform
computations in half, set
the library target to
'tensorrt' and set
the data type to 'FP16'
in
coder.DeepLearning
Config.

all ✔ ✔ ✔

and, & ✔ ✔ ✔

any ✔ ✔ ✔

area ✔   
asin ✔ ✔ ✔

asinh ✔ ✔ ✔

atan ✔ ✔ ✔

atan2 ✔ ✔ ✔

atanh ✔ ✔ ✔

bar ✔   
barh ✔   
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Function MATLAB Simulation
Support

C/C++ Code
Generation Support

GPU Code Generation
Support

cast ✔

Supported syntax:

cast(＿,'half')

cast(＿,'like',p)

✔

Supported syntax:

cast(＿,'half')

cast(＿,'like',p)

✔

Supported syntax:

cast(＿,'half')

cast(＿,'like',p)
cat ✔ ✔

• Dimension argument
must be a constant.

• Dimension argument
cannot be half
precision.

✔

• Dimension argument
must be a constant.

• Dimension argument
cannot be half
precision.

ceil ✔ ✔ ✔

cell ✔ ✔ ✔

circshift ✔ ✔ ✔

classify ✔ ✔

Half inputs are cast to
single precision and
computations are
performed in single
precision.

✔

Half inputs are cast to
single precision and
computations are
performed in single
precision. To perform
computations in half, set
the library target to
'tensorrt' and set
the data type to 'FP16'
in
coder.DeepLearning
Config.

coder.ceval  ✔ ✔

colon, : ✔ ✔ ✔

complex ✔ ✔  
conj ✔ ✔ ✔

conv ✔ ✔ ✔

conv2 ✔ ✔ ✔

cos ✔ ✔ ✔

cosh ✔ ✔ ✔

cospi ✔ ✔ ✔

ctranspose ✔ ✔ ✔

cumsum ✔   
dot ✔   
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Function MATLAB Simulation
Support

C/C++ Code
Generation Support

GPU Code Generation
Support

double ✔ ✔ ✔

empty ✔   
eps ✔

Supported syntax:

eps('half')

eps(half(1))

eps('like',half(1)
)

✔

eps(half(1))

✔

eps(half(1))

eq, == ✔ ✔ ✔

exp ✔ ✔ ✔

expm1 ✔ ✔ ✔

eye ✔

Supported syntax:

eye(＿,'half')

eye(＿,'like',p)

✔

Supported syntax:

eye(＿,'half')

eye(＿,'like',p)
where p is half
precision. Other input
arguments cannot be
half precision.

✔

Supported syntax:

eye(＿,'half')

eye(＿,'like',p)
where p is half
precision. Other input
arguments cannot be
half precision.

fft ✔ ✔  
fft2 ✔ ✔  
fftn ✔ ✔  
fftshift ✔ ✔ ✔

fix ✔ ✔ ✔

flintmax ✔

Supported syntax:

flintmax('half')

flintmax('like',ha
lf(1))

  

flip ✔ ✔

Dimension argument
cannot be half
precision.

✔

Dimension argument
cannot be half
precision.

fliplr ✔ ✔ ✔

33 Half Precision in MATLAB

33-4



Function MATLAB Simulation
Support

C/C++ Code
Generation Support

GPU Code Generation
Support

flipud ✔ ✔ ✔

floor ✔ ✔ ✔

fma ✔

Complex half-precision
inputs are not
supported.

✔

Complex half-precision
inputs are not
supported.

✔

Complex half-precision
inputs are not
supported.

fplot ✔   
ge, >= ✔ ✔ ✔

gt, > ✔ ✔ ✔

half ✔ ✔ ✔

horzcat ✔ ✔ ✔

hypot ✔ ✔ ✔

ifft ✔ ✔  
ifft2 ✔ ✔  
ifftn ✔ ✔  
ifftshift ✔ ✔ ✔

imag ✔ ✔  
Inf ✔

Supported syntax:

Inf(＿,'half')

Inf(＿,'like',p)

✔

Supported syntax:

Inf(＿,'half')

Inf(＿,'like',p)

✔

Supported syntax:

Inf(＿,'half')

Inf(＿,'like',p)
int16 ✔ ✔ ✔

int32 ✔ ✔ ✔

int64 ✔ ✔ ✔

int8 ✔ ✔ ✔

isa ✔ ✔ ✔

iscolumn ✔ ✔ ✔

isempty ✔ ✔ ✔

isequal ✔ ✔ ✔

isequaln ✔ ✔ ✔

isfinite ✔ ✔ ✔

isfloat ✔ ✔ ✔

isinf ✔ ✔ ✔

isinteger ✔ ✔ ✔

islogical ✔ ✔ ✔

 Half Precision Code Generation Support

33-5



Function MATLAB Simulation
Support

C/C++ Code
Generation Support

GPU Code Generation
Support

ismatrix ✔ ✔ ✔

isnan ✔ ✔ ✔

isnumeric ✔ ✔ ✔

isobject ✔

Returns true with half-
precision input.

✔

Returns false with half-
precision input.

✔

Returns false with half-
precision input.

isreal ✔ ✔ ✔

isrow ✔ ✔ ✔

isscalar ✔ ✔ ✔

issorted ✔   
isvector ✔ ✔ ✔

ldivide ✔ ✔ ✔

le, <= ✔ ✔ ✔

length ✔ ✔ ✔

line ✔   
log ✔ ✔ ✔

log10 ✔ ✔ ✔

log1p ✔ ✔ ✔

log2 ✔ ✔

Two output syntax is not
supported.

✔

Two output syntax is not
supported.

logical ✔ ✔ ✔

Logical Operators:
Short-Circuit &&
||

✔ ✔ ✔

lt, < ✔ ✔ ✔

max ✔ ✔ ✔

mean ✔ ✔ ✔

min ✔ ✔ ✔

minus, - ✔ ✔ ✔

mldivide, \ ✔

Left-hand side must be
scalar

  

mod ✔ ✔ ✔
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Function MATLAB Simulation
Support

C/C++ Code
Generation Support

GPU Code Generation
Support

mrdivide, / ✔

Right-hand side must be
scalar

✔

Right-hand side must be
scalar

✔

Right-hand side must be
scalar

mtimes, * ✔ ✔ ✔

For GPU Code
generation, you can
perform half-precision
matrix multiplication
with real inputs.

NaN ✔

Supported syntax:

NaN(＿,'half')

NaN(＿,'like',p)

✔

Supported syntax:

NaN(＿,'half')

NaN(＿,'like',p)

✔

Supported syntax:

NaN(＿,'half')

NaN(＿,'like',p)
ndims ✔ ✔ ✔

ne, ~= ✔ ✔ ✔

not ✔ ✔ ✔

numel ✔ ✔ ✔

ones ✔

Supported syntax:

ones(＿,'half')

ones(＿,'like',p)

✔

Supported syntax:

ones(＿,'half')

ones(＿,'like',p)

✔

Supported syntax:

ones(＿,'half')

ones(＿,'like',p)
or, || ✔ ✔ ✔

permute ✔ ✔ ✔

plot ✔   
plot3 ✔   
plotmatrix ✔   
plus, + ✔ ✔ ✔

pow10 ✔ ✔ ✔

pow2 ✔ ✔ ✔

power, .^ ✔ ✔ ✔
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Function MATLAB Simulation
Support

C/C++ Code
Generation Support

GPU Code Generation
Support

predict ✔ ✔

Half inputs are cast to
single precision and
computations are
performed in single
precision.

✔

Half inputs are cast to
single precision and
computations are
performed in single
precision. To perform
computations in half, set
the library target to
'tensorrt' and set
the data type to 'FP16'
in
coder.DeepLearning
Config.

predictAndUpdateSt
ate

✔ ✔

Half inputs are cast to
single precision and
computations are
performed in single
precision.

✔

Half inputs are cast to
single precision and
computations are
performed in single
precision. To perform
computations in half, set
the library target to
'tensorrt' and set
the data type to 'FP16'
in
coder.DeepLearning
Config.
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Function MATLAB Simulation
Support

C/C++ Code
Generation Support

GPU Code Generation
Support

prod ✔

Half inputs are cast to
single precision and
computations are
performed in single
precision. As a result,
saturation behavior
differs between single
and half inputs:

maxhalf = half.realmax;
isequal(prod([maxhalf 2 0.5]), maxhalf)

ans =

  logical

   1

maxsingle = realmax('single');
isequal(prod([maxsingle 2 0.5]), maxsingle)

ans =

  logical

   0

✔ ✔

rdivide ✔ ✔ ✔

real ✔ ✔ ✔

realmax ✔

Supported syntax:

realmax('half')

realmax('like',hal
f(1))

  

realmin ✔

Supported syntax:

realmin('half')

realmin('like',hal
f(1))

  

rem ✔ ✔ ✔

repelem ✔ ✔ ✔
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Function MATLAB Simulation
Support

C/C++ Code
Generation Support

GPU Code Generation
Support

repmat ✔ ✔

Dimension argument
cannot be half
precision.

✔

Dimension argument
cannot be half
precision.

reshape ✔ ✔

Dimension argument
cannot be half
precision.

✔

Dimension argument
cannot be half
precision.

rgbplot ✔   
round ✔

Only one input
supported

✔

Only one input
supported

✔

Only one input
supported

rsqrt ✔

Complex half-precision
inputs are not
supported

  

scatter ✔   
scatter3 ✔   
sign ✔ ✔ ✔

sin ✔ ✔ ✔

single ✔ ✔ ✔

sinh ✔ ✔ ✔

sinpi ✔ ✔ ✔

size ✔ ✔ ✔

sort ✔   
sqrt ✔ ✔ ✔

squeeze ✔ ✔ ✔

storedInteger ✔   
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Function MATLAB Simulation
Support

C/C++ Code
Generation Support

GPU Code Generation
Support

sum ✔

Half inputs are cast to
single precision and
computations are
performed in single
precision. As a result,
saturation behavior
differs between single
and half inputs:

maxhalfint = half.flintmax;
isequal(sum([maxhalfint, 1, -1]), maxhalfint)

ans =

  logical

   1

maxsingleint = flintmax('single');
isequal(sum([maxsingleint, 1, -1]), maxsingleint)

ans =

  logical

   0

✔ ✔

tan ✔ ✔ ✔

tanh ✔ ✔ ✔

times, .* ✔ ✔ ✔

transpose ✔ ✔ ✔

typecast ✔   
uint16 ✔ ✔ ✔

uint32 ✔ ✔ ✔

uint64 ✔ ✔ ✔

uint8 ✔ ✔ ✔

uminus ✔ ✔ ✔

uplus ✔ ✔ ✔

vertcat ✔ ✔ ✔

xlim ✔   
ylim ✔   
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Function MATLAB Simulation
Support

C/C++ Code
Generation Support

GPU Code Generation
Support

zeros ✔

Supported syntax:

zeros(＿,'half')

zeros(＿,'like',p)

✔

Supported syntax:

zeros(＿,'half')

zeros(＿,'like',p)

✔

Supported syntax:

zeros(＿,'half')

zeros(＿,'like',p)
zlim ✔   

See Also
half

More About
• “Floating-Point Numbers” on page 35-20
• “What is Half Precision?” on page 33-19
• “Generate Code for Sobel Edge Detection That Uses Half-Precision Data Type” (MATLAB Coder)
• Edge Detection with Sobel Method in Half-Precision (GPU Coder)
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Generate Native Half-Precision C Code Using MATLAB Coder
Some embedded hardware targets natively support special types for half precision, such as
_Float16 and _fp16 data types for ARM® compilers. You can use MATLAB Coder to generate native
half-precision C code for ARM Cortex®-A processors that natively support half precision floating-point
data types.

The process to generate native half C code is as follows:

• Register a new hardware target device that natively supports half precision using the target
package.

• Configure code generation configuration for half precision.
• Generate native half type code.

Fixed-Point Designer and MATLAB Coder include preconfigured language implementations for
Armclang and GCC compilers. For other hardware targets, you can specify a custom language
implementation based on your hardware specifications.

Generate Native Half-Precision C Code for ARM® Cortex®-A with GCC
Compiler
In this example, an ARM Cortex®-A processor is used as the hardware target. The model is
configured to use this ARM target and the GNU GCC compiler toolchain.

Register Target Hardware

Use the target.create function to create an ARM processor target that is compatible with half
precision.

arm_half = target.create('Processor','Manufacturer',"Broadcom",'Name','BCM2711 ARM Cortex A72');

Add the language implementation. Use the target.get function to retrieve the target object from the
internal database.

li = target.get('LanguageImplementation',"GNU GCC ARM 32-bit");

Replace the default language implementation for ARM Cortex with Armclang.

arm_half.LanguageImplementations = li;

Use the target.add function to add the target object to the internal database.

target.add(arm_half);

target.add summary:

    Objects added to internal database for current MATLAB session:
        target.Processor                 "Broadcom-BCM2711 ARM Cortex A72"

    1 object not added because they already exist.

Open MATLAB Code that Uses Half-Precision Data Type

edit testNativeHalffp16.m
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Configure Code Generation Configuration for Half Precision

Create the code generation configuration object.

cfg = coder.config('lib');

Specify the production hardware device type.

cfg.HardwareImplementation.ProdHWDeviceType = 'Broadcom->BCM2711 ARM Cortex A72';

Select the toolchain compatible with the selected hardware.

cfg.Toolchain = 'GNU Tools for ARM Embedded Processors'; 

Add the half-precision flags for compilation.

cfg.BuildConfiguration = 'Specify';
cfg.CustomToolchainOptions{4} = '-c -MMD -MP -MF"$(@:%.o=%.dep)" -MT"$@" -O0 -mfp16-format=ieee -mfpu=neon-fp16';

Generate Code

codegen testNativeHalffp16 -args {half(3)} -launchreport -config cfg

You can inspect the code generation report to confirm that the custom half-precision type definitions
are used.
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The half-precision constants use the f16 suffix.
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Generate Native Half-Precision C Code for ARM Cortex-A with
Armclang Compiler
In this example, an ARM Cortex-A processor is used as the hardware target. The model is configured
to use this ARM target and the Armclang compiler toolchain.

Register Target Hardware

Use the target.create function to create an ARM processor target that is compatible with half
precision.

arm_half = target.create('Processor','Manufacturer',"Broadcom",'Name','ARM Cortex A75');

Add the language implementation. Use the target.get function to retrieve the target object from
the internal database.

li = target.get('LanguageImplementation',"Clang ARM 32-bit");

Replace the default language implementation for ARM Cortex with Armclang.
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arm_half.LanguageImplementations = li;

Use the target.add function to add the target object to the internal database.

target.add(arm_half);

Configure Code Generation Configuration for Half Precision

Create the code generation configuration object.

cfg = coder.config('lib');

Specify the production hardware type.

cfg.HardwareImplementation.ProdHWDeviceType = 'Broadcom->ARM Cortex A75';

Select the toolchain compatible with the selected hardware.

cfg.Toolchain = 'Armclang Compiler';

Add the half-precision flags for compilation.

cfg.BuildConfiguration = 'Specify';
cfg.CustomToolchainOptions{4} = '-c -MMD -MP -MF"$(@:%.o=%.dep)" -MT"$@" -O0 --target=arm-arm-none-eabi -march=armv8.2-a+fp16';

Generate Code

codegen testNativeHalffp16 -args {half(3)} -launchreport -config cfg

Register ARM Target Hardware with Custom Language Implementation
In this example, create a new custom language implementation with half precision for a compatible
ARM target.

Register Target Hardware

Use the target.create function to copy the ARM Compatible-ARM Cortex language
implementation.

languageImplementation = target.create('LanguageImplementation','Name','ARM with half',...
    'Copy','ARM Compatible-ARM Cortex');

Specify custom half information and target specific headers, as given by your target hardware
documentation. For more information, see “Register New Hardware Devices”. For example,

customHalf = target.create('FloatingPointDataType','Name','BCM2711 Half Type', ...
    'TypeName','_Float16','LiteralSuffix','f16','Size',16, ...
    'SystemIncludes',["arm_fp16.h" "arm_neon.h"]);
languageImplementation.DataTypes.NonStandardDataTypes = customHalf;

Provide information about your target processor. For example,

% Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC
pi4a72 = target.create('Processor','Manufacturer','Broadcom','Name','BCM2711');

Add the custom half-precision language implementation.

pi4a72.LanguageImplementations = languageImplementation;
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Use the target.add function to add the target object to the internal database.

target.add(pi4a72);

See Also
half | target.FloatingPointDataType | target.add | target.create | target.get |
target.remove

Related Examples
• “Half Precision Code Generation Support” on page 33-2
• “Register New Hardware Devices”
•

External Websites
• Clang Language Extensions for Half-Precision Floating Point
• Arm Compiler armclang Reference Guide: Half-precision floating-point data types
• GCC Half-Precision Floating Point
• Reduce the Program Data Size with Ease! Introducing Half-Precision Floating-Point Feature in

Renesas Compiler Professional Edition
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What is Half Precision?
The IEEE® 754 half-precision floating-point format is a 16-bit word divided into a 1-bit sign indicator
s, a 5-bit biased exponent e, and a 10-bit fraction f.

Because numbers of type half are stored using 16 bits, they require less memory than numbers of
type single, which uses 32 bits, or double, which uses 64 bits. However, because they are stored
with fewer bits, numbers of type half are represented to less precision than numbers of type
single or double.

The range, bias, and precision for supported floating-point data types are given in the table below.

Data Type Low Limit High Limit Exponent Bias Precision
Half 2−14 ≈ 6.1·10−5 (2−2-10) ·215≈ 6.5·104 15 2−10 ≈ 10−3

Single 2−126 ≈ 10−38 2128 ≈ 3 · 1038 127 2−23 ≈ 10−7

Double 2−1022 ≈ 2 · 10−308 21024 ≈ 2 · 10308 1023 2−52 ≈ 10−16

For a video introduction to the half-precision data type, see What Is Half Precision? and Half-
Precision Math in Modeling and Code Generation.

Half Precision Applications
When an algorithm contains large or unknown dynamic ranges (for example integrators in feedback
loops) or when the algorithm uses operations that are difficult to design in fixed-point (for example
atan2), it can be advantageous to use floating-point representations. The half-precision data type
occupies only 16 bits of memory, but its floating-point representation enables it to handle wider
dynamic ranges than integer or fixed-point data types of the same size. This makes half precision
particularly suitable for some image processing and graphics applications. When half-precision is
used with deep neural networks, the time needed for training and inference can be reduced. By using
half precision as a storage time for lookup tables, the memory footprint of the lookup table can be
reduced.

MATLAB Examples

• “Fog Rectification” (GPU Coder) — The fog rectification image processing algorithm uses
convolution, image color space conversion, and histogram-based contrast stretching to enhance
the input image. This example shows how to generate and execute CUDA MEX with half-precision
data types for these image processing operations.
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• “Edge Detection with Sobel Method in Half-Precision” (GPU Coder) — The sobel edge detection
algorithm takes an input image and returns an output image that emphasizes high spatial
frequency regions that correspond to edges in the input image. This example shows how to
generate and execute CUDA MEX with the half-precision data type used for the input image and
Sobel operator kernel values.

• “Generate Code for Sobel Edge Detection That Uses Half-Precision Data Type” (MATLAB Coder)
— This example shows how to generate a standalone C++ library from a MATLAB function that
performs Sobel edge detection of images by using half-precision floating point numbers.

Simulink Examples

• “Half-Precision Field-Oriented Control Algorithm” on page 51-11 — This example implements a
Field-Oriented Control (FOC) algorithm using both single precision and half precision.

• “Image Quantization with Half-Precision Data Types” on page 51-14 — This example shows the
effects of quantization on images. While the fixed-point data type does not always produce an
acceptable results, the half-precision data type, which uses the same number of bits as the fixed-
point data type, produces a result comparable to the single-precision result.
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• “Digit Classification with Half-Precision Data Types” on page 51-20 — This example compares
the results of a trained neural network classification model in double precision and half precision.

• “Convert Single Precision Lookup Table to Half Precision” on page 51-15 — This example
demonstrates how to convert a single-precision lookup table to use half precision. Half precision is
the storage type; the lookup table computations are performed using single precision. After
converting to half precision, the memory size of the Lookup Table blocks are reduced by half while
maintaining the desired system performance.

Benefits of Using Half Precision in Embedded Applications
The half precision data type uses less memory than other floating-point types like single and double.
Though it occupies only 16 bits of memory, its floating-point representations enables it to handle
wider dynamic ranges than integer or fixed-point data types of the same size.

FPGA

The half precision data type uses significantly less area and has low latency compared to the single
precision data type when used on hardware. Half precision is particularly advantageous for low
dynamic range applications.

The following plot shows the advantage of using half precision for an implementation of a field-
oriented control algorithm in Xilinx® Virtex® 7 hardware.
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GPU

In GPUs that support the half-precision data type, arithmetic operations are faster as compared to
single or double precision.

In applications like deep learning, which require a large number of computations, using half precision
can provide significant performance benefits without significant loss of precision. With GPU Coder,
you can generate optimized code for prediction of a variety of trained deep learning networks from
the Deep Learning Toolbox™. You can configure the code generator to take advantage of the NVIDIA
TensorRT high performance inference library for NVIDIA GPUs. TensorRT provides improved latency,
throughput, and memory efficiency by combining network layers and optimizing kernel selection. You
can also configure the code generator to take advantage TensorRT's precision modes (FP32, FP16, or
INT8) to further improve performance and reduce memory requirements.

CPU

In CPUs that support the half-precision data type, arithmetic operations are faster as compared to
single or double precision. For ARM targets that natively support half-precision data types, you can
generate native half C code from MATLAB or Simulink. See “Code Generation with Half Precision” on
page 33-23.

Half Precision in MATLAB
Many functions in MATLAB support the half-precision data type. For a full list of supported functions,
see half.
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Half Precision in Simulink
Signals and block outputs in Simulink can specify a half-precision data type. The half-precision data
type is supported for simulation and code generation for parameters and a subset of blocks. To view
the blocks that support half precision, at the command line, type:

showblockdatatypetable

Blocks that support half precision display an X in the column labeled Half. For detailed information
about half precision support in Simulink, see “The Half-Precision Data Type in Simulink” on page 51-
2.

Code Generation with Half Precision
The half precision data type is supported for C/C++ code generation, CUDA code generation using
GPU Coder, and HDL code generation using HDL Coder. For GPU targets, the half-precision data type
uses the native half data type available in NVIDIA GPU for maximum performance.

For detailed code generation support for half precision in MATLAB and Simulink, see “Half Precision
Code Generation Support” on page 33-2 and “The Half-Precision Data Type in Simulink” on page 51-
2.

For embedded hardware targets that natively support special types for half precision, such as
_Float16 and _fp16 data types for ARM compilers, you can generate native half precision C code
using Embedded Coder or MATLAB Coder. For more information, see “Generate Native Half-Precision
C Code from Simulink Models” on page 51-5 and “Generate Native Half-Precision C Code Using
MATLAB Coder” on page 33-13.

See Also
half | “The Half-Precision Data Type in Simulink” on page 51-2 | "Half Precision" 16-bit Floating
Point Arithmetic | “Floating-Point Numbers” on page 35-20

Related Examples
• “Fog Rectification” (GPU Coder)
• “Edge Detection with Sobel Method in Half-Precision” (GPU Coder)
• “Generate Code for Sobel Edge Detection That Uses Half-Precision Data Type” (MATLAB Coder)
• “Half-Precision Field-Oriented Control Algorithm” on page 51-11
• “Image Quantization with Half-Precision Data Types” on page 51-14
• “Digit Classification with Half-Precision Data Types” on page 51-20
• “Convert Single Precision Lookup Table to Half Precision” on page 51-15
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Getting Started

• “Sharing Fixed-Point Models” on page 34-2
• “Physical Quantities and Measurement Scales” on page 34-3
• “Why Use Fixed-Point Hardware?” on page 34-9
• “Why Use the Fixed-Point Designer Software?” on page 34-10
• “Developing and Testing Fixed-Point Systems” on page 34-11
• “Supported Data Types” on page 34-13
• “Configure Blocks with Fixed-Point Output” on page 34-14
• “Configure Blocks with Fixed-Point Parameters” on page 34-20
• “Pass Fixed-Point Data Between Simulink Models and MATLAB” on page 34-22
• “Cast from Doubles to Fixed Point” on page 34-25
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Sharing Fixed-Point Models
You can edit a model containing fixed-point blocks without the Fixed-Point Designer software.
However, you must have a Fixed-Point Designer software license to:

• Update a Simulink diagram (Ctrl+D) containing fixed-point data types
• Simulate a model containing fixed-point data types
• Generate code from a model containing fixed-point data types
• Log the minimum and maximum values produced by a simulation
• Automatically scale the output of a model

If the Fixed-Point Designer product is not installed on your system, you can work with a model
containing Simulink blocks with fixed-point settings as follows:

1 Instrumentation requires a Fixed-Point Designer license. To disable fixed-point instrumentation
on a model, set the MinMaxOverflowLogging parameter to ForceOff. At the command line,
enter:

set_param(gcs,'MinMaxOverflowLogging','ForceOff')
2 If you do not have Fixed-Point Designer software, you can still configure data type override

settings to simulate a model that specifies fixed-point data types. Using this setting, the software
temporarily overrides data types with floating-point data types during simulation. To simulate a
model without using Fixed-Point Designer, at the command line enter:

set_param(gcs, 'DataTypeOverride', 'Double', ...
'DataTypeOverrideAppliesTo', 'AllNumericTypes')

3 If you use fi objects or embedded numeric data types in your model or workspace, you might
introduce fixed-point data types into your model. To prevent the checkout of a Fixed-Point
Designer license, set the fipref DataTypeOverride property to TrueDoubles and the
DataTypeOverrideAppliesTo property to AllNumericTypes.

At the MATLAB command line, enter:

 p = fipref('DataTypeOverride', 'TrueDoubles', ...
        'DataTypeOverrideAppliesTo', 'AllNumericTypes');

See Also
fipref | “Fixed-Point Instrumentation and Data Type Override” on page 42-61
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Physical Quantities and Measurement Scales
In this section...
“Introduction” on page 34-3
“Selecting a Measurement Scale” on page 34-3
“Select a Measurement Scale for Temperature” on page 34-5

Introduction
The decision to use fixed-point hardware is simply a choice to represent numbers in a particular form.
This representation often offers advantages in terms of the power consumption, size, memory usage,
speed, and cost of the final product.

A measurement of a physical quantity can take many numerical forms. For example, the boiling point
of water is 100 degrees Celsius, 212 degrees Fahrenheit, 373 kelvin, or 671.4 degrees Rankine. No
matter what number is given, the physical quantity is exactly the same. The numbers are different
because four different scales are used.

Well known standard scales like Celsius are convenient for the exchange of information. However,
there are situations where it makes sense to create and use unique nonstandard scales. These
situations usually involve making the most of a limited resource.

For example, nonstandard scales allow map makers to get the maximum detail on a fixed size sheet of
paper. A typical road atlas of the USA will show each state on a two-page display. The scale of inches
to miles will be unique for most states. By using a large ratio of miles to inches, all of Texas can fit on
two pages. Using the same scale for Rhode Island would make poor use of the page. Using a much
smaller ratio of miles to inches would allow Rhode Island to be shown with the maximum possible
detail.

Fitting measurements of a variable inside an embedded processor is similar to fitting a state map on a
piece of paper. The map scale should allow all the boundaries of the state to fit on the page. Similarly,
the binary scale for a measurement should allow the maximum and minimum possible values to fit.
The map scale should also make the most of the paper in order to get maximum detail. Similarly, the
binary scale for a measurement should make the most of the processor in order to get maximum
precision.

Use of standard scales for measurements has definite compatibility advantages. However, there are
times when it is worthwhile to break convention and use a unique nonstandard scale. There are also
occasions when a mix of uniqueness and compatibility makes sense. See the sections that follow for
more information.

Selecting a Measurement Scale
Suppose that you want to make measurements of the temperature of liquid water, and that you want
to represent these measurements using 8-bit unsigned integers. Fortunately, the temperature range
of liquid water is limited. No matter what scale you use, liquid water can only go from the freezing
point to the boiling point. Therefore, this is the range of temperatures that you must capture using
just the 256 possible 8-bit values: 0,1,2,...,255.

One approach to representing the temperatures is to use a standard scale. For example, the units for
the integers could be Celsius. Hence, the integers 0 and 100 represent water at the freezing point

 Physical Quantities and Measurement Scales

34-3



and at the boiling point, respectively. On the upside, this scale gives a trivial conversion from the
integers to degrees Celsius. On the downside, the numbers 101-255 are unused. By using this
standard scale, more than 60% of the number range has been wasted.

A second approach is to use a nonstandard scale. In this scale, the integers 0 and 255 represent
water at the freezing point and at the boiling point, respectively. On the upside, this scale gives
maximum precision since there are 254 values between freezing and boiling instead of just 99. On the
downside, the units are roughly 0.3921568 degrees Celsius per bit so the conversion to Celsius
requires division by 2.55, which is a relatively expensive operation on most fixed-point processors.

A third approach is to use a “semistandard” scale. For example, the integers 0 and 200 could
represent water at the freezing point and at the boiling point, respectively. The units for this scale are
0.5 degrees Celsius per bit. On the downside, this scale does not use the numbers from 201-255,
which represents a waste of more than 21%. On the upside, this scale permits relatively easy
conversion to a standard scale. The conversion to Celsius involves division by 2, which is an easy shift
operation on most processors.

Measurement Scales: Beyond Multiplication

One of the key operations in converting from one scale to another is multiplication. The preceding
case study gave three examples of conversions from a quantized integer value Q to a real-world
Celsius value V that involved only multiplication:

V =

100oC
100  Q1 Conversion 1

100oC
255  Q2 Conversion 2

100oC
200  Q3 Conversion 3

Graphically, the conversion is a line with slope S, which must pass through the origin. A line through
the origin is called a purely linear conversion. Restricting yourself to a purely linear conversion can
be wasteful and it is often better to use the general equation of a line:

V = SQ + B.

By adding a bias term B, you can obtain greater precision when quantizing to a limited number of
bits.

The general equation of a line gives a useful conversion to a quantized scale. However, like all
quantization methods, the precision is limited and errors can be introduced by the conversion. The
general equation of a line with quantization error is given by

V = SQ + B ± Error .

If the quantized value Q is rounded to the nearest representable number, then

−S
2 ≤ Error ≤ S

2 .

That is, the amount of quantization error is determined by both the number of bits and by the scale.
This scenario represents the best-case error. For other rounding schemes, the error can be twice as
large.
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Select a Measurement Scale for Temperature
On typical electronically controlled internal combustion engines, the flow of fuel is regulated to
obtain the desired ratio of air to fuel in the cylinders just prior to combustion. Therefore, knowledge
of the current air flow rate is required. Some manufacturers use sensors that directly measure air
flow, while other manufacturers calculate air flow from measurements of related signals. The
relationship of these variables is derived from the ideal gas equation. The ideal gas equation involves
division by air temperature. For proper results, an absolute temperature scale such as kelvin or
Rankine must be used in the equation. However, quantization directly to an absolute temperature
scale would cause needlessly large quantization errors.

The temperature of the air flowing into the engine has a limited range. On a typical engine, the
radiator is designed to keep the block below the boiling point of the cooling fluid. Assume a maximum
of 225oF (380 K). As the air flows through the intake manifold, it can be heated to this maximum
temperature. For a cold start in an extreme climate, the temperature can be as low as -60oF (222 K).
Therefore, using the absolute kelvin scale, the range of interest is 222-380 K.

The air temperature needs to be quantized for processing by the embedded control system. Assuming
an unrealistic quantization to 3-bit unsigned numbers: 0,1,2,...,7, the purely linear conversion with
maximum precision is

V = 380 K
7.5 bitQ .

The quantized conversion and range of interest are shown in the following figure.
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Notice that there are 7.5 possible quantization values. This is because only half of the first bit
corresponds to temperatures (real-world values) greater than zero.

The quantization error is –25.33 K/bit ≤ Error ≤ 25.33 K/bit.

The range of interest of the quantized conversion and the absolute value of the quantized error are
shown in the following figure.

As an alternative to the purely linear conversion, consider the general linear conversion with
maximum precision:

V = 380 K − 222 K
8 Q + 222 K + 0.5 380 K − 222 K

8

The quantized conversion and range of interest are shown in the following figure.
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The quantization error is -9.875 K/bit ≤ Error ≤ 9.875 K/bit, which is approximately 2.5 times smaller
than the error associated with the purely linear conversion.

The range of interest of the quantized conversion and the absolute value of the quantized error are
shown in the following figure.
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Clearly, the general linear scale gives much better precision than the purely linear scale over the
range of interest.
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Why Use Fixed-Point Hardware?
Digital hardware is becoming the primary means by which control systems and signal processing
filters are implemented. Digital hardware can be classified as either off-the-shelf hardware (for
example, microcontrollers, microprocessors, general-purpose processors, and digital signal
processors) or custom hardware. Within these two types of hardware, there are many architecture
designs. These designs range from systems with a single instruction, single data stream processing
unit to systems with multiple instruction, multiple data stream processing units.

Within digital hardware, numbers are represented as either fixed-point or floating-point data types.
For both of these data types, word sizes are fixed at a set number of bits. However, the dynamic range
of fixed-point values is much less than floating-point values with equivalent word sizes. Therefore, in
order to avoid overflow or unreasonable quantization errors, fixed-point values must be scaled. Since
floating-point processors can greatly simplify the real-time implementation of a control law or digital
filter, and floating-point numbers can effectively approximate real-world numbers, then why use a
microcontroller or processor with fixed-point hardware support?

• Size and Power Consumption — The logic circuits of fixed-point hardware are much less
complicated than those of floating-point hardware. This means that the fixed-point chip size is
smaller with less power consumption when compared with floating-point hardware. For example,
consider a portable telephone where one of the product design goals is to make it as portable
(small and light) as possible. If one of today's high-end, floating-point, general-purpose processors
is used, a large heat sink and battery would also be needed, resulting in a costly, large, and heavy
portable phone.

• Memory Usage and Speed — In general fixed-point calculations require less memory and less
processor time to perform.

• Cost — Fixed-point hardware is more cost effective where price/cost is an important
consideration. When digital hardware is used in a product, especially mass-produced products,
fixed-point hardware costs much less than floating-point hardware and can result in significant
savings.

After making the decision to use fixed-point hardware, the next step is to choose a method for
implementing the dynamic system (for example, control system or digital filter). Floating-point
software emulation libraries are generally ruled out because of timing or memory size constraints.
Therefore, you are left with fixed-point math where binary integer values are scaled.
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Why Use the Fixed-Point Designer Software?
The Fixed-Point Designer software allows you to efficiently design control systems and digital filters
that you will implement using fixed-point arithmetic. With the Fixed-Point Designer software, you can
construct Simulink and Stateflow models that contain detailed fixed-point information about your
systems. You can then perform bit-true simulations with the models to observe the effects of limited
range and precision on your designs.

You can configure the Fixed-Point Tool to automatically log the overflows, saturations, and signal
extremes of your simulations. You can also use it to automate data typing and scaling decisions and to
compare your fixed-point implementations against idealized, floating-point benchmarks.

You can use the Fixed-Point Designer software with the Simulink Coder product to automatically
generate efficient, integer-only C code representations of your designs. You can use this C code in a
production target or for rapid prototyping. In addition, you can use the Fixed-Point Designer software
with the Embedded Coder product to generate real-time C code for use on an integer production,
embedded target. You can also use Fixed-Point Designer with HDL Coder to generate portable,
synthesizable VHDL and Verilog code from Simulink models and Stateflow charts.

See Also

More About
• “Why Use Fixed-Point Hardware?” on page 34-9
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Developing and Testing Fixed-Point Systems
The Fixed-Point Designer software provides tools that aid in the development and testing of fixed-
point dynamic systems. You directly design dynamic system models in the Simulink software that are
ready for implementation on fixed-point hardware. The development cycle is illustrated below.

Using the MATLAB, Simulink, and Fixed-Point Designer software, you follow these steps of the
development cycle:

1 Model the system (plant or signal source) within the Simulink software using double-precision
numbers. Typically, the model will contain nonlinear elements.

2 Design and simulate a fixed-point dynamic system (for example, a control system or digital filter)
with fixed-point Simulink blocks that meets the design, performance, and other constraints.

3 Analyze the results and go back to step 1 if needed.

When you have met the design requirements, you can use the model as a specification for creating
production code using the Simulink Coder product or generating HDL code using the HDL Coder
product.
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The above steps interact strongly. In steps 1 and 2, there is a significant amount of freedom to select
different solutions. Generally, you fine-tune the model based on feedback from the results of the
current implementation (step 3). There is no specific modeling approach. For example, you may
obtain models from first principles such as equations of motion, or from a frequency response such as
a sine sweep. There are many controllers that meet the same frequency-domain or time-domain
specifications. Additionally, for each controller there are an infinite number of realizations.

The Fixed-Point Designer software helps expedite the design cycle by allowing you to simulate the
effects of various fixed-point controller and digital filter structures.

See Also

More About
• “Why Use Fixed-Point Hardware?” on page 34-9
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Supported Data Types
The Fixed-Point Designer software supports the following integer and fixed-point data types for
simulation and code generation:

• Unsigned data types from 1 bit to 128 bits
• Signed data types from 2 bits to 128 bits
• Boolean, double, single, and half
• Scaled doubles

The fi object in MATLAB has a word length limit of 65535 bits.

The software supports all scaling choices including pure integer, binary point, and slope bias. For
slope bias scaling, it does not support complex fixed-point types that have non-zero bias or non-trivial
slope.

The save data type support extends to signals, parameters, and states.

See Also

More About
• “Specify Data Types Using Data Type Assistant”
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Configure Blocks with Fixed-Point Output
To create a fixed-point model, configure Simulink blocks to output fixed-point signals. Simulink blocks
that support fixed-point output provide parameters that allow you to specify whether a block should
output fixed-point signals and, if so, the size, scaling, and other attributes of the fixed-point output.
These parameters typically appear on the Signal Attributes pane of the block's parameter dialog
box.

The following sections explain how to use these parameters to configure a block for fixed-point
output.

Specify the Output Data Type and Scaling
Many Simulink blocks allow you to specify an output data type and scaling using a parameter that
appears on the block dialog box. This parameter (typically named Output data type) provides a pull-
down menu that lists the data types a particular block supports. In general, you can specify the
output data type as a rule that inherits a data type, a built-in data type, an expression that evaluates
to a data type, or a Simulink data type object. For more information, see “Control Data Types of
Signals”.

The Fixed-Point Designer software enables you to configure Simulink blocks with:

• Fixed-point data types

Fixed-point data types are characterized by their word size in bits and by their binary point — the
means by which fixed-point values are scaled.

• Floating-point data types
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Floating-point data types are characterized by their sign bit, fraction (mantissa) field, and
exponent field.

To configure blocks with Fixed-Point Designer data types, specify the data type parameter on a block
dialog box as an expression that evaluates to a data type. Alternatively, you can use an assistant that
simplifies the task of entering data type expressions (see “Specify Fixed-Point Data Types with the
Data Type Assistant” on page 34-15). The sections that follow describe varieties of fixed-point and
floating-point data types and example of how to specify these types by using the fixdt function. The
fixdt function also allows you to specify scaling for fixed-point data types.

Integers

To configure a 16-bit unsigned integer via the block dialog box, specify the Output data type
parameter as fixdt(0,16,0). To configure a 16-bit signed integer, specify the Output data type
parameter as fixdt(1,16,0).

For integer data types, the default binary point is assumed to lie to the right of all bits.

Fractional Numbers

To configure the output as a 16-bit unsigned fractional number via the block dialog box, specify the
Output data type parameter to be fixdt(0,16,16). To configure a 16-bit signed fractional
number, specify Output data type to be fixdt(1,16,15).

Fractional numbers are distinguished from integers by their default scaling. Whereas signed and
unsigned integer data types have a default binary point to the right of all bits, unsigned fractional
data types have a default binary point to the left of all bits, while signed fractional data types have a
default binary point to the right of the sign bit.

Both unsigned and signed fractional data types support guard bits, which act to guard against
overflow. For example, fixdt(1,16,11) specifies a 16-bit signed fractional number with 4 guard
bits. The guard bits lie to the left of the default binary point.

Generalized Fixed-Point Numbers

To configure the output as a 16-bit unsigned generalized fixed-point number via the block dialog box,
specify the Output data type parameter to be fixdt(0,16). To configure a 16-bit signed
generalized fixed-point number, specify Output data type to be fixdt(1,16).

Generalized fixed-point numbers are distinguished from integers and fractionals by the absence of a
default scaling. For these data types, a block typically inherits its scaling from another block.

Floating-Point Numbers

The Fixed-Point Designer software supports single-precision and double-precision floating-point
numbers as defined by the IEEE Standard 754–1985 for Binary Floating-Point Arithmetic.

To configure the output as a single-precision floating-point number via the block dialog box, specify
the Output data type parameter as fixdt('single'). To configure a double-precision floating-
point number, specify Output data type as fixdt('double').

Specify Fixed-Point Data Types with the Data Type Assistant
The Data Type Assistant is an interactive graphical tool that simplifies the task of specifying data
types for Simulink blocks and data objects. The assistant appears on block and object dialog boxes,
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adjacent to parameters that provide data type control, such as the Output data type parameter. For
more information about accessing and interacting with the assistant, see “Specify Data Types Using
Data Type Assistant”.

You can use the Data Type Assistant to specify a fixed-point data type. When you select Fixed
point in the Mode field, the assistant displays fields for describing additional attributes of a fixed-
point data type, as shown in this example:

You can set the following fixed-point attributes:

Signedness

Select whether you want the fixed-point data to be Signed or Unsigned. Signed data can represent
positive and negative quantities. Unsigned data represents positive values only.

Word Length

Specify the size (in bits) of the word that will hold the quantized integer. Large word sizes represent
large quantities with greater precision than small word sizes. Fixed-point word sizes up to 128 bits
are supported for simulation.
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Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and minimize
quantization errors. You can select the following scaling modes:

Scaling Mode Description
Binary point If you select this mode, the assistant displays the Fraction length field, specifying the

binary point location.

Binary points can be positive or negative integers. A positive integer moves the binary point
left of the rightmost bit by that amount. For example, an entry of 2 sets the binary point in
front of the second bit from the right. A negative integer moves the binary point further right
of the rightmost bit by that amount.

See “Binary-Point-Only Scaling” on page 35-5 for more information.
Slope and
bias

If you select this mode, the assistant displays fields for entering the Slope and Bias.

• Slope can be any positive real number.
• Bias can be any real number.

See “Slope and Bias Scaling” on page 35-6 for more information.
Best
precision

If you select this mode, the block scales a constant vector or matrix such that the precision of
its elements is maximized. This mode is available only for particular blocks.

See “Constant Scaling for Best Precision” on page 36-19 for more information.

Calculate Best-Precision Scaling

The Fixed-Point Designer software can automatically calculate “best-precision” values for both
Binary point and Slope and bias scaling, based on the values that you specify for other
parameters on the dialog box. To calculate best-precision-scaling values automatically, enter values
for the block's Output minimum and Output maximum parameters. Then click the Calculate
Best-Precision Scaling button in the assistant.

Rounding
You specify how fixed-point numbers are rounded with the Integer rounding mode parameter. The
following rounding modes are supported:

• Ceiling — This mode rounds toward positive infinity and is equivalent to the MATLAB ceil
function.

• Convergent — This mode rounds toward the nearest representable number, with ties rounding to
the nearest even integer. Convergent rounding is equivalent to the Fixed-Point Designer
convergent function.
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• Floor — This mode rounds toward negative infinity and is equivalent to the MATLAB floor
function.

• Nearest — This mode rounds toward the nearest representable number, with the exact midpoint
rounded toward positive infinity. Rounding toward nearest is equivalent to the Fixed-Point
Designer nearest function.

• Round — This mode rounds to the nearest representable number, with ties for positive numbers
rounding in the direction of positive infinity and ties for negative numbers rounding in the
direction of negative infinity. This mode is equivalent to the Fixed-Point Designer round function.

• Simplest — This mode automatically chooses between round toward floor and round toward zero
to produce generated code that is as efficient as possible.

• Zero — This mode rounds toward zero and is equivalent to the MATLAB fix function.

For more information about each of these rounding modes, see “Rounding” on page 36-2.

Overflow Handling
To control how overflow conditions are handled for fixed-point operations, use the Saturate on
integer overflow check box.

If this box is selected, overflows saturate to either the maximum or minimum value represented by
the data type. For example, an overflow associated with a signed 8-bit integer can saturate to -128 or
127.

If this box is not selected, overflows wrap to the appropriate value that is representable by the data
type. For example, the number 130 does not fit in a signed 8-bit integer, and would wrap to -126.

Lock the Output Data Type Setting
If the output data type is a generalized fixed-point number, you have the option of locking its output
data type setting by selecting the Lock output data type setting against changes by the fixed-
point tools check box.

When locked, the Fixed-Point Tool and automatic scaling script autofixexp do not change the
output data type setting. Otherwise, the Fixed-Point Tool and autofixexp script are free to adjust
the output data type setting.

Real-World Values Versus Stored Integer Values
You can configure Data Type Conversion blocks to treat signals as real-world values or as stored
integers with the Input and output to have equal parameter.
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The possible values are Real World Value (RWV) and Stored Integer (SI).

In terms of the variables defined in “Scaling” on page 35-5, the real-world value is given by V and
the stored integer value is given by Q. You may want to treat numbers as stored integer values if you
are modeling hardware that produces integers as output.

See Also

More About
• “Configure Blocks with Fixed-Point Parameters” on page 34-20
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Configure Blocks with Fixed-Point Parameters
Certain Simulink blocks allow you to specify fixed-point numbers as the values of parameters used to
compute the block's output, for example, the Gain parameter of a Gain block.

Note S-functions and the Stateflow Chart block do not support fixed-point parameters.

You can specify a fixed-point parameter value either directly by setting the value of the parameter to
an expression that evaluates to a fi object, or indirectly by setting the value of the parameter to an
expression that refers to a fixed-point Simulink.Parameter object.

Note Simulating or performing data type override on a model with fi objects requires a Fixed-Point
Designer software license. See “Sharing Fixed-Point Models” on page 34-2 for more information.

Specify Fixed-Point Values Directly
You can specify fixed-point values for block parameters using fi objects. In the block dialog's
parameter field, simply enter the name of a fi object or an expression that includes the fi
constructor function.

For example, entering the expression

fi(3.3,1,8,3)

as the Constant value parameter for the Constant block specifies a signed fixed-point value of 3.3,
with a word length of 8 bits and a fraction length of 3 bits.

Specify Fixed-Point Values Via Parameter Objects
You can specify fixed-point parameter objects for block parameters using instances of the
Simulink.Parameter class. To create a fixed-point parameter object, either specify a fi object as
the parameter object's Value property, or specify the relevant fixed-point data type for the parameter
object's DataType property.

For example, suppose that you want to create a fixed-point constant in your model. You could do this
using a fixed-point parameter object and a Constant block as follows:

1 Enter the following command at the MATLAB prompt to create an instance of the
Simulink.Parameter class:

my_fixpt_param = Simulink.Parameter
2 Specify either the name of a fi object or an expression that includes the fi constructor function

as the parameter object's Value property:
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my_fixpt_param.Value = fi(3.3,1,8,3)

Alternatively, you can set the parameter object's Value and DataType properties separately. In
this case, specify the relevant fixed-point data type using a Simulink.AliasType object, a
Simulink.NumericType object, or a fixdt expression. For example, the following commands
independently set the parameter object's value and data type, using a fixdt expression as the
DataType:

my_fixpt_param.Value = 3.3;
my_fixpt_param.DataType = 'fixdt(1,8,2^-3,0)'

3 Specify the parameter object as the value of a block's parameter. For example, my_fixpt_param
specifies the Constant value parameter for the Constant block in the following model:

The Constant block outputs a signed fixed-point value of 3.3, with a word length of 8 bits and a
fraction length of 3 bits.

See Also

More About
• “Configure Blocks with Fixed-Point Output” on page 34-14
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Pass Fixed-Point Data Between Simulink Models and MATLAB
You can read fixed-point data from the MATLAB software into your Simulink models, and there are
several ways in which you can log fixed-point information from your models and simulations to the
workspace.

Read Fixed-Point Data from the Workspace
Use the From Workspace block to read fixed-point data from the MATLAB workspace into a Simulink
model. To do this, the data must be in structure format with a Fixed-Point Designer fi object in the
values field. In array format, the From Workspace block only accepts real, double-precision data.

To read in fi data, the Interpolate data parameter of the From Workspace block must not be
selected, and the Form output after final data value by parameter must be set to anything other
than Extrapolation.

Write Fixed-Point Data to the Workspace
You can write fixed-point output from a model to the MATLAB workspace via the To Workspace block
in either array or structure format. Fixed-point data written by a To Workspace block to the
workspace in structure format can be read back into a Simulink model in structure format by a From
Workspace block.

Note To write fixed-point data to the workspace as a fi object, select the Log fixed-point data as a
fi object check box on the To Workspace block dialog. Otherwise, fixed-point data is converted to
double and written to the workspace as double.

For example, you can use the following code to create a structure in the MATLAB workspace with a
fi object in the values field. You can then use the From Workspace block to bring the data into a
Simulink model.

a = fi([sin(0:10)' sin(10:-1:0)'])
 
a =
 
         0   -0.5440
    0.8415    0.4121
    0.9093    0.9893
    0.1411    0.6570
   -0.7568   -0.2794
   -0.9589   -0.9589
   -0.2794   -0.7568
    0.6570    0.1411
    0.9893    0.9093
    0.4121    0.8415
   -0.5440         0

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 15
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s.signals.values = a

s = 

  struct with fields:

    signals: [1×1 struct]

s.signals.dimensions = 2

s = 

  struct with fields:

    signals: [1×1 struct]

s.time = [0:10]'

s = 

  struct with fields:

    signals: [1×1 struct]
       time: [11×1 double]

The From Workspace block in the following model has the fi structure s in the Data parameter. In
the model, the following parameters in the Solver pane of the Configuration Parameters dialog box
have the indicated settings:

• Start time — 0.0
• Stop time — 10.0
• Type — Fixed-step
• Solver — discrete (no continuous states)
• Fixed-step size (fundamental sample time) — 1.0

The To Workspace block writes the result of the simulation to the MATLAB workspace as a fi
structure.

out.simout.data

ans = 

         0   -8.7041
   13.4634    6.5938
   14.5488   15.8296
    2.2578   10.5117
  -12.1089   -4.4707
  -15.3428  -15.3428
   -4.4707  -12.1089
   10.5117    2.2578
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   15.8296   14.5488
    6.5938   13.4634
   -8.7041         0

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 32
        FractionLength: 25

Log Fixed-Point Signals
When fixed-point signals are logged to the MATLAB workspace via signal logging, they are always
logged as Fixed-Point Designer fi objects.

To enable signal logging, first select the signal. Then, in the Simulation tab, click Log Signals.

For more information, refer to “Signal Logging”.

When you log signals from a referenced model or Stateflow chart in your model, the word lengths of
fi objects may be larger than you expect. The word lengths of fixed-point signals in referenced
models and Stateflow charts are logged as the next larger data storage container size.

Access Fixed-Point Block Data During Simulation
Simulink provides an application programming interface (API) that enables programmatic access to
block data, such as block inputs and outputs, parameters, states, and work vectors, while a simulation
is running. You can use this interface to develop MATLAB programs capable of accessing block data
while a simulation is running or to access the data from the MATLAB command line. Fixed-point
signal information is returned to you via this API as fi objects. For more information about the API,
refer to “Access Block Data During Simulation”.

See Also
To Workspace | From Workspace

More About
• “Signal Logging”
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Cast from Doubles to Fixed Point
In this section...
“Simulate Using Binary-Point-Only Scaling” on page 34-25
“Simulate Using [Slope Bias] Scaling” on page 34-27

This example shows you how to simulate a continuous real-world doubles signal using a generalized
fixed-point data type. Using the fxpdemo_dbl2fix model, you can explore many of the important
features of the Fixed-Point Designer software, including

• Data types
• Scaling
• Rounding
• Logging minimum and maximum simulation values to the workspace
• Overflow handling

To open the model, at the MATLAB command line, enter

fxpdemo_dbl2fix

In this example, you configure the Signal Generator block to output a sine wave signal with an
amplitude defined on the interval [-5 5]. The Signal Generator block always outputs double-
precision numbers.

The Dbl-to-FixPt Data Type Conversion block converts the double-precision numbers from the
Signal Generator block into one of the Fixed-Point Designer data types. For simplicity, the size of the
output signal is 5 bits in this example.

The FixPt-to-Dbl Data Type Conversion block converts one of the Fixed-Point Designer data types
into a Simulink data type. In this example, it outputs double-precision numbers.

Simulate Using Binary-Point-Only Scaling
When using binary-point-only scaling, your goal is to find the optimal power-of-two exponent E, as
defined in “Scaling” on page 35-5. For this scaling mode, the fractional slope F is 1 and there is no
bias.

To set up the model to use binary-point-only scaling:

1 Configure the Signal Generator block to output a sine wave signal with an amplitude defined on
the interval [-5 5].
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a Double-click the Signal Generator block to open the Block Parameters dialog.
b Set the Wave form parameter to sine.
c Set the Amplitude parameter to 5.
d Click OK.

2 Configure the Data Type Conversion (Dbl-to-FixPt) block.

a Double-click the Dbl-to-FixPt block to open the Block Parameters dialog.
b Verify that the Output data type parameter is fixdt(1,5,2). This specifies a 5-bit, signed,

fixed-point number with scaling 2^-2, which puts the binary point two places to the left of
the rightmost bit. Hence the maximum value is 011.11 = 3.75, the minimum value is 100.00
= -4.00, and the precision is (1/2)2 = 0.25.

c Verify that the Integer rounding mode parameter is set to Floor. This rounds the fixed-
point result toward negative infinity.

d Select the Saturate on integer overflow check box to prevent the block from wrapping on
overflow.

e Click OK.
3 To simulate the model, in the Simulation tab, click Run.

The Scope displays the ideal and the fixed-point simulation results.

The simulation shows the quantization effects of fixed-point arithmetic. Using a 5-bit word with a
precision of (1/2)2 = 0.25 produces a discretized output that does not span the full range of the input
signal.
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To span the complete range of the input signal with 5 bits using binary-point-only scaling, set the
output scaling to 2^-1. This puts the binary point one place to the left of the rightmost bit, giving a
maximum value of 0111.1 = 7.5 and a minimum value of 1000.0 = -8.0. However, the precision is
reduced to (1/2)1 = 0.5. If you want to span the complete range of the input signal with 5 bits using
binary-point-only scaling, then your only option is to sacrifice precision. Hence, the output scaling is
2^-1, which puts the binary point one place to the left of the rightmost bit. This scaling gives a
maximum value of 0111.1 = 7.5, a minimum value of 1000.0 = -8.0, and a precision of (1/2)1 = 0.5.

To see the effect of reducing the precision to 0.5, set the Output data type parameter of the Dbl-
to-FixPt Data Type Conversion block to fixdt(1,5,1) and rerun the simulation.

Simulate Using [Slope Bias] Scaling
When using [Slope Bias] scaling, your goal is to find the optimal fractional slope F and fixed power-of-
two exponent E, as defined in “Scaling” on page 35-5. There is no bias for this example because the
sine wave is defined on the interval [-5 5].

To find the slope, you begin by assuming a fixed power-of-two exponent of -2. To find the fractional
slope, divide the maximum value of the sine wave by the maximum value of the scaled 5-bit number.
The result is 5.00/3.75 = 1.3333. The slope (and precision) is 1.3333(0.25) = 0.3333. You specify the
[Slope Bias] scaling as [0.3333 0] by entering the expression fixdt(1,5,0.3333,0) as the value of
the Output data type parameter.

You could also specify a fixed power-of-two exponent of -1 and a corresponding fractional slope of
0.6667. The resulting slope is the same since E is reduced by 1 bit but F is increased by 1 bit. The
Fixed-Point Designer software would automatically store F as 1.3332 and E as -2 because of the
normalization condition of 1 ≤ F < 2.

To set up the model to use [Slope Bias] scaling:

1 Configure the Signal Generator block to output a sine wave signal with an amplitude defined on
the interval [-5 5].

a Double-click the Signal Generator block to open the Block Parameters dialog.
b Set the Wave form parameter to sine.
c Set the Amplitude parameter to 5.
d Click OK.

2 Configure the Dbl-to-FixPt Data Type Conversion block.

a Double-click the Dbl-to-FixPt block to open the Block Parameters dialog.
b To specify a [Slope Bias] scaling of [0.3333 0], set the Output data type parameter to

fixdt(1,5,0.3333,0).
c Verify that the Integer rounding mode parameter is Floor. This rounds the fixed-point

result toward negative infinity.
d Select the Saturate on integer overflow check box to prevent the block from wrapping on

overflow.
e Click OK.

3 To simulate the model, in the Simulation tab, click Run.

The Scope displays the ideal and the fixed-point simulation results.
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If you do not know the slope, you can achieve reasonable simulation results by selecting your scaling
based on the formula

max_value−min_value
2ws− 1

,

where

• max_value is the maximum value to be simulated
• min_value is the minimum value to be simulated
• ws is the word size in bits
• 2ws - 1 is the largest value of a word with size ws

For this example, the formula produces a slope of 0.32258.

See Also

More About
• “Physical Quantities and Measurement Scales” on page 34-3
• “Scaling” on page 1-3

34 Getting Started

34-28



Data Types and Scaling

• “Data Types and Scaling in Digital Hardware” on page 35-2
• “Scaling” on page 35-5
• “Quantization” on page 35-7
• “Range and Precision” on page 35-9
• “Fixed-Point Numbers in Simulink” on page 35-13
• “Display Port Data Types” on page 35-15
• “Scaled Doubles” on page 35-16
• “Use Scaled Doubles to Avoid Precision Loss” on page 35-18
• “Floating-Point Numbers” on page 35-20
• “Half-Precision in Simulink” on page 35-26
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Data Types and Scaling in Digital Hardware

Fixed-Point Data Types
In digital hardware, numbers are stored in binary words. A binary word is a fixed-length sequence of
bits (1's and 0's). How hardware components or software functions interpret this sequence of 1's and
0's is defined by the data type. Binary numbers are represented as either fixed-point or floating-point
data types.

A fixed-point data type is characterized by the word length in bits, the position of the binary point,
and whether it is signed or unsigned. The position of the binary point is the means by which fixed-
point values are scaled and interpreted.

For example, a binary representation of a generalized fixed-point number (either signed or unsigned)
is shown below:

where

• bi is the ith binary digit.
• wl is the word length in bits.
• bwl-1 is the location of the most significant, or highest, bit (MSB).
• b0 is the location of the least significant, or lowest, bit (LSB).
• The binary point is shown four places to the left of the LSB. In this example, the number is said to

have four fractional bits, or a fraction length of four.

Fixed-point data types can be either signed or unsigned. Whether a fixed-point value is signed or
unsigned is usually not encoded explicitly within the binary word; that is, there is no sign bit. Instead,
the sign information is implicitly defined within the computer architecture.

Signed binary fixed-point numbers are typically represented in computer hardware in one of three
ways:

• Sign/magnitude – One bit of a binary word is always the dedicated sign bit, while the remaining
bits of the word encode the magnitude of the number. Negation using sign/magnitude
representation consists of flipping the sign bit from 0 (positive) to 1 (negative), or from 1 to 0.

• One's complement – Negating a binary number in one's complement requires a bitwise
complement. That is, all 0's are flipped to 1's and all 1's are flipped to 0's. In one's complement
notation there are two ways to represent zero. A binary word of all 0's represents "positive" zero,
while a binary word of all 1's represents "negative" zero.

• Two's complement – Negation using signed two's complement representation consists of a bit
inversion (translation into one's complement) followed by the binary addition of a one. For
example, the two's complement of 000101 is 111011.

Two's complement is the most common representation of signed fixed-point numbers and is the only
representation used by Fixed-Point Designer documentation.
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Binary Point Interpretation
The binary point is the means by which fixed-point numbers are scaled. It is usually the software that
determines the binary point. When performing basic math functions such as addition or subtraction,
the hardware uses the same logic circuits regardless of the value of the scale factor. In essence, the
logic circuits have no knowledge of a scale factor. They are performing signed or unsigned fixed-point
binary algebra as if the binary point is to the right of b0.

Fixed-Point Designer supports general binary point scaling on page 35-5 V = Q ✕ 2E, where V is
the real-world value, Q is the stored integer value, and the fixed exponent E is equal to the negative
of the fraction length. In other words, RealWorldValue = StoredInteger ✕ 2−FractionLength.

The fraction length defines the scaling of the stored integer value. The word length limits the values
that the stored integer can take, but it does not limit the values that the fraction length can take. The
software does not restrict the value of the exponent E based on the word length of the stored integer
Q. Because E is equal to −FractionLength, restricting the binary point to being contiguous with the
fraction is unnecessary; the fraction length can be negative or greater than the word length.

For example, a word consisting of three unsigned bits is usually represented in scientific notation on
page 35-20 in one of the following ways:

bbb . = bbb . × 20

bb . b = bbb . × 2−1

b . bb = bbb . × 2−2

. bbb = bbb . × 2−3

If the exponent were greater than 0 or less than -3, then the representation would involve additional
zeros:

bbb00000. = bbb . × 25

bbb00. = bbb . × 22

.00bbb = bbb . × 2−5

.00000bbb = bbb . × 2−8

These extra zeros never change to ones, so they do not show up in the hardware. Unlike floating-point
exponents, a fixed-point exponent never shows up in the hardware, so fixed-point exponents are not
limited by a finite number of bits.

Consider a signed value with a word length of 8, a fraction length of 10, and a stored integer value of
5 (binary value 00000101). The real-word value is calculated using the formula
RealWorldValue = StoredInteger ✕ 2−FractionLength. In this case, RealWorldValue = 5 ✕ 2−10 =
0.0048828125. Because the fraction length is 2 bits longer than the word length, the binary value of
the stored integer is x.xx00000101, where x is a placeholder for implicit zeros. 0.0000000101
(binary) is equivalent to 0.0048828125 (decimal). For an example using a fi object, see “Fraction
Length Greater Than Word Length” on page 49-5.

Floating-Point Data Types
Floating-point data types are characterized by a sign bit, a fraction (or mantissa) field, and an
exponent field. Fixed-Point Designer adheres to the IEEE Standard 754-1985 for Binary Floating-
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Point Arithmetic (referred to simply as the IEEE Standard 754 throughout this guide) and supports
half-, single- and double-precision data types.

When choosing a data type, you must consider these factors:

• The numerical range of the result
• The precision required of the result
• The associated quantization error (i.e., the rounding mode)
• The method for dealing with exceptional arithmetic conditions

These choices depend on your specific application, the computer architecture used, and the cost of
development, among others.

With Fixed-Point Designer, you can explore the relationship between data types, range, precision, and
quantization error in the modeling of dynamic digital systems. With Simulink Coder, you can generate
production code based on that model. With HDL Coder, you can generate portable, synthesizable
VHDL and Verilog code from Simulink models and Stateflow charts.

See Also

More About
• “Floating-Point Numbers” on page 35-20
• “Benefits of Fixed-Point Hardware”
• “Fixed-Point Numbers in Simulink” on page 35-13

35 Data Types and Scaling

35-4



Scaling
The dynamic range of fixed-point numbers is much less than floating-point numbers with equivalent
word sizes. To avoid overflow conditions and minimize quantization errors, fixed-point numbers must
be scaled.

With the Fixed-Point Designer software, you can select a fixed-point data type whose scaling is
defined by its binary point, or you can select an arbitrary linear scaling that suits your needs. This
section presents the scaling choices available for fixed-point data types.

You can represent a fixed-point number by a general slope and bias encoding scheme.

real‐world value = slope×integer + bias

where the slope can be expressed as

slope = slope adjustment factor  ×  2fixed exponent

The integer is sometimes called the stored integer. This is the raw binary number, in which the binary
point is assumed to be at the far right of the word. In Fixed-Point Designer documentation, the
negative of the fixed exponent is often referred to as the fraction length.

The slope and bias together represent the scaling of the fixed-point number. In a number with zero
bias, only the slope affects the scaling. A fixed-point number that is only scaled by binary point
position is equivalent to a number in slope bias representation that has a bias equal to zero and a
slope adjustment factor equal to one. This is referred to as binary point-only scaling or power-of-two
scaling:

real‐world value = 2fixed exponent × integer

or

real‐world value = 2‐fraction length × integer

Binary-Point-Only Scaling
Binary-point-only or power-of-two scaling involves moving the binary point within the fixed-point
word. The advantage of this scaling mode is to minimize the number of processor arithmetic
operations.

With binary-point-only scaling, the components of the general slope and bias formula have the
following values:

• bias = 0
• slope adjustment factor = 1
• slope = slope adjustment factor  ×  2fixed exponent = 2fixed exponent

The scaling of a quantized real-world number is defined by the slope S, which is restricted to a power
of two. The negative of the power-of-two exponent is called the fraction length. The fraction length is
the number of bits to the right of the binary point. For Binary-Point-Only scaling, specify fixed-point
data types as
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• signed types — fixdt(1, WordLength, FractionLength)
• unsigned types — fixdt(0, WordLength, FractionLength)

Integers are a special case of fixed-point data types. Integers have a trivial scaling with slope 1 and
bias 0, or equivalently with fraction length 0. Specify integers as

• signed integer — fixdt(1, WordLength, 0)
• unsigned integer — fixdt(0, WordLength, 0)

Slope and Bias Scaling
When you scale by slope and bias, the slope S and bias B of the quantized real-world number can take
on any value. The slope must be a positive number. Using slope and bias, specify fixed-point data
types as

• fixdt(Signed, WordLength, Slope, Bias)

Unspecified Scaling
Specify fixed-point data types with an unspecified scaling as

• fixdt(Signed, WordLength)

Simulink signals, parameters, and states must never have unspecified scaling. When scaling is
unspecified, you must use some other mechanism such as automatic best precision scaling to
determine the scaling that the Simulink software uses.

See Also

More About
• “Recommendations for Arithmetic and Scaling” on page 36-31
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Quantization
The quantization Q of a real-world value V is represented by a weighted sum of bits. Within the
context of the general slope and bias encoding scheme, the value of an unsigned fixed-point quantity
is given by

V = S . ∑
i = 0

ws− 1
bi2i + B,

while the value of a signed fixed-point quantity is given by

V = S . −bws− 12ws− 1 + ∑
i = 0

ws− 2
bi2i + B,

where

• bi are binary digits, with bi = 1, 0, for i = 0, 1, ..., ws− 1
• The word size in bits is given by ws, with ws = 1, 2, 3,..., 128.
• S is given by F = 2E, where the scaling is unrestricted because the binary point does not have to

be contiguous with the word.

bi are called bit multipliers and 2i are called the weights.

Fixed-Point Format
Formats for 8-bit signed and unsigned fixed-point values are shown in the following figure.

Note that you cannot discern whether these numbers are signed or unsigned data types merely by
inspection since this information is not explicitly encoded within the word.

The binary number 0011.0101 yields the same value for the unsigned and two's complement
representation because the MSB = 0. Setting B = 0 and using the appropriate weights, bit
multipliers, and scaling, the value is

V = F2E Q = 2E ∑
i = 0

ws− 1
bi2i

= 2−4 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20

= 3.3125.

Conversely, the binary number 1011.0101 yields different values for the unsigned and two's
complement representation since the MSB = 1.
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Setting B = 0 and using the appropriate weights, bit multipliers, and scaling, the unsigned value is

V = F2E Q = 2E ∑
i = 0

ws− 1
bi2i

= 2−4 1 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20

= 11.3125,

while the two's complement value is

V = F2E Q = 2E −bws− 12ws− 1 + ∑
i = 0

ws− 2
bi2i

= 2−4 −1 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20

= − 4.6875.
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Range and Precision
The range of a number gives the limits of the representation, while the precision gives the distance
between successive numbers in the representation. The range and precision of a fixed-point number
depend on the length of the word and the scaling.

Note You must pay attention to the precision and range of the fixed-point data types and scalings you
choose in order to know whether rounding methods will be invoked or if overflows or underflows will
occur.

Range
The range is the span of numbers that a fixed-point data type and scaling can represent. Range is
limited because fixed-point words have limited size.

The range of representable numbers for a two's complement fixed-point number of word length wl,
scaling S and bias B is illustrated below, where the values of wl, S, and B allow for both negative and
positive numbers.

For both signed and unsigned fixed-point numbers of any data type, the number of different bit
patterns is 2wl.

For example, in two's complement, negative numbers must be represented as well as zero, so the
maximum value is 2wl -1 – 1. Because there is only one representation for zero, there are an unequal
number of positive and negative numbers. This means there is a representation for −2wl− 1 but not
for 2wl− 1:

Limitations on Range

Because a fixed-point data type represents numbers within a finite range, overflows and underflows
can occur if the result of an operation is larger or smaller than the numbers in that range.

In binary arithmetic, a processor might need to take an n-bit fixed-point number and store it in m bits,
where m ≠ n. If m < n, the range of the number has been reduced and an operation can produce an
overflow condition. Some processors identify this condition as Inf or NaN. For other processors,
especially digital signal processors (DSPs), the value saturates or wraps.

Fixed-Point Designer software allows you to either saturate or wrap overflows. Saturation represents
positive overflows as the largest positive number in the range being used, and negative overflows as
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the largest negative number in the range being used. Wrapping uses modulo arithmetic to cast an
overflow back into the representable range of the data type.

When you create a fi object, any overflows are saturated. The OverflowAction property of the
default fimath is saturate. You can log overflows and underflows by setting the LoggingMode
property of the fipref object to on.

If m > n, the range of the number has been extended. Extending the range of a word requires the
inclusion of guard bits, which act to guard against potential overflow.

The Simulink software supports saturation and wrapping for all fixed-point data types, while guard
bits are supported only for fractional data types.

Precision
The precision of a fixed-point number is the difference between successive values representable by its
data type and scaling. The value of the least significant bit, and therefore the precision of the number,
is determined by the number of fractional bits. A fixed-point value can be represented to within half
of the precision of its data type and scaling.

For example, a fixed-point representation with four bits to the right of the binary point has a precision
of 2-4 or 0.0625, which is the value of its least significant bit. Any number within the range of this
data type and scaling can be represented to within (2-4)/2 or 0.03125, which is half the precision. This
is an example of representing a number with finite precision.

Limitations on Precision

The precision of a fixed-point word depends on the word size and binary point location. For example,
suppose you must represent the real-world number 35.375 with a fixed-point number. Using a slope
bias encoding scheme, the representation is

V ≈ V = SQ + B = 2−2Q + 32,

where V = 35.375.

The two closest approximations to the real-world value are Q = 13 and Q = 14:

V = 2−2 13 + 32 = 35.25,

V = 2−2 14 + 32 = 35.50.

In either case, the absolute error is the same:

V − V = 0.125 = S
2 = F2E

2 .

For fixed-point values within the limited range, this represents the worst-case error if round-to-
nearest is used. If other rounding modes are used, the worst-case error can be twice as large:

V − V < F2E .

Extending the precision of a word can be accomplished with more bits, but you face practical
limitations with this approach. Instead, you must carefully select the data type, word size, and scaling
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such that numbers are accurately represented. Rounding and padding with trailing zeros are typical
methods implemented on processors to deal with the precision of binary words.

Fixed-Point Data Type Parameters
The low limit, high limit, and default binary-point-only scaling for the supported fixed-point data types
discussed in “Binary-Point-Only Scaling” on page 35-5 are given in the following table.

Fixed-Point Data Type Range and Default Scaling

Name Data Type Low Limit High Limit Default Scaling
(~Precision)

Unsigned
Integer

fixdt(0,ws,0) 0 2ws− 1 1

Signed
Integer

fixdt(1,ws,0) −2ws− 1 2ws− 1− 1 1

Unsigned
Binary Point

fixdt(0,ws,fl) 0 (2ws− 1)2− f l 2− f l

Signed Binary
Point

fixdt(1,ws,fl) −2ws− 1− f l (2ws− 1− 1)2− f l 2− f l

Unsigned
Slope Bias

fixdt(0,ws,s,b) b s(2ws− 1) + b s

Signed Slope
Bias

fixdt(1,ws,s,b) −s(2ws− 1) + b s(2ws− 1− 1) + b s

s = Slope, b = Bias, ws = WordLength, fl = FractionLength

Range and Precision of an 8-Bit Fixed-Point Data Type — Binary-Point-
Only Scaling
The precisions, range of signed values, and range of unsigned values for an 8-bit generalized fixed-
point data type with binary-point-only scaling are listed in the follow table. Note that the first scaling
value (21) represents a binary point that is not contiguous with the word.

Scaling Precision Range of Signed Values
(Low, High)

Range of Unsigned Values (Low,
High)

21 2.0 -256, 254 0, 510
20 1.0 -128, 127 0, 255
2-1 0.5 -64, 63.5 0, 127.5
2-2 0.25 -32, 31.75 0, 63.75
2-3 0.125 -16, 15.875 0, 31.875
2-4 0.0625 -8, 7.9375 0, 15.9375
2-5 0.03125 -4, 3.96875 0, 7.96875
2-6 0.015625 -2, 1.984375 0, 3.984375
2-7 0.0078125 -1, 0.9921875 0, 1.9921875

 Range and Precision

35-11



Scaling Precision Range of Signed Values
(Low, High)

Range of Unsigned Values (Low,
High)

2-8 0.00390625 -0.5, 0.49609375 0, 0.99609375

Range and Precision of an 8-Bit Fixed-Point Data Type — Slope and
Bias Scaling
The precision and ranges of signed and unsigned values for an 8-bit fixed-point data type using slope
and bias scaling are listed in the following table. The slope starts at a value of 1.25 with a bias of
1.0 for all slopes. Note that the slope is the same as the precision.

Bias Slope/Precision Range of Signed Values
(low, high)

Range of Unsigned Values
(low, high)

1 1.25 -159, 159.75 1, 319.75
1 0.625 -79, 80.375 1, 160.375
1 0.3125 -39, 40.6875 1, 80.6875
1 0.15625 -19, 20.84375 1, 40.84375
1 0.078125 -9, 10.921875 1, 20.921875
1 0.0390625 -4, 5.9609375 1, 10.9609375
1 0.01953125 -1.5, 3.48046875 1, 5.98046875
1 0.009765625 -0.25, 2.240234375 1, 3.490234375
1 0.0048828125 0.375, 1.6201171875 1, 2.2451171875

See Also

More About
• “Saturation and Wrapping” on page 36-25
• “Rounding” on page 36-2
• “Guard Bits” on page 36-28
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Fixed-Point Numbers in Simulink
Simulink data type names must be valid MATLAB identifiers with less than 128 characters. The data
type name provides information about container type, number encoding, and scaling.

You can represent a fixed-point number using the fixed-point scaling equation

V ≈ V = SQ + B,

where

• V is the real-world value.
• V  is the approximate real-world value.
• S = F2E is the slope.
• F is the slope adjustment factor.
• E is the fixed power-of-two exponent.
• Q is the stored integer.
• B is the bias.

Fixed-Point Data Type and Scaling Notation
The following table provides a key for various symbols that appear in Simulink products to indicate
the data type and scaling of a fixed-point value.

Symbol Description Example
Container Type
ufix Unsigned fixed-point data type ufix8 is an 8-bit unsigned fixed-point

data type
sfix Signed fixed-point data type sfix128 is a 128-bit signed fixed-

point data type
fltu Scaled Doubles on page 35-16

override of an unsigned fixed-
point data type (ufix)

fltu32 is a scaled doubles override of
ufix32

flts Scaled Doubles on page 35-16
override of a signed fixed-point
data type (sfix)

flts64 is a scaled doubles override of
sfix64

Number Encoding
e 10^ 125e8 equals 125*(10^(8))
n Negative n31 equals -31
p Decimal point 1p5 equals 1.5

p2 equals 0.2
Scaling Encoding
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Symbol Description Example
S Slope ufix16_S5_B7 is a 16-bit unsigned

fixed-point data type with Slope of 5
and Bias of 7

B Bias ufix16_S5_B7 is a 16-bit unsigned
fixed-point data type with Slope of 5
and Bias of 7

E Fixed exponent (2^)

A negative fixed exponent
describes the fraction length

sfix32_En31 is a 32-bit signed fixed-
point data type with a fraction length
of 31

F Slope adjustment factor ufix16_F1p5_En50 is a 16-bit
unsigned fixed-point data type with a
SlopeAdjustmentFactor of 1.5
and a FixedExponent of -50

C, c, D, or d Compressed encoding for Bias

Note If you pass this symbol to
the slDataTypeAndScale
function, it returns a valid fixdt
data type.

No example available. For backwards
compatibility only.

To identify and replace calls to
slDataTypeAndScale, use the
“Check for calls to
slDataTypeAndScale” Model Advisor
check.

T or t Compressed encoding for Slope

Note If you pass this symbol to
the slDataTypeAndScale, it
returns a valid fixdt data type.

No example available. For backwards
compatibility only.

To identify and replace calls to
slDataTypeAndScale, use the
“Check for calls to
slDataTypeAndScale” Model Advisor
check.

See Also

More About
• “Scaling” on page 35-5
• “Data Types and Scaling in Digital Hardware” on page 35-2
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Display Port Data Types
To display the data types for the ports in your model.

1 On the Simulink Debug tab, select Information Overlays > Base Data Types.

The port display for fixed-point signals consists of three parts: the data type, the number of bits, and
the scaling. These three parts reflect the block Output data type parameter value or the data type
and scaling that is inherited from the driving block or through back propagation.

The following model displays its port data types.

In the model, the data type displayed with the In1 block indicates that the output data type name is
sfix16_Sp2_B10. This corresponds to fixdt(1, 16, 0.2, 10) which is a signed 16 bit fixed-
point number with slope 0.2 and bias 10.0. The data type displayed with the In2 block indicates
that the output data type name is sfix16_En6. This corresponds to fixdt(1, 16, 6) which is a
signed 16 bit fixed-point number with fraction length of 6.

See Also

More About
• “Fixed-Point Data Type and Scaling Notation” on page 35-13
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Scaled Doubles

What Are Scaled Doubles?
Scaled doubles are a hybrid between floating-point and fixed-point numbers. The Fixed-Point
Designer software stores them as doubles with the scaling, sign, and word length information
retained. For example, the storage container for a fixed-point data type sfix16_En14 is int16. The
storage container of the equivalent scaled doubles data type, flts16_En14 is floating-point double.
The Fixed-Point Designer software applies the scaling information to the stored floating-point double
to obtain the real-world value. Storing the value in a double almost always eliminates overflow and
precision issues.

What is the Difference between Scaled Double and Double Data Types?

The storage container for both the scaled double and double data types is floating-point double.
Therefore both data type override settings, Double and Scaled double, provide the range and
precision advantages of floating-point doubles. Scaled doubles retain the information about the
specified data type and scaling, but doubles do not retain this information. Because scaled doubles
retain the information about the specified scaling, they can also be used for overflow detection.

Consider an example where you want to store a value of 0.75001 degrees Celsius in a data type
sfix16_En13. For this data type:

• The slope is S = 2−13.
• The bias is B = 0.

Using the scaling equation V ≈ V = SQ + B, where V is the real-world value and Q is the stored
integer value:

• B = 0.
• V = SQ = 2−13Q = 0.75001.

Because the storage container of the data type sfix16_En13 is 16 bits, the stored integer Q can only
be represented as an integer within these 16 bits. Therefore, the ideal value of Q is quantized to
6144, causing precision loss.

If you override the data type sfix16_En13 with Double, the data type changes to Double and you
lose the information about the scaling. The stored-value equals the real-world value 0.75001.

If you override the data type sfix16_En13 with Scaled Double, the data type changes to
flts16_En13. The scaling is still given by _En13 and is identical to that of the original data type.
The only difference is the storage container used to hold the stored value which is now double so the
stored-value is 6144.08192. This example shows one advantage of using scaled doubles: the virtual
elimination of quantization errors.

When to Use Scaled Doubles
The Fixed-Point Tool enables you to perform various data type overrides on fixed-point signals in
your simulations. Use scaled doubles to override the fixed-point data types and scaling using double-
precision numbers to avoid quantization effects. Overriding the fixed-point data types provides a
floating-point benchmark that represents the ideal output.

35 Data Types and Scaling

35-16



Scaled doubles are useful for:

• Testing and debugging
• Detecting overflows
• Applying data type overrides to individual subsystems

If you apply a data type override to subsystems in your model rather than to the whole model,
Scaled doubles provide the information that the fixed-point portions of the model need for
consistent data type propagation.

See Also

More About
• “Fixed-Point Data Type and Scaling Notation” on page 35-13
• “Use Scaled Doubles to Avoid Precision Loss” on page 35-18
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Use Scaled Doubles to Avoid Precision Loss
This example shows how you can avoid precision loss by overriding the data types in your model with
scaled doubles.

1 To open the ex_scaled_double model, at the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))
ex_scaled_double

In this model:

• The Constant block Output data type is fixdt(1,8,4).
• The Bitwise Operator block uses the AND operator and the bit mask 0xFF to pass the input

value to the output. Because the Treat mask as parameter is set to Stored Integer, the
block outputs the stored integer value, S, of its input. The encoding scheme is V = SQ+B,
where V is the real-world value and Q is the stored integer value.

2 From the Simulink Apps tab, select Fixed-Point Tool.
3 In the Fixed-Point Tool, select Collect Ranges > Use current settings. Click Collect Ranges.

The Display block displays 4.125 as the output value of the Constant block. The Stored Integer
Display block displays (SI) bin 0100 0010, which is the binary equivalent of the stored
integer value. Precision loss occurs because the output data type, fixdt(1,8,4), cannot
represent the output value 4.1 exactly.

4 Override data types in the model with scaled doubles. In the Fixed-Point Tool, select Collect
Ranges > Scaled double-precision. Click Collect Ranges.

The Display block correctly displays 4.1 as the output value of the Constant block. The Stored
Integer Display block displays (SI) 65, which is the binary equivalent of the stored integer
value. Because the model uses scaled doubles to override the data type fixdt(1,8,4), the
compiled output data type changes to flts8_En4, which is the scaled doubles equivalent of
fixdt(1,8,4).

No precision loss occurs because the scaled doubles use a double to hold the stored value and
retain information about the specified data type and scaling.
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Note You cannot use a data type override setting of Double-precision because the Bitwise
Operator block does not support floating-point data types.

See Also

More About
• “Scaled Doubles” on page 35-16
• “Scaling” on page 35-5
• “Fixed-Point Data Type and Scaling Notation” on page 35-13
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Floating-Point Numbers

In this section...
“Floating-Point Numbers” on page 35-20
“Scientific Notation” on page 35-20
“IEEE 754 Standard for Floating-Point Numbers” on page 35-21
“Range and Precision” on page 35-22
“Exceptional Arithmetic” on page 35-24

Floating-Point Numbers
Fixed-point numbers are limited in that they cannot simultaneously represent very large or very small
numbers using a reasonable word size. This limitation can be overcome by using scientific notation.
With scientific notation, you can dynamically place the binary point at a convenient location and use
powers of the binary to keep track of that location. Thus, you can represent a range of very large and
very small numbers with only a few digits.

You can represent any binary floating-point number in scientific notation form as f2e, where f is the
fraction (or mantissa), 2 is the radix or base (binary in this case), and e is the exponent of the radix.
The radix is always a positive number, while f and e can be positive or negative.

When performing arithmetic operations, floating-point hardware must take into account that the sign,
exponent, and fraction are all encoded within the same binary word. This results in complex logic
circuits when compared with the circuits for binary fixed-point operations.

The Fixed-Point Designer software supports half-precision, single-precision, and double-precision
floating-point numbers as defined by the IEEE Standard 754.

Scientific Notation
A direct analogy exists between scientific notation and radix point notation. For example, scientific
notation using five decimal digits for the fraction would take the form

±d . dddd × 10p = ± ddddd.0 × 10p− 4 = ± 0.ddddd × 10p + 1,

where d = 0, ..., 9 and p is an integer of unrestricted range.

Radix point notation using five bits for the fraction is the same except for the number base

±b . bbbb × 2q = ± bbbbb.0 × 2q− 4 = ± 0.bbbbb × 2q + 1,

where b = 0, 1 and q is an integer of unrestricted range.

For fixed-point numbers, the exponent is fixed but there is no reason why the binary point must be
contiguous with the fraction. For more information, see “Binary Point Interpretation” on page 35-3.
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IEEE 754 Standard for Floating-Point Numbers
The IEEE Standard 754 has been widely adopted, and is used with virtually all floating-point
processors and arithmetic coprocessors, with the notable exception of many DSP floating-point
processors.

This standard specifies several floating-point number formats, of which singles and doubles are the
most widely used. Each format contains three components: a sign bit, a fraction field, and an
exponent field.

The Sign Bit

IEEE floating-point numbers use sign/magnitude representation, where the sign bit is explicitly
included in the word. Using sign/magnitude representation, a sign bit of 0 represents a positive
number and a sign bit of 1 represents a negative number. This is in contrast to the two's complement
representation preferred for signed fixed-point numbers.

The Fraction Field

Floating-point numbers can be represented in many different ways by shifting the number to the left
or right of the binary point and decreasing or increasing the exponent of the binary by a
corresponding amount.

To simplify operations on floating-point numbers, they are normalized in the IEEE format. A
normalized binary number has a fraction of the form 1.f, where f has a fixed size for a given data
type. Since the leftmost fraction bit is always a 1, it is unnecessary to store this bit and it is therefore
implicit (or hidden). Thus, an n-bit fraction stores an n+1-bit number. The IEEE format also supports
“Denormalized Numbers” on page 35-24, which have a fraction of the form 0.f.

The Exponent Field

In the IEEE format, exponent representations are biased. This means a fixed value, the bias, is
subtracted from the exponent field to get the true exponent value. For example, if the exponent field
is 8 bits, then the numbers 0 through 255 are represented, and there is a bias of 127. Note that some
values of the exponent are reserved for flagging Inf (infinity), NaN (not-a-number), and denormalized
numbers, so the true exponent values range from -126 to 127. See “Inf” on page 35-24 and “NaN”
on page 35-24 for more information.

Double-Precision Format

The IEEE double-precision floating-point format is a 64-bit word divided into a 1-bit sign indicator s,
an 11-bit biased exponent e, and a 52-bit fraction f.

The relationship between double-precision format and the representation of real numbers is given by
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value =
(− 1)s(2e− 1023)(1.f ) normalized, 0 < e < 2047,

(− 1)s(2e− 1022)(0.f ) denormalized, e = 0,  f > 0
exceptional value  otherwise.

,

See “Exceptional Arithmetic” on page 35-24 for more information.

Single-Precision Format

The IEEE single-precision floating-point format is a 32-bit word divided into a 1-bit sign indicator s,
an 8-bit biased exponent e, and a 23-bit fraction f.

The relationship between single-precision format and the representation of real numbers is given by

value =
(− 1)s(2e− 127)(1.f ) normalized, 0 < e < 255,

(− 1)s(2e− 126)(0.f ) denormalized, e = 0,  f > 0,
exceptional value  otherwise.

See “Exceptional Arithmetic” on page 35-24 for more information.

Half-Precision Format

The IEEE half-precision floating-point format is a 16-bit word divided into a 1-bit sign indicator s, a 5-
bit biased exponent e, and a 10-bit fraction f.

Half-precision numbers are supported in MATLAB and Simulink. For more information, see half and
“The Half-Precision Data Type in Simulink” on page 51-2.

Range and Precision
The range of a number gives the limits of the representation. The precision gives the distance
between successive numbers in the representation. The range and precision of an IEEE floating-point
number depends on the specific format.
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Range

The range of representable numbers for an IEEE floating-point number with f bits allocated for the
fraction, e bits allocated for the exponent, and the bias of e given by bias = 2(e−1)−1 is given below.

where

• Normalized positive numbers are defined within the range 2(1−bias) to (2−2−f)2bias.
• Normalized negative numbers are defined within the range −2(1−bias) to −(2−2−f)2bias.
• Positive numbers greater than (2−2−f)2bias and negative numbers less than −(2−2−f)2bias are
overflows.

• Positive numbers less than 2(1−bias) and negative numbers greater than −2(1−bias) are either
underflows or denormalized numbers.

• Zero is given by a special bit pattern, where e = 0 and f = 0.

Overflows and underflows result from exceptional arithmetic conditions. Floating-point numbers
outside the defined range are always mapped to ±Inf.

Note You can use the MATLAB commands realmin and realmax to determine the dynamic range of
double-precision floating-point values for your computer.

Precision

A floating-point number is only an approximation of the “true” value because of a finite word size.
Therefore, it is important to have an understanding of the precision (or accuracy) of a floating-point
result. A value v with an accuracy q is specified by v ± q. For IEEE floating-point numbers,

v = (−1)s(2e–bias)(1.f)

and

q = 2–f × 2e–bias

Thus, the precision is associated with the number of bits in the fraction field.

Note In the MATLAB software, floating-point relative accuracy is given by the command eps, which
returns the distance from 1.0 to the next larger floating-point number. For a computer that supports
the IEEE Standard 754, eps = 2−52 or 2.22045 · 10-16.

Floating-Point Data Type Parameters

The range, bias, and precision for supported floating-point data types are given in the table below.
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Data Type Low Limit High Limit Exponent Bias Precision
Half 2−14 ≈ 6.1·10−5 (2−2-10) ·215≈ 6.5·104 15 2−10 ≈ 10−3

Single 2−126 ≈ 10−38 2128 ≈ 3 · 1038 127 2−23 ≈ 10−7

Double 2−1022 ≈ 2 · 10−308 21024 ≈ 2 · 10308 1023 2−52 ≈ 10−16

Because floating-point numbers are represented using sign/magnitude, there are two representations
of zero, one positive and one negative. For both representations e = 0 and f.0 = 0.0.

Exceptional Arithmetic
The IEEE Standard 754 specifies practices and procedures so that predictable results are produced
independently of the hardware platform. Denormalized numbers, Inf, and NaN are defined to deal
with exceptional arithmetic (underflow and overflow).

If an underflow or overflow is handled as Inf or NaN, then significant processor overhead is required
to deal with this exception. Although the IEEE Standard 754 specifies practices and procedures to
deal with exceptional arithmetic conditions in a consistent manner, microprocessor manufacturers
might handle these conditions in ways that depart from the standard.

Denormalized Numbers

Denormalized numbers are used to handle cases of exponent underflow. When the exponent of the
result is too small (i.e., a negative exponent with too large a magnitude), the result is denormalized
by right-shifting the fraction and leaving the exponent at its minimum value. The use of denormalized
numbers is also referred to as gradual underflow. Without denormalized numbers, the gap between
the smallest representable nonzero number and zero is much wider than the gap between the
smallest representable nonzero number and the next larger number. Gradual underflow fills that gap
and reduces the impact of exponent underflow to a level comparable with round-off among the
normalized numbers. Denormalized numbers provide extended range for small numbers at the
expense of precision.

Inf

Arithmetic involving Inf (infinity) is treated as the limiting case of real arithmetic, with infinite
values defined as those outside the range of representable numbers, or −∞ ≤ (representable
numbers) < ∞. With the exception of the special cases discussed below (NaN), any arithmetic
operation involving Inf yields Inf. Inf is represented by the largest biased exponent allowed by the
format and a fraction of zero.

NaN

A NaN (not-a-number) is a symbolic entity encoded in floating-point format. There are two types of
NaN: signaling and quiet. A signaling NaN signals an invalid operation exception. A quiet NaN
propagates through almost every arithmetic operation without signaling an exception. The following
operations result in a NaN: ∞–∞, –∞+∞, 0×∞, 0/0, and ∞/∞.

Both signaling NaN and quiet NaN are represented by the largest biased exponent allowed by the
format and a nonzero fraction. The bit pattern for a quiet NaN is given by 0.f, where the most
significant bit in f must be a one. The bit pattern for a signaling NaN is given by 0.f, where the most
significant bit in f must be zero and at least one of the remaining bits must be nonzero.
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See Also

More About
• “Data Types and Scaling in Digital Hardware” on page 35-2
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Half-Precision in Simulink
In Simulink in R2020a, signals and block outputs can now use half-precision as a storage type. The
half-precision data type is supported for simulation and code generation for parameters and a subset
of blocks.

Warning This feature is under tech preview and should not be used for production code generation.
The first time you simulate a model that uses a half-precision data type, the Diagnostic Viewer
displays an info message.

Features Supported for Half-Precision
• Half-precision as a storage type is supported for simulation in Normal and Accelerator modes. It is

not supported for Rapid Accelerator mode.
• Half-precision is supported for C code generation for .ert targets.

Code generation for .ert targets requires an Embedded Coder license.
• In Simulink, the half-precision data type only supports real values. Complex values cannot have a

half-precision data type.

Blocks Supported for Half-Precision
To view the blocks that support half precision, at the command line, type

showblockdatatypetable

Blocks that support half-precision display an X in the column labeled Half.

See Also
half

More About
• “Floating-Point Numbers” on page 35-20
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Arithmetic Operations

• “Rounding” on page 36-2
• “Rounding Modes for Fixed-Point Simulink Blocks” on page 36-5
• “Rounding Mode: Ceiling” on page 36-8
• “Rounding Mode: Convergent” on page 36-9
• “Rounding Mode: Floor” on page 36-10
• “Rounding Mode: Nearest” on page 36-11
• “Rounding Mode: Round” on page 36-12
• “Rounding Mode: Simplest” on page 36-14
• “Rounding Mode: Zero” on page 36-17
• “Maximize Precision” on page 36-18
• “Net Slope and Net Bias Precision” on page 36-21
• “Detect Fixed-Point Constant Precision Loss” on page 36-24
• “Saturation and Wrapping” on page 36-25
• “Guard Bits” on page 36-28
• “Determine the Range of Fixed-Point Numbers” on page 36-29
• “Handle Overflows in Simulink Models” on page 36-30
• “Recommendations for Arithmetic and Scaling” on page 36-31
• “Parameter and Signal Conversions” on page 36-39
• “Rules for Arithmetic Operations” on page 36-42
• “The Summation Process” on page 36-49
• “The Multiplication Process” on page 36-51
• “The Division Process” on page 36-53
• “Shifts” on page 36-54
• “Conversions and Arithmetic Operations” on page 36-55
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Rounding
When you represent numbers with finite precision, not every number in the available range can be
represented exactly. The result of any operation on a fixed-point number is typically stored in a
register that is longer than the number's original format. When the result is put back into the original
format, a rounding method is used to cast the value to a representable number. Precision is always
lost in the rounding operation, and produces quantization errors and computational noise.

The cost of the rounding operation and the amount of bias that is introduced depends on the
rounding method itself.

When you represent numbers with finite precision, not every number in the available range can be
represented exactly. If a number cannot be represented exactly by the specified data type and
scaling, a rounding method is used to cast the value to a representable number. Although precision is
always lost in the rounding operation, the cost of the operation and the amount of bias that is
introduced depends on the rounding method itself.

Choosing a Rounding Method
Each rounding method has a set of inherent properties. Depending on the requirements of your
design, these properties could make the rounding method more or less desirable to you. By knowing
the requirements of your design and understanding the properties of each rounding method, you can
determine which is the best fit for your needs. The most important properties to consider are:

• Cost — Independent of the hardware being used, how much processing expense does the rounding
method require?

• Low — The method requires few processing cycles.
• Moderate — The method requires a moderate number of processing cycles.
• High — The method requires more processing cycles.

Note The cost estimates provided here are hardware independent. Some processors have
rounding modes built-in, so consider carefully the hardware you are using before calculating the
true cost of each rounding mode.

• Bias — What is the expected value of the rounded values minus the original values: Ε θ − θ ?

• Ε θ − θ < 0 — The rounding method introduces a negative bias.

• Ε θ − θ = 0 — The rounding method is unbiased.

• Ε θ − θ > 0 — The rounding method introduces a positive bias.

Fixed-Point Designer Rounding Modes

To provide you with greater flexibility in the trade-off between cost and bias, the Fixed-Point Designer
product currently supports the following rounding methods:
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Fixed-Point
Designer Rounding
Mode

Description Tie Handling Cost Bias

Ceiling on page 36-
8

Rounds to the nearest
representable number
in the direction of
positive infinity.

N/A Low Large positive

Convergent on page
36-9

Rounds to the nearest
representable number.

Ties are rounded to
nearest even number.

High Unbiased

Floor on page 36-10 Rounds to the nearest
representable number
in the direction of
negative infinity.
Equivalent to two's
complement
truncation.

N/A Low Large negative

Nearest on page 36-
11

Rounds to the nearest
representable number.

Ties are rounded to
the closest
representable number
in the direction of
positive infinity.

Moderate Small positive

Round on page 36-12 Rounds to the nearest
representable number.

• For positive
numbers, ties are
rounded to the
nearest
representable
number in the
direction of
positive infinity.

• For negative
numbers, ties are
rounded to the
nearest
representable
number in the
direction of
negative infinity.

High • Small negative for
negative samples

• Unbiased for samples
with evenly distributed
positive and negative
values

• Small positive for
positive samples

Simplest on page 36-
14
(Simulink only)

Automatically chooses
between Floor and
Zero to produce
generated code that is
as efficient as
possible.

N/A Low Depends on the operation

 Rounding
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Fixed-Point
Designer Rounding
Mode

Description Tie Handling Cost Bias

Zero on page 36-17 Rounds to the nearest
representable number
in the direction of
zero.

N/A Low • Large positive for
negative samples

• Unbiased for samples
with evenly distributed
positive and negative
values

• Large negative for
positive samples

Choosing a Rounding Mode for Diagnostic Purposes

Rounding toward ceiling and rounding toward floor are sometimes useful for diagnostic purposes. For
example, after a series of arithmetic operations, you may not know the exact answer because of word-
size limitations, which introduce rounding. If every operation in the series is performed twice, once
rounding to positive infinity and once rounding to negative infinity, you obtain an upper limit and a
lower limit on the correct answer. You can then decide if the result is sufficiently accurate or if
additional analysis is necessary.

See Also

More About
• “Range and Precision” on page 35-9
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Rounding Modes for Fixed-Point Simulink Blocks
Fixed-point Simulink blocks support the rounding modes shown in the expanded drop-down menu of
the following dialog box.

Fixed-Point Designer Rounding Modes
To provide you with greater flexibility in the trade-off between cost and bias, the Fixed-Point Designer
product currently supports the following rounding methods:

 Rounding Modes for Fixed-Point Simulink Blocks
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Fixed-Point
Designer Rounding
Mode

Description Tie Handling Cost Bias

Ceiling on page 36-
8

Rounds to the nearest
representable number
in the direction of
positive infinity.

N/A Low Large positive

Convergent on page
36-9

Rounds to the nearest
representable number.

Ties are rounded to
nearest even number.

High Unbiased

Floor on page 36-10 Rounds to the nearest
representable number
in the direction of
negative infinity.
Equivalent to two's
complement
truncation.

N/A Low Large negative

Nearest on page 36-
11

Rounds to the nearest
representable number.

Ties are rounded to
the closest
representable number
in the direction of
positive infinity.

Moderate Small positive

Round on page 36-12 Rounds to the nearest
representable number.

• For positive
numbers, ties are
rounded to the
nearest
representable
number in the
direction of
positive infinity.

• For negative
numbers, ties are
rounded to the
nearest
representable
number in the
direction of
negative infinity.

High • Small negative for
negative samples

• Unbiased for samples
with evenly distributed
positive and negative
values

• Small positive for
positive samples

Simplest on page 36-
14
(Simulink only)

Automatically chooses
between Floor and
Zero to produce
generated code that is
as efficient as
possible.

N/A Low Depends on the operation
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Fixed-Point
Designer Rounding
Mode

Description Tie Handling Cost Bias

Zero on page 36-17 Rounds to the nearest
representable number
in the direction of
zero.

N/A Low • Large positive for
negative samples

• Unbiased for samples
with evenly distributed
positive and negative
values

• Large negative for
positive samples

See Also

More About
• “Rounding” on page 36-2
• “Range and Precision” on page 35-9
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Rounding Mode: Ceiling
When you round toward ceiling, both positive and negative numbers are rounded toward positive
infinity. As a result, a positive cumulative bias is introduced in the number.

In the MATLAB software, you can round to ceiling using the ceil function. Rounding toward ceiling
is shown in the following figure.
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Rounding Mode: Convergent
Convergent rounds toward the nearest representable value with ties rounding toward the nearest
even integer. It eliminates bias due to rounding. However, it introduces the possibility of overflow.

In the MATLAB software, you can perform convergent rounding using the convergent function.
Convergent rounding is shown in the following figure.

 Rounding Mode: Convergent
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Rounding Mode: Floor
When you round toward floor, both positive and negative numbers are rounded to negative infinity. As
a result, a negative cumulative bias is introduced in the number.

In the MATLAB software, you can round to floor using the floor function. Rounding toward floor is
shown in the following figure.
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Rounding Mode: Nearest
When you round toward nearest, the number is rounded to the nearest representable value. In the
case of a tie, nearest rounds to the closest representable number in the direction of positive infinity.

In the Fixed-Point Designer software, you can round to nearest using the nearest function.
Rounding toward nearest is shown in the following figure.

 Rounding Mode: Nearest
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Rounding Mode: Round
Round rounds to the closest representable number. In the case of a tie, it rounds:

• Positive numbers to the closest representable number in the direction of positive infinity.
• Negative numbers to the closest representable number in the direction of negative infinity.

As a result:

• A small negative bias is introduced for negative samples.
• No bias is introduced for samples with evenly distributed positive and negative values.
• A small positive bias is introduced for positive samples.

In the MATLAB software, you can perform this type of rounding using the round function. The
rounding mode Round is shown in the following figure.
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Rounding Mode: Simplest
The simplest rounding mode attempts to reduce or eliminate the need for extra rounding code in your
generated code using a combination of techniques. In nearly all cases, the simplest rounding mode
produces the most efficient generated code.

For a very specialized case of division that meets three specific criteria, round to floor might be more
efficient. These three criteria are:

• Fixed-point/integer signed division
• Denominator is an invariant constant
• Denominator is an exact power of two

For this case, set the rounding mode to floor and the Model Configuration Parameters >
Hardware Implementation > Production Hardware > Signed integer division rounds to
parameter to describe the rounding behavior of your production target.

Optimize Rounding for Casts
The Data Type Conversion block casts a signal with one data type to another data type. When the
block casts the signal to a data type with a shorter word length than the original data type, precision
is lost and rounding occurs. The simplest rounding mode automatically chooses the best rounding for
these cases based on the following rules:

• When casting from one integer or fixed-point data type to another, the simplest mode rounds
toward floor.

• When casting from a floating-point data type to an integer or fixed-point data type, the simplest
mode rounds toward zero.

Optimize Rounding for High-Level Arithmetic Operations
The simplest rounding mode chooses the best rounding for each high-level arithmetic operation. For
example, consider the operation y = u1 × u2 / u3 implemented using a Product block:

As stated in the C standard, the most efficient rounding mode for multiplication operations is always
floor. However, the C standard does not specify the rounding mode for division in cases where at least
one of the operands is negative. Therefore, the most efficient rounding mode for a divide operation
with signed data types can be floor or zero, depending on your production target.

The simplest rounding mode:
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• Rounds to floor for all nondivision operations.
• Rounds to zero or floor for division, depending on the setting of the Model Configuration

Parameters > Hardware Implementation > Production Hardware > Signed integer
division rounds to parameter.

To get the most efficient code, you must set the Signed integer division rounds to parameter to
specify whether your production target rounds to zero or to floor for integer division. Most
production targets round to zero for integer division operations. Note that Simplest rounding
enables “mixed-mode” rounding for such cases, as it rounds to floor for multiplication and to zero for
division.

If the Signed integer division rounds to parameter is set to Undefined, the simplest rounding
mode might not be able to produce the most efficient code. The simplest mode rounds to zero for
division for this case, but it cannot rely on your production target to perform the rounding, because
the parameter is Undefined. Therefore, you need additional rounding code to ensure rounding to
zero behavior.

Note For signed fixed-point division where the denominator is an invariant constant power of 2, the
simplest rounding mode does not generate the most efficient code. In this case, set the rounding
mode to floor.

Optimize Rounding for Intermediate Arithmetic Operations
For fixed-point arithmetic with nonzero slope and bias, the simplest rounding mode also chooses the
best rounding for each intermediate arithmetic operation. For example, consider the operation y =
u1 / u2 implemented using a Product block, where u1 and u2 are fixed-point quantities:

As discussed in “Data Types and Scaling in Digital Hardware” on page 35-2, each fixed-point quantity
is calculated using its slope, bias, and stored integer. In this example, the high-level divide operation
specified by the block results in intermediate addition and multiplication operations:

y =
u1
u2

=
S1Q1 + B1
S2Q2 + B2

The simplest rounding mode performs the best rounding for each of these operations, high-level and
intermediate, to produce the most efficient code. The rules used to select the appropriate rounding
for intermediate arithmetic operations are the same as those described in “Optimize Rounding for
High-Level Arithmetic Operations” on page 36-14. Again, this enables mixed-mode rounding, with the
most common case being round toward floor used for additions, subtractions, and multiplies, and
round toward zero used for divides.

 Rounding Mode: Simplest
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Remember that generating the most efficient code using the simplest rounding mode requires you to
set the Model Configuration Parameters > Hardware Implementation > Production
Hardware > Signed integer division rounds to parameter to describe the rounding behavior of
your production target.

Note For signed fixed-point division where the denominator is an invariant constant power of 2, the
simplest rounding mode does not generate the most efficient code. In this case, set the rounding
mode to floor.

See Also

More About
• “Precision and Range” on page 1-6
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Rounding Mode: Zero
Rounding towards zero is the simplest rounding mode computationally. All digits beyond the number
required are dropped. Rounding towards zero results in a number whose magnitude is always less
than or equal to the more precise original value. In the MATLAB software, you can round to zero
using the fix function.

Rounding toward zero introduces a cumulative downward bias in the result for positive numbers and
a cumulative upward bias in the result for negative numbers. That is, all positive numbers are
rounded to smaller positive numbers, while all negative numbers are rounded to larger negative
numbers. Rounding toward zero is shown in the following figure.

Rounding to Zero Versus Truncation
Rounding to zero and truncation or chopping are sometimes thought to mean the same thing.
However, the results produced by rounding to zero and truncation are different for unsigned and
two's complement numbers. For this reason, the ambiguous term “truncation” is not used in this
guide, and explicit rounding modes are used instead.

To illustrate this point, consider rounding a 5-bit unsigned number to zero by dropping (truncating)
the two least significant bits. For example, the unsigned number 100.01 = 4.25 is truncated to 100 =
4. Therefore, truncating an unsigned number is equivalent to rounding to zero or rounding to floor.

Now consider rounding a 5-bit two's complement number by dropping the two least significant bits.
At first glance, you may think truncating a two's complement number is the same as rounding to zero.
For example, dropping the last two digits of -3.75 yields -3.00. However, digital hardware performing
two's complement arithmetic yields a different result. Specifically, the number 100.01 = -3.75
truncates to 100 = -4, which is rounding to floor.

 Rounding Mode: Zero
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Maximize Precision
Precision is limited by slope. To achieve maximum precision, you should make the slope as small as
possible while keeping the range adequately large. The bias is adjusted in coordination with the
slope.

Assume the maximum and minimum real-world values are given by max(V) and min(V), respectively.
These limits might be known based on physical principles or engineering considerations. To maximize
the precision, you must decide upon a rounding scheme and whether overflows saturate or wrap. To
simplify matters, this example assumes the minimum real-world value corresponds to the minimum
encoded value, and the maximum real-world value corresponds to the maximum encoded value. Using
the encoding scheme described in “Scaling” on page 35-5, these values are given by

max V = F2E max Q + B

min V = F2E min Q + B .

Solving for the slope, you get

F2E = max V −min V
max Q −min Q = max V −min V

2ws− 1
.

This formula is independent of rounding and overflow issues, and depends only on the word size, ws.

Pad with Trailing Zeros
Padding with trailing zeros involves extending the least significant bit (LSB) of a number with extra
bits. This method involves going from low precision to higher precision.

For example, suppose two numbers are subtracted from each other. First, the exponents must be
aligned, which typically involves a right shift of the number with the smaller value. In performing this
shift, significant digits can “fall off” to the right. However, when the appropriate number of extra bits
is appended, the precision of the result is maximized. Consider two 8-bit fixed-point numbers that are
close in value and subtracted from each other:

1.0000000 × 2q− 1.1111111 × 2q− 1,

where q is an integer. To perform this operation, the exponents must be equal:

1.0000000 × 2q

−0.1111111 × 2q

0.0000001 × 2q .

If the top number is padded by two zeros and the bottom number is padded with one zero, then the
above equation becomes

1.000000000 × 2q

−0.111111110 × 2q

0.000000010 × 2q ,

which produces a more precise result. An example of padding with trailing zeros in a Simulink model
is illustrated in “Digital Controller Realization” on page 42-41.
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Constant Scaling for Best Precision
The following fixed-point Simulink blocks provide a mode for scaling parameters whose values are
constant vectors or matrices:

• Constant
• Discrete FIR Filter
• Gain
• Relay
• Repeating Sequence Stair

This scaling mode is based on binary-point-only scaling. Using this mode, you can scale a constant
vector or matrix such that a common binary point is found based on the best precision for the largest
value in the vector or matrix.

Constant scaling for best precision is available only for fixed-point data types with unspecified
scaling. All other fixed-point data types use their specified scaling. You can use the Data Type
Assistant (see “Specify Data Types Using Data Type Assistant”) on a block dialog box to enable the
best precision scaling mode.

1
On a block dialog box, click the Show data type assistant button  .

The Data Type Assistant appears.
2 In the Data Type Assistant, and from the Mode list, select Fixed point.

The Data Type Assistant displays additional options associated with fixed-point data types.
3 From the Scaling list, select Best precision.

To understand how you might use this scaling mode, consider a 3-by-3 matrix of doubles, M, defined
as

  3.3333e-003  3.3333e-004  3.3333e-005
  3.3333e-002  3.3333e-003  3.3333e-004
  3.3333e-001  3.3333e-002  3.3333e-003

Now suppose you specify M as the value of the Gain parameter for a Gain block. The results of
specifying your own scaling versus using the constant scaling mode are described here:

• Specified Scaling

Suppose the matrix elements are converted to a signed, 10-bit generalized fixed-point data type
with binary-point-only scaling of 2-7 (that is, the binary point is located seven places to the left of
the right most bit). With this data format, M becomes

 Maximize Precision
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0            0            0
3.1250e-002  0            0
3.3594e-001  3.1250e-002  0

Note that many of the matrix elements are zero, and for the nonzero entries, the scaled values
differ from the original values. This is because a double is converted to a binary word of fixed size
and limited precision for each element. The larger and more precise the conversion data type, the
more closely the scaled values match the original values.

• Constant Scaling for Best Precision

If M is scaled based on its largest matrix value, you obtain

2.9297e-003  0            0
3.3203e-002  2.9297e-003  0
3.3301e-001  3.3203e-002  2.9297e-003

Best precision would automatically select the fraction length that minimizes the quantization
error. Even though precision was maximized for the given word length, quantization errors can
still occur. In this example, a few elements still quantize to zero.

See Also

More About
• “Range and Precision” on page 35-9
• “Detect Fixed-Point Constant Precision Loss” on page 36-24

36 Arithmetic Operations

36-20



Net Slope and Net Bias Precision

What are Net Slope and Net Bias?
You can represent a fixed-point number by a general slope and bias encoding scheme,

V ≈ V = SQ + B,

where:

• V is an arbitrarily precise real-world value.
• V is the approximate real-world value.
• Q, the stored value, is an integer that encodes V.
• S = F2E is the slope.
• B is the bias.

For a cast operation,

SaQa + Ba = SbQb + Bb

or

Qa =
SbQb

Sa
+

Bb− Ba
Sa

,

where:

• Sb
Sa

 is the net slope.

• Bb− Ba
Sa

 is the net bias.

Detect Net Slope and Net Bias Precision Issues
Precision issues might occur in the fixed-point constants, net slope and net bias, due to quantization
errors when you convert from floating point to fixed point. These fixed-point constant precision issues
can result in numerical inaccuracy in your model.

You can configure your model to alert you when fixed-point constant precision issues occur.

You can configure your model to alert you when fixed-point constant precision issues occur. To receive
alerts when fixed-point constant precision issues occur, use these options available in the Simulink
Configuration Parameters dialog box, on the Diagnostics > Type Conversion pane. Set the
parameters to warning or error so that Simulink alerts you when precision issues occur.

Configuration Parameter Specifies Default
“Detect underflow” Diagnostic action when a fixed-

point constant underflow occurs
during simulation

Does not generate a warning or
error.

 Net Slope and Net Bias Precision
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Configuration Parameter Specifies Default
“Detect overflow” Diagnostic action when a fixed-

point constant overflow occurs
during simulation

Does not generate a warning or
error.

“Detect precision loss” Diagnostic action when a fixed-
point constant precision loss
occurs during simulation

Does not generate a warning or
error.

The Fixed-Point Designer software provides the following information:

• The type of precision issue: underflow, overflow, or precision loss.
• The original value of the fixed-point constant.
• The quantized value of the fixed-point constant.
• The error in the value of the fixed-point constant.
• The block that introduced the error.

This information warns you that the outputs from this block are not accurate. If possible, change the
data types in your model to fix the issue.

Fixed-Point Constant Underflow
Fixed-point constant underflow occurs when the Fixed-Point Designer software encounters a fixed-
point constant whose data type does not have enough precision to represent the ideal value of the
constant, because the ideal value is too close to zero. Casting the ideal value to the fixed-point data
type causes the value of the fixed-point constant to become zero. Therefore the value of the fixed-
point constant differs from its ideal value.

Fixed-Point Constant Overflow
Fixed-point constant overflow occurs when the Fixed-Point Designer software converts a fixed-point
constant to a data type whose range is not large enough to accommodate the ideal value of the
constant with reasonable precision. The data type cannot accurately represent the ideal value
because the ideal value is either too large or too small. Casting the ideal value to the fixed-point data
type causes overflow. For example, suppose the ideal value is 200 and the converted data type is
int8. Overflow occurs in this case because the maximum value that int8 can represent is 127.

The Fixed-Point Designer software reports an overflow error if the quantized value differs from the
ideal value by more than the precision for the data type. The precision for a data type is
approximately equal to the default scaling (for more information, see “Fixed-Point Data Type
Parameters” on page 35-11.) Therefore, for positive values, the Fixed-Point Designer software treats
errors greater than the slope as overflows. For negative values, it treats errors greater than or equal
to the slope as overflows.

For example, the maximum value that int8 can represent is 127. The precision for int8 is 1.0. An
ideal value of 127.3 quantizes to 127 with an absolute error of 0.3. Although the ideal value 127.3
is greater than the maximum representable value for int8, the quantization error is small relative to
the precision of int8. Therefore the Fixed-Point Designer software does not report an overflow.
However, an ideal value of 128.1 does cause an overflow because the quantization error is 1.1,
which is larger than the precision for int8.
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Note Fixed-point constant overflow differs from fixed-point constant precision loss. Precision loss
occurs when the ideal fixed-point constant value is within the range of the current data type and
scaling, but the software cannot represent this value exactly.

Fixed-Point Constant Precision Loss
Fixed-point constant precision loss occurs when the Fixed-Point Designer software converts a fixed-
point constant to a data type without enough precision to represent the exact value of the constant.
As a result, the quantized value differs from the ideal value. For an example of this behavior, see
“Detect Fixed-Point Constant Precision Loss” on page 36-24.

Note Fixed-point constant precision loss differs from fixed-point constant overflow. Overflow occurs
when the range of the parameter data type, that is, the maximum value that it can represent, is
smaller than the ideal value of the parameter.

See Also

More About
• “Detect Fixed-Point Constant Precision Loss” on page 36-24
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Detect Fixed-Point Constant Precision Loss
This example shows how to detect fixed-point constant precision loss.

To open the model, at the MATLAB command line, enter:

cd(fullfile(docroot,'toolbox','fixpoint','examples'))
ex_fixed_point_constant_precision_loss

For the Data Type Conversion block in this model:

• Input slope, SU = 1
• Output slope, SY = 1.000001
• Net slope, SU/SY = 1/1.000001

To set up the model and run the simulation:

1 For the Inport block, set the Data type to int16.
2 For the Data Type Conversion block, set the Output data type to fixdt(1,16,1.000001,0).
3 In the Configuration Parameters dialog box, set the Diagnostics > Type Conversion >

Detect precision loss configuration parameter to error.
4 In your Simulink model window, in the Simulation tab, click Run.

When you simulate the model, a net slope quantization error occurs.

The Fixed-Point Designer software generates an error informing you that net scaling quantization
caused precision loss. The message provides the following information:

• The block that introduced the error.
• The original value of the net slope.
• The quantized value of the net slope.
• The error in the value of the net slope.

See Also

More About
• “Net Slope and Net Bias Precision” on page 36-21
• “Range and Precision” on page 35-9
• “Fixed-Point Numbers in Simulink” on page 35-13
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Saturation and Wrapping

What Are Saturation and Wrapping?
Saturation and wrapping describe a particular way that some processors deal with overflow
conditions. For example, the ADSP-2100 family of processors from Analog Devices® supports either of
these modes. If a register has a saturation mode of operation, then an overflow condition is set to the
maximum positive or negative value allowed. Conversely, if a register has a wrapping mode of
operation, an overflow condition is set to the appropriate value within the range of the
representation.

Saturation and Wrapping
Consider an 8-bit unsigned word with binary-point-only scaling of 2-5. Suppose this data type must
represent a sine wave that ranges from -4 to 4. For values between 0 and 4, the word can represent
these numbers without regard to overflow. This is not the case with negative numbers. If overflows
saturate, all negative values are set to zero, which is the smallest number representable by the data
type. The saturation of overflows is shown in the following figure.

If overflows wrap, all negative values are set to the appropriate positive value. The wrapping of
overflows is shown in the following figure.
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Note For most control applications, saturation is the safer way of dealing with fixed-point overflow.
However, some processor architectures allow automatic saturation by hardware. If hardware
saturation is not available, then extra software is required, resulting in larger, slower programs. This
cost is justified in some designs — perhaps for safety reasons. Other designs accept wrapping to
obtain the smallest, fastest software.

The Simulink software supports saturation and wrapping for all fixed-point data types. You can select
saturation or wrapping for fixed-point Simulink blocks with the Saturate on integer overflow check
box.
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See Also

More About
• “Range and Precision” on page 35-9
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Guard Bits
You can eliminate the possibility of overflow by appending the appropriate number of guard bits to a
binary word.

For a two's complement signed value, the guard bits are filled with either 0's or 1's depending on the
value of the most significant bit (MSB). This is called sign extension. For example, consider a 4-bit
two's complement number with value 1011. If this number is extended in range to 7 bits with sign
extension, then the number becomes 1111101 and the value remains the same.

The Simulink software supports guard bits only for fractional data types. For both signed and
unsigned fractionals, the guard bits lie to the left of the default binary point. For example, by setting
Output data type to sfrac(36,4), you specify a 36–bit signed fractional data type with 4 guard
bits (total word size is 40 bits).
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Determine the Range of Fixed-Point Numbers
Fixed-point variables have a limited range for the same reason they have limited precision — because
digital systems represent numbers with a finite number of bits. As a general example, consider the
case where an integer is represented as a fixed-point word of size ws. The range for signed and
unsigned words is given by

max Q −min Q ,

where

min Q =
0            unsigned,

−2ws− 1   signed,

max Q =
 2ws− 1    unsigned,

  2ws− 1− 1 signed.  

Using the general [Slope Bias] encoding scheme described in “Scaling” on page 35-5, the
approximate real-world value has the range

max V −min V ,

where

min V =
B                            unsigned,

−F2E 2ws− 1 + B   signed,

max V =
 F2E 2ws− 1 +B    unsigned,

  F2E 2ws− 1− 1 +B  signed.  

If the real-world value exceeds the limited range of the approximate value, then the accuracy of the
representation can become significantly worse.
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Handle Overflows in Simulink Models
This example shows how to control the warning messages you receive when a model contains an
overflow. This diagnostic control can simplify debugging models in which only one type of overflow is
of interest.

Open the ex_detect_overflows model.

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))
ex_detect_overflows

This model contains a sine wave with an amplitude of 1.5 passed through two Data Type Conversion
blocks. In the Data Type Conversion block, the Saturate on integer overflow parameter is selected.
The Data Type Conversion1 block wraps when the signal is too large to fit into the output data type.

Simulate the model.

The Diagnostic Viewer displays two overflow warnings. The first overflow saturated and the second
overflow wrapped.

In the Configuration Parameters dialog box:

• Set Diagnostics > Data Validity > Wrap on overflow to Error.
• Set Diagnostics > Data Validity > Saturate on overflow to Warning.

Simulate the model again.

The Diagnostic Viewer displays an error message for the overflow that wrapped, and a warning
message for the overflow that saturated.

See Also
“Wrap on overflow” | “Saturate on overflow”
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Recommendations for Arithmetic and Scaling
In this section...
“Arithmetic Operations and Fixed-Point Scaling” on page 36-31
“Addition” on page 36-31
“Accumulation” on page 36-33
“Multiplication” on page 36-34
“Gain” on page 36-35
“Division” on page 36-36
“Summary” on page 36-37

Arithmetic Operations and Fixed-Point Scaling
The sections that follow describe the relationship between arithmetic operations and fixed-point
scaling, and offer some basic recommendations that may be appropriate for your fixed-point design.
For each arithmetic operation,

• The general [Slope Bias] encoding scheme described in “Scaling” on page 35-5 is used.
• The scaling of the result is automatically selected based on the scaling of the two inputs. In other

words, the scaling is inherited.
• Scaling choices are based on

• Minimizing the number of arithmetic operations of the result
• Maximizing the precision of the result

Additionally, binary-point-only scaling is presented as a special case of the general encoding
scheme.

In embedded systems, the scaling of variables at the hardware interface (the ADC or DAC) is fixed.
However for most other variables, the scaling is something you can choose to give the best design.
When scaling fixed-point variables, it is important to remember that

• Your scaling choices depend on the particular design you are simulating.
• There is no best scaling approach. All choices have associated advantages and disadvantages. It is

the goal of this section to expose these advantages and disadvantages to you.

Addition
Consider the addition of two real-world values:

Va = Vb + Vc .

These values are represented by the general [Slope Bias] encoding scheme described in “Scaling” on
page 35-5:

Vi = Fi2
EiQi + Bi .

In a fixed-point system, the addition of values results in finding the variable Qa:
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Qa =
Fb
Fa

2Eb− EaQb +
Fc
Fa

2Ec− EaQc +
Bb + Bc− Ba

Fa
2−Ea .

This formula shows

• In general, Qa is not computed through a simple addition of Qb and Qc.
• In general, there are two multiplications of a constant and a variable, two additions, and some

additional bit shifting.

Inherited Scaling for Speed

In the process of finding the scaling of the sum, one reasonable goal is to simplify the calculations.
Simplifying the calculations should reduce the number of operations, thereby increasing execution
speed. The following choices can help to minimize the number of arithmetic operations:

• Set Ba = Bb + Bc. This eliminates one addition.
• Set Fa = Fb or Fa = Fc. Either choice eliminates one of the two constant times variable

multiplications.

The resulting formula is

Qa = 2Eb− EaQb +
Fc
Fa

2Ec− EaQc

or

Qa =
Fb
Fa

2Eb− EaQb + 2Ec− EaQc .

These equations appear to be equivalent. However, your choice of rounding and precision may make
one choice stand out over the other. To further simplify matters, you could choose Ea = Ec or Ea = Eb.
This will eliminate some bit shifting.

Inherited Scaling for Maximum Precision

In the process of finding the scaling of the sum, one reasonable goal is maximum precision. You can
determine the maximum-precision scaling if the range of the variable is known. “Maximize Precision”
on page 36-18 shows that you can determine the range of a fixed-point operation from max(Va) and
min(Va). For a summation, you can determine the range from

min Va = min Vb + min Vc ,

max Va = max Vb + max Vc .

You can now derive the maximum-precision slope:

Fa2Ea =
max Va −min Va

2wsa− 1

=
Fa2Eb 2wsb− 1 + Fc2

Ec 2wsc− 1
2wsa− 1

.

In most cases the input and output word sizes are much greater than one, and the slope becomes
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Fa2Ea ≈ Fb2Eb + wsb−wsa + Fc2
Ec + wsc−wsa,

which depends only on the size of the input and output words. The corresponding bias is

Ba = min Va − Fa2Eamin Qa .

The value of the bias depends on whether the inputs and output are signed or unsigned numbers.

If the inputs and output are all unsigned, then the minimum values for these variables are all zero
and the bias reduces to a particularly simple form:

Ba = Bb + Bc .

If the inputs and the output are all signed, then the bias becomes

Ba ≈ Bb + Bc + Fb2Eb −2wsb− 1 + 2wsb− 1 + Fc2
Ec −2wsc− 1 + 2wsc− 1 ,

Ba ≈ Bb + Bc .

Binary-Point-Only Scaling

For binary-point-only scaling, finding Qa results in this simple expression:

Qa = 2Eb− EaQb + 2Ec− EaQc .

This scaling choice results in only one addition and some bit shifting. The avoidance of any
multiplications is a big advantage of binary-point-only scaling.

Note The subtraction of values produces results that are analogous to those produced by the
addition of values.

Accumulation
The accumulation of values is closely associated with addition:

Va_new = Va_old + Vb .

Finding Qa_new involves one multiplication of a constant and a variable, two additions, and some bit
shifting:

Qa_new = Qa_old +
Fb
Fa

2Eb− EaQb +
Bb
Fa

2−Ea .

The important difference for fixed-point implementations is that the scaling of the output is identical
to the scaling of the first input.

Binary-Point-Only Scaling

For binary-point-only scaling, finding Qa_new results in this simple expression:

Qa_new = Qa_old + 2Eb− EaQb .
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This scaling option only involves one addition and some bit shifting.

Note The negative accumulation of values produces results that are analogous to those produced by
the accumulation of values.

Multiplication
Consider the multiplication of two real-world values:

Va = VbVc .

These values are represented by the general [Slope Bias] encoding scheme described in “Scaling” on
page 35-5:

Vi = Fi2
EiQi + Bi .

In a fixed-point system, the multiplication of values results in finding the variable Qa:

Qa =
FbFc
Fa

2Eb + Ec− EaQbQc +
FbBc
Fa

2Eb− EaQb

+
FcBb
Fa

2Ec− EaQc +
BbBc− Ba

Fa
2−Ea .

This formula shows

• In general, Qa is not computed through a simple multiplication of Qb and Qc.
• In general, there is one multiplication of a constant and two variables, two multiplications of a

constant and a variable, three additions, and some additional bit shifting.

Inherited Scaling for Speed

The number of arithmetic operations can be reduced with these choices:

• Set Ba = BbBc. This eliminates one addition operation.
• Set Fa = FbFc. This simplifies the triple multiplication—certainly the most difficult part of the

equation to implement.
• Set Ea = Eb + Ec. This eliminates some of the bit shifting.

The resulting formula is

Qa = QbQc +
Bc
Fc

2−EcQb +
Bb
Fb

2−EbQc .

Inherited Scaling for Maximum Precision

You can determine the maximum-precision scaling if the range of the variable is known. “Maximize
Precision” on page 36-18 shows that you can determine the range of a fixed-point operation from

max Va

and
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min Va .

For multiplication, you can determine the range from

min Va = min VLL, VLH, VHL, VHH ,

max Va = max VLL, VLH, VHL, VHH ,

where

VLL = min Vb ⋅min Vc ,

VLH = min Vb ⋅max Vc ,

VHL = max Vb ⋅min Vc ,

VHH = max Vb ⋅max Vc .

Binary-Point-Only Scaling

For binary-point-only scaling, finding Qa results in this simple expression:

Qa = 2Eb + Ec− EaQbQc .

Gain
Consider the multiplication of a constant and a variable

Va = K Vb,

where K is a constant called the gain. Since Va results from the multiplication of a constant and a
variable, finding Qa is a simplified version of the general fixed-point multiplication formula:

Qa =
KFb2Eb

Fa2Ea
Qb +

KBb− Ba

Fa2Ea
.

Note that the terms in the parentheses can be calculated offline. Therefore, there is only one
multiplication of a constant and a variable and one addition.

To implement the above equation without changing it to a more complicated form, the constants need
to be encoded using a binary-point-only format. For each of these constants, the range is the trivial
case of only one value. Despite the trivial range, the binary point formulas for maximum precision are
still valid. The maximum-precision representations are the most useful choices unless there is an
overriding need to avoid any shifting. The encoding of the constants is

KFb2Eb

Fa2Ea
= 2EXQX

KBb− Ba

Fa2Ea
= 2EYQY

resulting in the formula
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Qa = 2EXQXQB + 2EYQY .

Inherited Scaling for Speed

The number of arithmetic operations can be reduced with these choices:

• Set Ba = KBb. This eliminates one constant term.
• Set Fa = KFb and Ea = Eb. This sets the other constant term to unity.

The resulting formula is simply

Qa = Qb .

If the number of bits is different, then either handling potential overflows or performing sign
extensions is the only possible operation involved.

Inherited Scaling for Maximum Precision

The scaling for maximum precision does not need to be different from the scaling for speed unless the
output has fewer bits than the input. If this is the case, then saturation should be avoided by dividing
the slope by 2 for each lost bit. This prevents saturation but causes rounding to occur.

Division
Division of values is an operation that should be avoided in fixed-point embedded systems, but it can
occur in places. Therefore, consider the division of two real-world values:

Va = Vb/Vc .

These values are represented by the general [Slope Bias] encoding scheme described in “Scaling” on
page 35-5:

Vi = Fi2
EiQi + Bi .

In a fixed-point system, the division of values results in finding the variable Qa:

Qa =
Fb2EbQb + Bb

FcFa2Ec + EaQc + BcFa2Ea
−

Ba
Fa

2−Ea .

This formula shows

• In general, Qa is not computed through a simple division of Qb by Qc.
• In general, there are two multiplications of a constant and a variable, two additions, one division

of a variable by a variable, one division of a constant by a variable, and some additional bit
shifting.

Inherited Scaling for Speed

The number of arithmetic operations can be reduced with these choices:

• Set Ba = 0. This eliminates one addition operation.
• If Bc = 0, then set the fractional slope Fa = Fb/Fc. This eliminates one constant times variable

multiplication.
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The resulting formula is

Qa =
Qb
Qc

2Eb− Ec− Ea +
Bb/Fb

Qc
2−Ec− Ea .

If Bc ≠ 0, then no clear recommendation can be made.

Inherited Scaling for Maximum Precision

You can determine the maximum-precision scaling if the range of the variable is known. “Maximize
Precision” on page 36-18 shows that you can determine the range of a fixed-point operation from

max Va

and

min Va .

For division, you can determine the range from

min Va = min VLL, VLH, VHL, VHH ,

max Va = max VLL, VLH, VHL, VHH ,

where for nonzero denominators

VLL = min Vb /min Vc ,

VLH = min Vb /max Vc ,

VHL = max Vb /min Vc ,

VHH = max Vb /max Vc .

Binary-Point-Only Scaling

For binary-point-only scaling, finding Qa results in this simple expression:

Qa =
Qb
Qc

2Eb− Ec− Ea .

Note For the last two formulas involving Qa, a divide by zero and zero divided by zero are possible.
In these cases, the hardware will give some default behavior but you must make sure that these
default responses give meaningful results for the embedded system.

Summary
From the previous analysis of fixed-point variables scaled within the general [Slope Bias] encoding
scheme, you can conclude

• Addition, subtraction, multiplication, and division can be very involved unless certain choices are
made for the biases and slopes.
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• Binary-point-only scaling guarantees simpler math, but generally sacrifices some precision.

Note that the previous formulas don't show the following:

• Constants and variables are represented with a finite number of bits.
• Variables are either signed or unsigned.
• Rounding and overflow handling schemes. You must make these decisions before an actual fixed-
point realization is achieved.

See Also
“Scaling” on page 35-5
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Parameter and Signal Conversions
In this section...
“Introduction” on page 36-39
“Parameter Conversions” on page 36-39
“Signal Conversions” on page 36-40

Introduction
To completely understand the results generated by fixed-point Simulink blocks, you must be aware of
these issues:

• When numerical block parameters are converted from doubles to fixed-point data types
• When input signals are converted from one fixed-point data type to another (if at all)
• When arithmetic operations on input signals and parameters are performed

For example, suppose a fixed-point Simulink block performs an arithmetic operation on its input
signal and a parameter, and then generates output having characteristics that are specified by the
block. The following diagram illustrates how these issues are related.

The sections that follow describe parameter and signal conversions. “Rules for Arithmetic
Operations” on page 36-42 discusses arithmetic operations.

Parameter Conversions
Parameters of fixed-point blocks that accept numerical values are always converted from double to a
fixed-point data type. Parameters can be converted to the input data type, the output data type, or to
a data type explicitly specified by the block. For example, the Discrete FIR Filter block converts its
Initial states parameter to the input data type, and converts its Numerator coefficient parameter
to a data type you explicitly specify via the block dialog box.

 Parameter and Signal Conversions

36-39



Parameters are always converted before any arithmetic operations are performed. Additionally,
parameters are always converted offline using round-to-nearest and saturation. Offline conversions
are discussed below.

Note Because parameters of fixed-point blocks begin as double, they are never precise to more than
53 bits. Therefore, if the output of your fixed-point block is longer than 53 bits, your result might be
less precise than you anticipated.

Offline Conversions

An offline conversion is a conversion performed by your development platform (for example, the
processor on your PC), and not by the fixed-point processor you are targeting. For example, suppose
you are using a PC to develop a program to run on a fixed-point processor, and you need the fixed-
point processor to compute

y = ab
c u = Cu

over and over again. If a, b, and c are constant parameters, it is inefficient for the fixed-point
processor to compute ab/c every time. Instead, the PC's processor should compute ab/c offline one
time, and the fixed-point processor computes only C·u. This eliminates two costly fixed-point
arithmetic operations.

Signal Conversions
Consider the conversion of a real-world value from one fixed-point data type to another. Ideally, the
values before and after the conversion are equal.

Va = Vb,

where Vb is the input value and Va is the output value. To see how the conversion is implemented, the
two ideal values are replaced by the general [Slope Bias] encoding scheme described in “Scaling” on
page 35-5:

Vi = Fi2
EiQi + Bi .

Solving for the output data type's stored integer value, Qa is obtained:

Qa =
Fb
Fa

2Eb− EaQb +
Bb− Ba

Fa
2−Ea

= Fs2
Eb− EaQb + Bnet,

where Fs is the adjusted fractional slope and Bnet is the net bias. The offline conversions and online
conversions and operations are discussed below.

Offline Conversions

Both Fs and Bnet are computed offline using round-to-nearest and saturation. Bnet is then stored using
the output data type and Fs is stored using an automatically selected data type.
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Online Conversions and Operations

The remaining conversions and operations are performed online by the fixed-point processor, and
depend on the slopes and biases for the input and output data types. The conversions and operations
are given by these steps:

1 The initial value for Qa is given by the net bias, Bnet:

Qa = Bnet .
2 The input integer value, Qb, is multiplied by the adjusted slope, Fs:

QRawProduct = FsQb .
3 The result of step 2 is converted to the modified output data type where the slope is one and bias

is zero:

QTemp = convert QRawProduct .

This conversion includes any necessary bit shifting, rounding, or overflow handling.
4 The summation operation is performed:

Qa = QTemp + Qa .

This summation includes any necessary overflow handling.

Streamlining Simulations and Generated Code

Note that the maximum number of conversions and operations is performed when the slopes and
biases of the input signal and output signal differ (are mismatched). If the scaling of these signals is
identical (matched), the number of operations is reduced from the worst (most inefficient) case. For
example, when an input has the same fractional slope and bias as the output, only step 3 is required:

Qa = convert Qb .

Exclusive use of binary-point-only scaling for both input signals and output signals is a common way
to eliminate mismatched slopes and biases, and results in the most efficient simulations and
generated code.
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Rules for Arithmetic Operations
Fixed-point arithmetic refers to how signed or unsigned binary words are operated on. The simplicity
of fixed-point arithmetic functions such as addition and subtraction allows for cost-effective hardware
implementations.

The sections that follow describe the rules that the Simulink software follows when arithmetic
operations are performed on inputs and parameters. These rules are organized into four groups
based on the operations involved: addition and subtraction, multiplication, division, and shifts. For
each of these four groups, the rules for performing the specified operation are presented with an
example using the rules.

Computational Units
The core architecture of many processors contains several computational units including arithmetic
logic units (ALUs), multiply and accumulate units (MACs), and shifters. These computational units
process the binary data directly and provide support for arithmetic computations of varying precision.
The ALU performs a standard set of arithmetic and logic operations as well as division. The MAC
performs multiply, multiply/add, and multiply/subtract operations. The shifter performs logical and
arithmetic shifts, normalization, denormalization, and other operations.

Addition and Subtraction
Addition is the most common arithmetic operation a processor performs. When two n-bit numbers are
added together, it is always possible to produce a result with n + 1 nonzero digits due to a carry from
the leftmost digit. For two's complement addition of two numbers, there are three cases to consider:

• If both numbers are positive and the result of their addition has a sign bit of 1, then overflow has
occurred; otherwise, the result is correct.

• If both numbers are negative and the sign of the result is 0, then overflow has occurred;
otherwise, the result is correct.

• If the numbers are of unlike sign, overflow cannot occur and the result is always correct.

Fixed-Point Simulink Blocks Summation Process

Consider the summation of two numbers. Ideally, the real-world values obey the equation

Va = ± Vb ± Vc,

where Vb and Vc are the input values and Va is the output value. To see how the summation is actually
implemented, the three ideal values should be replaced by the general [Slope Bias] encoding scheme
described in “Scaling” on page 35-5:

Vi = Fi2
EiQi + Bi .

The equation in “Addition” on page 36-31 gives the solution of the resulting equation for the stored
integer, Qa. Using shorthand notation, that equation becomes

Qa = ± Fsb2Eb− EaQb ± Fsc2
Ec− EaQc + Bnet,

where Fsb and Fsc are the adjusted fractional slopes and Bnet is the net bias. The offline conversions
and online conversions and operations are discussed below.
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Offline Conversions

Fsb, Fsc, and Bnet are computed offline using round-to-nearest and saturation. Furthermore, Bnet is
stored using the output data type.
Online Conversions and Operations

The remaining operations are performed online by the fixed-point processor, and depend on the
slopes and biases for the input and output data types. The worst (most inefficient) case occurs when
the slopes and biases are mismatched. The worst-case conversions and operations are given by these
steps:

1 The initial value for Qa is given by the net bias, Bnet:

Qa = Bnet .
2 The first input integer value, Qb, is multiplied by the adjusted slope, Fsb:

QRawProduct = FsbQb .
3 The previous product is converted to the modified output data type where the slope is one and

the bias is zero:

QTemp = convert QRawProduct .

This conversion includes any necessary bit shifting, rounding, or overflow handling.
4 The summation operation is performed:

Qa = Qa ± QTemp .

This summation includes any necessary overflow handling.
5 Steps 2 to 4 are repeated for every number to be summed.

It is important to note that bit shifting, rounding, and overflow handling are applied to the
intermediate steps (3 and 4) and not to the overall sum.

For more information, see “The Summation Process” on page 36-49.

Streamlining Simulations and Generated Code

If the scaling of the input and output signals is matched, the number of summation operations is
reduced from the worst (most inefficient) case. For example, when an input has the same fractional
slope as the output, step 2 reduces to multiplication by one and can be eliminated. Trivial steps in the
summation process are eliminated for both simulation and code generation. Exclusive use of binary-
point-only scaling for both input signals and output signals is a common way to eliminate mismatched
slopes and biases, and results in the most efficient simulations and generated code.

Multiplication
The multiplication of an n-bit binary number with an m-bit binary number results in a product that is
up to m + n bits in length for both signed and unsigned words. Most processors perform n-bit by n-bit
multiplication and produce a 2n-bit result (double bits) assuming there is no overflow condition.

Fixed-Point Simulink Blocks Multiplication Process

Consider the multiplication of two numbers. Ideally, the real-world values obey the equation
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Va = VbVc .

where Vb and Vc are the input values and Va is the output value. To see how the multiplication is
actually implemented, the three ideal values should be replaced by the general [Slope Bias] encoding
scheme described in “Scaling” on page 35-5:

Vi = Fi2
EiQi + Bi .

The solution of the resulting equation for the output stored integer, Qa, is given below:

Qa =
FbFc
Fa

2Eb + Ec− EaQbQc +
FbBc
Fa

2Eb− EaQb

+
FcBb
Fa

2Ec− EaQc +
BbBc− Ba

Fa
2−Ea .

Multiplication with Nonzero Biases and Mismatched Fractional Slopes

The worst-case implementation of the above equation occurs when the slopes and biases of the input
and output signals are mismatched. In such cases, several low-level integer operations are required
to carry out the high-level multiplication (or division). Implementation choices made about these low-
level computations can affect the computational efficiency, rounding errors, and overflow.

In Simulink blocks, the actual multiplication or division operation is always performed on fixed-point
variables that have zero biases. If an input has nonzero bias, it is converted to a representation that
has binary-point-only scaling before the operation. If the result is to have nonzero bias, the operation
is first performed with temporary variables that have binary-point-only scaling. The result is then
converted to the data type and scaling of the final output.

If both the inputs and the output have nonzero biases, then the operation is broken down as follows:

V1Temp = V1,
V2Temp = V2,
V3Temp = V1TempV2Temp,
V3 = V3Temp,

where

V1Temp = 2E1TempQ1Temp,

V2Temp = 2E2TempQ2Temp,

V3Temp = 2E3TempQ3Temp .

These equations show that the temporary variables have binary-point-only scaling. However, the
equations do not indicate the signedness, word lengths, or values of the fixed exponent of these
variables. The Simulink software assigns these properties to the temporary variables based on the
following goals:

• Represent the original value without overflow.

The data type and scaling of the original value define a maximum and minimum real-world value:

VMax = F2EQMaxInteger + B,
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VMin = F2EQMinInteger + B .

The data type and scaling of the temporary value must be able to represent this range without
overflow. Precision loss is possible, but overflow is never allowed.

• Use a data type that leads to efficient operations.

This goal is relative to the target that you will use for production deployment of your design. For
example, suppose that you will implement the design on a 16-bit fixed-point processor that
provides a 32-bit long, 16-bit int, and 8-bit short or char. For such a target, preserving
efficiency means that no more than 32 bits are used, and the smaller sizes of 8 or 16 bits are used
if they are sufficient to maintain precision.

• Maintain precision.

Ideally, every possible value defined by the original data type and scaling is represented perfectly
by the temporary variable. However, this can require more bits than is efficient. Bits are
discarded, resulting in a loss of precision, to the extent required to preserve efficiency.

For example, consider the following, assuming a 16-bit microprocessor target:

VOriginal = QOriginal + ‐43.25,

where QOriginal is an 8-bit, unsigned data type. For this data type,

QMaxInteger = 225,
QMinInteger = 0,

so

VMax = 211.75,
VMin = − 43.25.

The minimum possible value is negative, so the temporary variable must be a signed integer data
type. The original variable has a slope of 1, but the bias is expressed with greater precision with two
digits after the binary point. To get full precision, the fixed exponent of the temporary variable has to
be -2 or less. The Simulink software selects the least possible precision, which is generally the most
efficient, unless overflow issues arise. For a scaling of 2-2, selecting signed 16-bit or signed 32-bit
avoids overflow. For efficiency, the Simulink software selects the smaller choice of 16 bits. If the
original variable is an input, then the equations to convert to the temporary variable are

uint8_T   QOriginal,
uint16_T QTemp,    
QTemp = int16_T QOriginal ≪ 2 − 173.

Multiplication with Zero Biases and Mismatched Fractional Slopes

When the biases are zero and the fractional slopes are mismatched, the implementation reduces to

Qa =
FbFc
Fa

2Eb + Ec− EaQbQc .

Offline Conversions
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The quantity

FNet =
FbFc
Fa

is calculated offline using round-to-nearest and saturation. FNet is stored using a fixed-point data type
of the form

2ENetQNet,

where ENet and QNet are selected automatically to best represent FNet.

Online Conversions and Operations

1 The integer values Qb and Qc are multiplied:

QRawProduct = QbQc .

To maintain the full precision of the product, the binary point of QRawProduct is given by the sum of
the binary points of Qb and Qc.

2 The previous product is converted to the output data type:

QTemp = convert QRawProduct .

This conversion includes any necessary bit shifting, rounding, or overflow handling. “Signal
Conversions” on page 36-40 discusses conversions.

3 The multiplication

Q2RawProduct = QTempQNet

is performed.
4 The previous product is converted to the output data type:

Qa = convert Q2RawProduct .

This conversion includes any necessary bit shifting, rounding, or overflow handling. “Signal
Conversions” on page 36-40 discusses conversions.

5 Steps 1 through 4 are repeated for each additional number to be multiplied.

Multiplication with Zero Biases and Matching Fractional Slopes

When the biases are zero and the fractional slopes match, the implementation reduces to

Qa = 2Eb + Ec− EaQbQc .

Offline Conversions

No offline conversions are performed.

Online Conversions and Operations

1 The integer values Qb and Qc are multiplied:

QRawProduct = QbQc .
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To maintain the full precision of the product, the binary point of QRawProduct is given by the sum of
the binary points of Qb and Qc.

2 The previous product is converted to the output data type:

Qa = convert QRawProduct .

This conversion includes any necessary bit shifting, rounding, or overflow handling. “Signal
Conversions” on page 36-40 discusses conversions.

3 Steps 1 and 2 are repeated for each additional number to be multiplied.

For more information, see “The Multiplication Process” on page 36-51.

Division
This section discusses the division of quantities with zero bias.

Note When any input to a division calculation has nonzero bias, the operations performed exactly
match those for multiplication described in “Multiplication with Nonzero Biases and Mismatched
Fractional Slopes” on page 36-44.

Fixed-Point Simulink Blocks Division Process

Consider the division of two numbers. Ideally, the real-world values obey the equation

Va = Vb/Vc,

where Vb and Vc are the input values and Va is the output value. To see how the division is actually
implemented, the three ideal values should be replaced by the general [Slope Bias] encoding scheme
described in “Scaling” on page 35-5:

Vi = Fi2
EiQi + Bi .

For the case where the slope adjustment factors are one and the biases are zero for all signals, the
solution of the resulting equation for the output stored integer, Qa, is given by the following equation:

Qa = 2Eb− Ec− Ea Qb/Qc .

This equation involves an integer division and some bit shifts. If Ea > Eb–Ec, then any bit shifts are to
the right and the implementation is simple. However, if Ea < Eb–Ec, then the bit shifts are to the left
and the implementation can be more complicated. The essential issue is that the output has more
precision than the integer division provides. To get full precision, a fractional division is needed. The
C programming language provides access to integer division only for fixed-point data types.
Depending on the size of the numerator, you can obtain some of the fractional bits by performing a
shift prior to the integer division. In the worst case, it might be necessary to resort to repeated
subtractions in software.

In general, division of values is an operation that should be avoided in fixed-point embedded systems.
Division where the output has more precision than the integer division (i.e., Ea < Eb–Ec) should be
used with even greater reluctance.

For more information, see “The Division Process” on page 36-53.
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Shifts
Nearly all microprocessors and digital signal processors support well-defined bit-shift (or simply shift)
operations for integers. For example, consider the 8-bit unsigned integer 00110101. The results of a
2-bit shift to the left and a 2-bit shift to the right are shown in the following table.

Shift Operation Binary Value Decimal Value
No shift (original number) 00110101 53
Shift left by 2 bits 11010100 212
Shift right by 2 bits 00001101 13

You can perform a shift using the Simulink Shift Arithmetic block. Use this block to perform a bit
shift, a binary point shift, or both

Shifting Bits to the Right

The special case of shifting bits to the right requires consideration of the treatment of the leftmost
bit, which can contain sign information. A shift to the right can be classified either as a logical shift
right or an arithmetic shift right. For a logical shift right, a 0 is incorporated into the most significant
bit for each bit shift. For an arithmetic shift right, the most significant bit is recycled for each bit
shift.

The Shift Arithmetic block performs an arithmetic shift right and, therefore, recycles the most
significant bit for each bit shift right. For example, given the fixed-point number 11001.011 (-6.625), a
bit shift two places to the right with the binary point unmoved yields the number 11110.010 (-1.75),
as shown in the model below:

To perform a logical shift right on a signed number using the Shift Arithmetic block, use the Data
Type Conversion block to cast the number as an unsigned number of equivalent length and scaling.
This model shows that the fixed-point signed number 11001.001 (-6.625) becomes 00110.010 (6.25).
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The Summation Process
Addition is the most common arithmetic operation a processor performs. When two n-bit numbers are
added together, it is always possible to produce a result with n + 1 nonzero digits due to a carry from
the leftmost digit.

Suppose you want to sum three numbers. Each of these numbers is represented by an 8-bit word, and
each has a different binary-point-only scaling. Additionally, the output is restricted to an 8-bit word
with binary-point-only scaling of 2-3.

The summation is shown in the following model for the input values 19.875, 5.4375, and 4.84375.

The sum follows these steps:

1 Because the biases are matched, the initial value of Qa is trivial:

Qa = 00000.000.
2 The first number to be summed (19.875) has a fractional slope that matches the output fractional

slope. Furthermore, the binary points and storage types are identical, so the conversion is trivial:

Qb = 10011.111,
QTemp = Qb .

3 The summation operation is performed:

Qa = Qa + QTemp = 10011.111.
4 The second number to be summed (5.4375) has a fractional slope that matches the output

fractional slope, so a slope adjustment is not needed. The storage data types also match, but the
difference in binary points requires that both the bits and the binary point be shifted one place to
the right:

Qc = 0101.0111,
QTemp = convert Qc
QTemp = 00101.011.
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Note that a loss in precision of one bit occurs, with the resulting value of QTemp determined by the
rounding mode. For this example, round-to-floor is used. Overflow cannot occur in this case
because the bits and binary point are both shifted to the right.

5 The summation operation is performed:

Qa = Qa + QTemp
     10011.111

= + 00101.011
11001.010 = 25.250.

Note that overflow did not occur, but it is possible for this operation.
6 The third number to be summed (4.84375) has a fractional slope that matches the output

fractional slope, so a slope adjustment is not needed. The storage data types also match, but the
difference in binary points requires that both the bits and the binary point be shifted two places
to the right:

Qd = 100.11011,
QTemp = convert Qd
QTemp = 00100.110.

Note that a loss in precision of two bit occurs, with the resulting value of QTemp determined by the
rounding mode. For this example, round-to-floor is used. Overflow cannot occur in this case
because the bits and binary point are both shifted to the right.

7 The summation operation is performed:

Qa = Qa + QTemp
     11001.010

= + 00100.110
11110.000 = 30.000.

Note that overflow did not occur, but it is possible for this operation.

As shown here, the result of step 7 differs from the ideal sum:

 10011.111
   0101.0111

= + 100.11011
11110.001 = 30.125.

Blocks that perform addition and subtraction include the Add, Gain, and Discrete FIR Filter blocks.
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The Multiplication Process
The multiplication of an n-bit binary number with an m-bit binary number results in a product that is
up to m + n bits in length for both signed and unsigned words.

Suppose you want to multiply three numbers. Each of these numbers is represented by a 5-bit word,
and each has a different binary-point-only scaling. Additionally, the output is restricted to a 10-bit
word with binary-point-only scaling of 2-4. The multiplication is shown in the following model for the
input values 5.75, 2.375, and 1.8125.

Applying the rules from the previous section, the multiplication follows these steps:

1 The first two numbers (5.75 and 2.375) are multiplied:

QRawProduct =       101.11

  × 10.011
101.11 ⋅ 2−3

 

  101.11 ⋅ 2−2

+ 101.11 ⋅ 21

01101.10101 = 13.65625.

Note that the binary point of the product is given by the sum of the binary points of the
multiplied numbers.

2 The result of step 1 is converted to the output data type:

QTemp = convert QRawProduct
= 001101.1010 = 13.6250.

“Signal Conversions” on page 36-40 discusses conversions. Note that a loss in precision of one
bit occurs, with the resulting value of QTemp determined by the rounding mode. For this example,
round-to-floor is used. Furthermore, overflow did not occur but is possible for this operation.

3 The result of step 2 and the third number (1.8125) are multiplied:
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QRawProduct =         01101.1010

          × 1.1101
 1101.1010 ⋅ 2−4

     

  1101.1010 ⋅ 2−2

  1101.1010 ⋅ 2−1

+ 1101.1010 ⋅ 20

0011000.10110010= 24.6953125.

Note that the binary point of the product is given by the sum of the binary points of the
multiplied numbers.

4 The product is converted to the output data type:

Qa = convert QRawProduct
= 011000.1011 = 24.6875.

“Signal Conversions” on page 36-40 discusses conversions. Note that a loss in precision of 4 bits
occurred, with the resulting value of QTemp determined by the rounding mode. For this example,
round-to-floor is used. Furthermore, overflow did not occur but is possible for this operation.

Blocks that perform multiplication include the Product, Discrete FIR Filter, and Gain blocks.
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The Division Process
The C programming language provides access to integer division only for fixed-point data types.
Depending on the size of the numerator, you can obtain some of the fractional bits by performing a
shift prior to the integer division.

Suppose you want to divide two numbers. Each of these numbers is represented by an 8-bit word, and
each has a binary-point-only scaling of 2-4. Additionally, the output is restricted to an 8-bit word with
binary-point-only scaling of 2-4.

The division of 9.1875 by 1.5000 is shown in the following model.

For this example,

Qa = 2−4− −4 − −4 Qb/Qc

= 24 Qb/Qc .

Assuming a large data type was available, this could be implemented as

Qa =
24Qb
Qc

,

where the numerator uses the larger data type. If a larger data type was not available, integer
division combined with four repeated subtractions would be used. Both approaches produce the same
result, with the former being more efficient.
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Shifts
Nearly all microprocessors and digital signal processors support well-defined bit-shift (or simply shift)
operations for integers. For example, consider the 8-bit unsigned integer 00110101. The results of a
2-bit shift to the left and a 2-bit shift to the right are shown in the following table.

Shift Operation Binary Value Decimal Value
No shift (original number) 00110101 53
Shift left by 2 bits 11010100 212
Shift right by 2 bits 00001101 13

You can perform a shift using the Simulink Shift Arithmetic block. Use this block to perform a bit
shift, a binary point shift, or both

Shifting Bits to the Right
The special case of shifting bits to the right requires consideration of the treatment of the leftmost
bit, which can contain sign information. A shift to the right can be classified either as a logical shift
right or an arithmetic shift right. For a logical shift right, a 0 is incorporated into the most significant
bit for each bit shift. For an arithmetic shift right, the most significant bit is recycled for each bit
shift.

The Shift Arithmetic block performs an arithmetic shift right and, therefore, recycles the most
significant bit for each bit shift right. For example, given the fixed-point number 11001.011 (-6.625), a
bit shift two places to the right with the binary point unmoved yields the number 11110.010 (-1.75),
as shown in the model below:

To perform a logical shift right on a signed number using the Shift Arithmetic block, use the Data
Type Conversion block to cast the number as an unsigned number of equivalent length and scaling, as
shown in the following model. The model shows that the fixed-point signed number 11001.001
(-6.625) becomes 00110.010 (6.25).
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Conversions and Arithmetic Operations
This example uses the Discrete FIR Filter block to illustrate when parameters are converted from a
double to a fixed-point number, when the input data type is converted to the output data type, and
when the rules for addition, subtraction, and multiplication are applied.

Note If a block can perform all four arithmetic operations, then the rules for multiplication and
division are applied first. The Discrete FIR Filter block is an example of this.

Suppose you configure the Discrete FIR Filter block for two outputs, where the first output is given
by

y1 k = 13 ⋅ u k + 11 ⋅ u k− 1 − 7 ⋅ u k− 2 ,

and the second output is given by

y2 k = 6 ⋅ u k − 5 ⋅ u k− 1 .

Additionally, the initial values of u(k–1) and u(k–2) are given by 0.8 and 1.1, respectively, and all
inputs, parameters, and outputs have binary-point-only scaling.

To configure the Discrete FIR Filter block for this situation, on the Main pane of its dialog box, you
must specify the Coefficients parameter as [13 11 -7; 6 -5 0] and the Initial states parameter
as [0.8 1.1], as shown here.
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Similarly, configure the options on the Data Types pane of the block dialog box to appear as follows:
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The Discrete FIR Filter block performs parameter conversions and block operations in the following
order:

1 The Coefficients parameter is converted offline from doubles to the Coefficients data type
using round-to-nearest and saturation.

The Initial states parameter is converted offline from doubles to the input data type using
round-to-nearest and saturation.

2 The coefficients and inputs are multiplied together for the initial time step for both outputs. For
y1(0), the operations 13·u(0), 11·0.8, and –7·1.1 are performed, while for y2(0), the operations
6·u(0) and –5·0.8 are performed.

The results of these operations are stored as Product output.
3 The sum is carried out in Accumulator. The final summation result is then converted to Output.
4 Steps 2 and 3 repeat for subsequent time steps.

See Also
Discrete FIR Filter
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More About
• “Parameter and Signal Conversions” on page 36-39
• “Rules for Arithmetic Operations” on page 36-42
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Realization Structures

• “Realizing Fixed-Point Digital Filters” on page 37-2
• “Targeting an Embedded Processor” on page 37-3
• “Canonical Forms” on page 37-5
• “Direct Form II” on page 37-6
• “Series Cascade Form” on page 37-9
• “Parallel Form” on page 37-11
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Realizing Fixed-Point Digital Filters
In this section...
“Introduction” on page 37-2
“Realizations and Data Types” on page 37-2

Introduction
This chapter investigates how you can realize fixed-point digital filters using Simulink blocks and the
Fixed-Point Designer software.

The Fixed-Point Designer software addresses the needs of the control system, signal processing, and
other fields where algorithms are implemented on fixed-point hardware. In signal processing, a 
digital filter is a computational algorithm that converts a sequence of input numbers to a sequence of
output numbers. The algorithm is designed such that the output signal meets frequency-domain or
time-domain constraints (desirable frequency components are passed, undesirable components are
rejected).

In general terms, a discrete transfer function controller is a form of a digital filter. However, a digital
controller can contain nonlinear functions such as lookup tables in addition to a discrete transfer
function. This guide uses the term digital filter when referring to discrete transfer functions.

Note To design and implement a wide variety of floating-point and fixed-point filters suitable for use
in signal processing applications and for deployment on DSP chips, use the DSP System Toolbox
software.

Realizations and Data Types
In an ideal world, where numbers, calculations, and storage of states have infinite precision and
range, there are virtually an infinite number of realizations for the same system. In theory, these
realizations are all identical.

In the more realistic world of double-precision numbers, calculations, and storage of states, small
nonlinearities are introduced by the finite precision and range of floating-point data types. Therefore,
each realization of a given system produces different results. In most cases however, these
differences are small.

In the world of fixed-point numbers, where precision and range are limited, the differences in the
realization results can be very large. Therefore, you must carefully select the data type, word size,
and scaling for each realization element such that results are accurately represented. To assist you
with this selection, design rules for modeling dynamic systems with fixed-point math are provided in
“Targeting an Embedded Processor” on page 37-3.
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Targeting an Embedded Processor

In this section...
“Introduction” on page 37-3
“Size Assumptions” on page 37-3
“Operation Assumptions” on page 37-3
“Design Rules” on page 37-4

Introduction
The sections that follow describe issues that often arise when targeting a fixed-point design for use
on an embedded processor, such as some general assumptions about integer sizes and operations
available on embedded processors. These assumptions lead to design issues and design rules that
might be useful for your specific fixed-point design.

Size Assumptions
Embedded processors are typically characterized by a particular bit size. For example, the terms “8-
bit micro,” “32-bit micro,” or “16-bit DSP” are common. It is generally safe to assume that the
processor is predominantly geared to processing integers of the specified bit size. Integers of the
specified bit size are referred to as the base data type. Additionally, the processor typically provides
some support for integers that are twice as wide as the base data type. Integers consisting of double
bits are referred to as the accumulator data type. For example a 16-bit micro has a 16-bit base data
type and a 32-bit accumulator data type.

Although other data types may be supported by the embedded processor, this section describes only
the base and accumulator data types.

Operation Assumptions
The embedded processor operations discussed in this section are limited to the needs of a basic
simulation diagram. Basic simulations use multiplication, addition, subtraction, and delays. Fixed-
point models also need shifts to do scaling conversions. For all these operations, the embedded
processor should have native instructions that allow the base data type as inputs. For accumulator-
type inputs, the processor typically supports addition, subtraction, and delay (storage/retrieval from
memory), but not multiplication.

Multiplication is typically not supported for accumulator-type inputs because of complexity and size
issues. A difficulty with multiplication is that the output needs to be twice as big as the inputs for full
precision. For example, multiplying two 16-bit numbers requires a 32-bit output for full precision. The
need to handle the outputs from a multiplication operation is one of the reasons embedded
processors include accumulator-type support. However, if multiplication of accumulator-type inputs is
also supported, then there is a need to support a data type that is twice as big as the accumulator
type. To restrict this additional complexity, multiplication is typically not supported for inputs of the
accumulator type.
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Design Rules
The important design rules that you should be aware of when modeling dynamic systems with fixed-
point math follow.

Design Rule 1: Only Multiply Base Data Types

It is best to multiply only inputs of the base data type. Embedded processors typically provide an
instruction for the multiplication of base-type inputs, but not for the multiplication of accumulator-
type inputs. If necessary, you can combine several instructions to handle multiplication of
accumulator-type inputs. However, this can lead to large, slow embedded code.

You can insert blocks to convert inputs from the accumulator type to the base type prior to Product or
Gain blocks, if necessary.

Design Rule 2: Delays Should Use the Base Data Type

There are two general reasons why a Unit Delay should use only base-type numbers:

• The Unit Delay essentially stores a variable's value to RAM and, one time step later, retrieves that
value from RAM. Because the value must be in memory from one time step to the next, the RAM
must be exclusively dedicated to the variable and can't be shared or used for another purpose.
Using accumulator-type numbers instead of the base data type doubles the RAM requirements,
which can significantly increase the cost of the embedded system.

• The Unit Delay typically feeds into a Gain block. The multiplication design rule requires that the
input (the unit delay signal) use the base data type.

Design Rule 3: Temporary Variables Can Use the Accumulator Data Type

Except for unit delay signals, most signals are not needed from one time step to the next. This means
that the signal values can be temporarily stored in shared and reused memory. This shared and
reused memory can be RAM or it can simply be registers in the CPU. In either case, storing the value
as an accumulator data type is not much more costly than storing it as a base data type.

Design Rule 4: Summation Can Use the Accumulator Data Type

Addition and subtraction can use the accumulator data type if there is justification. The typical
justification is reducing the buildup of errors due to roundoff or overflow.

For example, a common filter operation is a weighted sum of several variables. Multiplying a variable
by a weight naturally produces a product of the accumulator type. Before summing, each product can
be converted back to the base data type. This approach introduces round-off error into each part of
the sum.

Alternatively, the products can be summed using the accumulator data type, and the final sum can be
converted to the base data type. Round-off error is introduced in just one point and the precision is
generally better. The cost of doing an addition or subtraction using accumulator-type numbers is
slightly more expensive, but if there is justification, it is usually worth the cost.
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Canonical Forms
The Fixed-Point Designer software does not attempt to standardize on one particular fixed-point
digital filter design method. For example, you can produce a design in continuous time and then
obtain an “equivalent” discrete-time digital filter using one of many transformation methods.
Alternatively, you can design digital filters directly in discrete time. After you obtain a digital filter, it
can be realized for fixed-point hardware using any number of canonical forms. Typical canonical
forms are the direct form, series form, and parallel form, each of which is outlined in the sections that
follow.

For a given digital filter, the canonical forms describe a set of fundamental operations for the
processor. Because there are an infinite number of ways to realize a given digital filter, you must
make the best realization on a per-system basis. The canonical forms presented in this chapter
optimize the implementation with respect to some factor, such as minimum number of delay
elements.

In general, when choosing a realization method, you must take these factors into consideration:

• Cost

The cost of the realization might rely on minimal code and data size.
• Timing constraints

Real-time systems must complete their compute cycle within a fixed amount of time. Some
realizations might yield faster execution speed on different processors.

• Output signal quality

The limited range and precision of the binary words used to represent real-world numbers will
introduce errors. Some realizations are more sensitive to these errors than others.

The Fixed-Point Designer software allows you to evaluate various digital filter realization methods in
a simulation environment. Following the development cycle outlined in “Developing and Testing
Fixed-Point Systems” on page 34-11, you can fine-tune the realizations with the goal of reducing the
cost (code and data size) or increasing signal quality. After you have achieved the desired
performance, you can use the Simulink Coder product to generate rapid prototyping C code and
evaluate its performance with respect to your system's real-time timing constraints. You can then
modify the model based upon feedback from the rapid prototyping system.

The presentation of the various realization structures takes into account that a summing junction is a
fundamental operator, thus you may find that the structures presented here look different from those
in the fixed-point filter design literature. For each realization form, an example is provided using the
transfer function shown here:

Hex z = 1 + 2.2z−1 + 1.85z−2 + 0.5z−3

1− 0.5z−1 + 0.84z−2 + 0.09z−3

=
1 + 0.5z−1 1 + 1.7z−1 + z−2

1 + 0.1z−1 1− 0.6z−1 + 0.9z−2

= 5.5556− 3.4639
1 + 0.1z−1 + −1.0916 + 3.0086z−1

1− 0.6z−1 + 0.9z−2 .
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Direct Form II
In general, a direct form realization refers to a structure where the coefficients of the transfer
function appear directly as Gain blocks. The direct form II realization method is presented as using
the minimal number of delay elements, which is equal to n, the order of the transfer function
denominator.

The canonical direct form II is presented as “Standard Programming” in Discrete-Time Control
Systems by Ogata. It is known as the “Control Canonical Form” in Digital Control of Dynamic Systems
by Franklin, Powell, and Workman.

You can derive the canonical direct form II realization by writing the discrete-time transfer function
with input e(z) and output u(z) as

u z
e z = u z

h z ⋅ h z
e z

= b0 + b1z−1 + … + bmz−m
︸

u z
h z

1
1 + a1z−1 + a2z−2… + anz−n
︸

h z
e z

.

The block diagram for u(z)/h(z) follows.

The block diagrams for h(z)/e(z) follow.
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Combining these two block diagrams yields the direct form II diagram shown in the following figure.
Notice that the feedforward part (top of block diagram) contains the numerator coefficients and the
feedback part (bottom of block diagram) contains the denominator coefficients.

The direct form II example transfer function is given by

Hex z = 1 + 2.2z−1 + 1.85z−2 + 0.5z−3

1− 0.5z−1 + 0.84z−2 + 0.09z−3 .

The realization of Hex(z) using fixed-point Simulink blocks is shown in the following figure. You can
display this model by typing

fxpdemo_direct_form2

at the MATLAB command line.
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Series Cascade Form
In the canonical series cascade form, the transfer function H(z) is written as a product of first-order
and second-order transfer functions:

Hi z = u z
e z = H1 z ⋅ H2 z ⋅ H3 z …Hp z .

This equation yields the canonical series cascade form.

Factoring H(z) into Hi(z) where i = 1,2,3,...,p can be done in a number of ways. Using the poles and
zeros of H(z), you can obtain Hi(z) by grouping pairs of conjugate complex poles and pairs of
conjugate complex zeros to produce second-order transfer functions, or by grouping real poles and
real zeros to produce either first-order or second-order transfer functions. You could also group two
real zeros with a pair of conjugate complex poles or vice versa. Since there are many ways to obtain
Hi(z), you should compare the various groupings to see which produces the best results for the
transfer function under consideration.

For example, one factorization of H(z) might be

H z = H1 z H2 z …Hp z

= ∏
i = 1

j 1 + biz−1

1 + aiz−1 ∏
i = j + 1

p 1 + eiz−1 + f iz−2

1 + ciz−1 + diz−2 .

You must also take into consideration that the ordering of the individual Hi(z)'s will lead to systems
with different numerical characteristics. You might want to try various orderings for a given set of
Hi(z)'s to determine which gives the best numerical characteristics.

The first-order diagram for H(z) follows.

The second-order diagram for H(z) follows.
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The series cascade form example transfer function is given by

Hex z =
1 + 0.5z−1 1 + 1.7z−1 + z−2

1 + 0.1z−1 1− 0.6z−1 + 0.9z−2 .

The realization of Hex(z) using fixed-point Simulink blocks is shown in the following figure. You can
display this model by typing

fxpdemo_series_cascade_form

at the MATLAB command line.
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Parallel Form
In the canonical parallel form, the transfer function H(z) is expanded into partial fractions. H(z) is
then realized as a sum of a constant, first-order, and second-order transfer functions, as shown:

Hi z = u z
e z = K + H1 z + H2 z + … + Hp z .

This expansion, where K is a constant and the Hi(z) are the first- and second-order transfer functions,
follows.

As in the series canonical form, there is no unique description for the first-order and second-order
transfer function. Because of the nature of the Sum block, the ordering of the individual filters
doesn't matter. However, because of the constant K, you can choose the first-order and second-order
transfer functions such that their forms are simpler than those for the series cascade form described
in the preceding section. This is done by expanding H(z) as

H z = K + ∑
i = 1

j
Hi z + ∑

i = j + 1

p
Hi z

= K + ∑
i = 1

j bi
1 + aiz−1 + ∑

i = j + 1

p ei + f iz−1

1 + ciz−1 + diz−2 .

The first-order diagram for H(z) follows.

 Parallel Form

37-11



The second-order diagram for H(z) follows.

The parallel form example transfer function is given by

Hex z = 5.5556− 3.4639
1 + 0.1z−1 + −1.0916 + 3.0086z−1

1− 0.6z−1 + 0.9z−2 .

The realization of Hex(z) using fixed-point Simulink blocks is shown in the following figure. You can
display this model by typing

fxpdemo_parallel_form

at the MATLAB command line.
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Use the Fixed-Point Tool to Prepare a System for Conversion
Using the Fixed-Point Tool, you can prepare a model for conversion from a floating-point model or
subsystem to an equivalent fixed-point representation. During the preparation stage, the Fixed-Point
Tool checks the system under design for compatibility with the conversion process and reports any
issues found in the model. When possible, the Fixed-Point Tool automatically changes settings that
are not compatible. In cases where the tool is not able to automatically change the settings, the tool
notifies you of the changes you must make manually to help the conversion process be successful.

To prepare a system for conversion:

1 Open the Fixed-Point Tool. In the Apps gallery of the model, select Fixed-Point Tool.
2 Under New, select the Iterative Fixed-Point Conversion workflow.
3 Under System Under Design (SUD), select the system or subsystem you want to convert.
4 Under Range Collection Mode, select the method that you want to use to collect ranges. The

Fixed-Point Tool uses these collected ranges to later generate data type proposals.

The preparation checks performed by the Fixed-Point Tool differ slightly between the range
collection methods.

For more information on deciding which method of range collection is right for your application,
see “Choosing a Range Collection Method” on page 42-2.

5 Under Simulation Inputs, you can specify Simulink.SimulationInput objects to exercise
your design over its full operating range, or you can select to Use default model inputs.

6 To specify tolerances for the system, under Signal Tolerances in the table, specify tolerances for
any signal in the model with signal logging enabled.

7 Click Prepare. The Fixed-Point Tool checks the system under design and the model containing
the system under design for compatibility with the conversion process.

Selecting any of the checks displays additional information in the Preparation Details pane.
This pane also contains details for resolving remaining issues.

8 After addressing any issues found by the Fixed-Point Tool, click Prepare to rerun the checks and
verify that all issues are now resolved.

Preparation Checks
The following sections describe the checks performed by the Fixed-Point Tool during the preparation
stage of the conversion.

Create Restore Point

The Fixed-Point Tool creates a restore point of your model at its current state. If after the conversion
you want to restore your design to its state before converting the data types, click the Restore
Original Model button.

Status Description
Pass This check passes when the Fixed-Point Tool is

able to create a restore point for the model.
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Status Description
Fail This check fails when one of the following occurs:

• The Fixed-Point Tool is unable to create a
restore point for the model because the model
is not in a writeable directory.

• The Fixed-Point Tool is unable to create a
restore point for the model because the model
contains unsaved changes.

Hardware Setting Consistency

Before converting your design to fixed point, you must specify the intended target hardware in the
Configuration Parameters Hardware Implementation pane. These hardware implementation
settings must be consistent throughout the model hierarchy of the model containing the system under
design. For more information on how the Fixed-Point Tool uses these settings when proposing data
types, see “How the Fixed-Point Tool Uses Target Hardware Information” on page 42-48.

Status Description
Pass This check passes when the intended target

hardware is specified for the system under design
and the settings do not conflict with the settings
of any other systems in the model.

Pass with change When the hardware implementation settings of
the system under design are specified, but they
do not match other systems within the model
hierarchy, for example, if the model contains a
referenced model that uses a different hardware
configuration, the Fixed-Point Tool updates the
hardware implementation settings of the other
systems in your model so that they match the
settings of the system under design.
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Status Description
Fail This check fails when one of the following two

cases occurs.

• The subsystem under design does not specify
any target hardware information.

To fix this issue, specify target hardware
information for the system under design in the
Configuration Parameters Hardware
Implementation pane.

• The subsystem specifies target hardware
information, but the settings do not match
other systems in the model hierarchy and the
Fixed-Point Tool is not able to change the
settings.

To fix this issue, manually change the settings
of other systems in the model hierarchy to
match the settings of the system under design.

Check Diagnostic Settings

Certain diagnostics that alert you to numerical issues in your design cannot be set to none. This
check passes only when the following diagnostic settings in the Configuration Parameters are set to
either warning, or error.

• Diagnostics > Data Validity > Signals > Wrap on overflow
• Diagnostics > Data Validity > Signals > Saturate on overflow
• Diagnostics > Data Validity > Signals > Simulation range checking

Status Description
Pass This check passes when the diagnostic settings of

the model containing the system under design
are set to either warning or error.

Pass with change When the diagnostic settings are set to none, the
Fixed-Point Tool changes these settings to
warning.

Fail This check fails when the Fixed-Point Tool is not
able to set the diagnostic settings of the model
containing the system under design to warning.
This may be because the configuration
parameters for the model specify a configuration
set.

Unsupported Constructs

The Fixed-Point Tool identifies any blocks or constructs in your system under design that do not
support fixed-point types.
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Status Description
Pass This check passes when the system under design

does not contain any unsupported constructs.
Pass with change When the system under design contains

unsupported constructs, the Fixed-Point Tool
encapsulates any unsupported elements in a
subsystem containing the unsupported block
surrounded by Data Type Conversion blocks.
After you complete the conversion process using
the Fixed-Point Tool, you can replace the
subsystem containing the unsupported block with
a lookup table approximation. For more
information, see “Convert Floating-Point Model to
Fixed Point” on page 40-2.

Fail This check fails when the Fixed-Point Tool is not
able to isolate the unsupported constructs using
Data Type Conversion blocks.

System Under Design Boundary

When model objects within the system under design share a data type with objects outside of the
system under design, data type propagation issues can occur after conversion to fixed point. You can
prevent these propagation issues by isolating the system under design using Data Type Conversion
blocks at the inputs and outputs of the system. The Data Type Conversion block converts an input
signal of any Simulink software data type to the data type and scaling you specify for its Output data
type parameter.

Status Description
Pass This check passes when the system under design

is isolated from the rest of the model by Data
Type Conversion blocks.

Pass with change When the system under design is not isolated
from the rest of the system, the Fixed-Point Tool
places data type conversion blocks at the ports of
the system under design to isolate it during the
conversion.

Fail This check fails when the Fixed-Point Tool is not
able to place Data Type Conversion blocks at the
ports of the system under design.

Design Ranges

When you select Derived ranges or Simulation with Range Analysis as your range collection
method, the software performs a static range analysis of your model to derive minimum and
maximum range values for signals in the model. This range analysis relies on specified design ranges.
The Fixed-Point Tool checks that you have specified design ranges for all input and output ports of the
system under design.
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Status Description
Pass This check passes when all input ports and output

ports in the system under design have design
range information specified.

Warn This check warns when inputs to the subsystem
specify design ranges, but outputs do not specify
design ranges. To get the best results from range
analysis, specify design ranges for both inputs
and outputs to the system.

Fail This check fails when inputs and outputs to the
system under design are missing design range
information. Specify design range information for
all inputs of the system under design.

See Also

More About
• “Convert Floating-Point Model to Fixed Point” on page 40-2
• “Iterative Fixed-Point Conversion Using the Fixed-Point Tool” on page 42-9
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Fixed-Point Tool

• “Data Type Conversion Overview” on page 39-2
• “Run Management” on page 39-5
• “Convert a Referenced Model to Fixed Point” on page 39-7
• “Control Views in the Fixed-Point Tool” on page 39-12
• “Model Multiple Data Type Behaviors Using a Data Dictionary” on page 39-16
• “Compare Numerical Response of Sum Block and Sum in MATLAB® Function Block”

on page 39-20
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Data Type Conversion Overview
Within digital hardware, numbers are represented as either fixed-point or floating-point data types.
For both these data types, word sizes are fixed at a set number of bits. Fixed-point representation
often offers advantages in terms of the power consumption, size, memory usage, speed, and cost of
the final product. However, the dynamic range of fixed-point values is much smaller than floating-
point values with equivalent word sizes. Therefore, in order to avoid overflow or unreasonable
quantization errors, fixed-point values must be scaled.

The following summarizes the process of converting data types in a system from floating point to
fixed point. After converting data types in your model to an embedded-efficient representation, you
can further optimize your design for your intended hardware, generate code and then deploy code
onto your target.

1 Identify system requirements.
2 Model ideal system.
3 Convert data types of system to data types that are efficient on target hardware.
4 Verify numeric behavior of the converted system.
5 Verify performance of the converted system. Optimize performance of the system based on target

hardware.
6 Generate code.
7 Deploy code onto hardware.

Methods for Converting a System to Fixed Point
The Fixed-Point Designer software provides three methods for automatically specifying fixed-point
data types for a system in your model. The following table summarizes the methods available for
converting a floating-point system to fixed-point data types.
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Method Description
Fixed-Point Tool The Fixed-Point Tool is a user interface that

automates specifying fixed-point data types in a
model.

• Iterative Fixed-Point Conversion workflow —
The tool collects range data for model objects.
Based on these values, the tool proposes fixed-
point data types that maximize precision and
cover the range. You can then review the data
type proposals and apply them selectively to
objects in your model.

• Optimized Fixed-Point Conversion — If you
know your system behavior tolerances, you
can use fxpopt in the Fixed-Point Tool to find
the optimal data types for your system which
minimize total bit-width (sum of word lengths)
of the system while staying within specified
tolerances.

For an example, see “Convert Floating-Point
Model to Fixed Point” on page 40-2.

DataTypeWorkflow.Converter The DataTypeWorkflow.Converter object and
its associated object functions are a command-
line alternative to the Fixed-Point Tool. These
functions offer the same functionality as the
Fixed-Point Tool.

For an example, see “Convert a Model to Fixed
Point Using the Command Line” on page 47-4.

fxpopt If you know your system behavior tolerances,
then the command-line fxpopt function can find
the optimal data types for your system which
minimize total bit-width (sum of word lengths) of
the system while staying within specified
tolerances.

For an example, see “Optimize Fixed-Point Data
Types for a System” on page 40-14

After converting a system to fixed point, verify that the behavior of the fixed-point system meets your
requirements. For more information, see “Verify New Settings” on page 42-30.

Optimize performance of the system based on target hardware. For example, replace trigonometric
functions with equivalent CORDIC implementations, or use the Lookup Table Optimizer app to
replace parts of your model with an embedded-efficient lookup table implementation.
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See Also

More About
• “Iterative Fixed-Point Conversion Using the Fixed-Point Tool” on page 42-9
• “Optimize the Fixed-Point Data Types of a System Using the Fixed-Point Tool” on page 40-40
• “Optimize Generated Code with the Model Advisor” on page 48-21

39 Fixed-Point Tool

39-4



Run Management
By default, the Fixed-Point Tool creates a run for range collection and a run for verification. By
default, these runs are named BaselineRun and EmbeddedRun respectively.

The tool creates a range collection run when you click the Collect Ranges button; it creates a
verification run when you click the Simulate with Embedded Types button. The default behavior of
the range collection run is to use the current data type override settings specified on the model and
collect ranges either through simulation, range analysis, or simulation with range analysis. To
override your model with double-precision types to avoid quantization affects and collect idealized
ranges, select Double precision. The verification run simulates your model using the currently
specified data types.

The Fixed-Point Tool also provides additional configurations for the range collection and verification
runs. You can edit which settings the tool uses by clicking the Collect Ranges button arrow and
selecting a configuration. The tool overwrites previous range collection runs.

You can edit the default name for the embedded run. Under the Simulate with Embedded Types
menu, type a new name in the Run name field.
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Convert a Referenced Model to Fixed Point
In this section...
“Viewing Simulation Ranges for Referenced Models” on page 39-8
“Propose Data Types for a Referenced Model” on page 39-9

When a system under design contains a referenced model, the Fixed-Point Tool proposes data types
for the objects in the referenced model based on ranges collected through simulation or derived
range analysis. If the system under design contains several instances of the same referenced model,
the Fixed-Point Tool uses a union of the collected ranges for data type proposals.

The Fixed-Point tool logs simulation minimum and maximum values only for instances of the
referenced model that are in normal mode. It does not log simulation minimum and maximum values
for instances of the referenced model that are in non-Normal modes. If your model contains multiple
instances of a referenced model and some are instances are in normal mode and some are not, the
tool logs and displays data for those that are in normal mode.

Open the ex_mdlref_controller model. At the MATLAB command line, enter:
addpath(fullfile(docroot,'toolbox','fixpoint','examples'));
ex_mdlref_controller

In the Apps gallery of the model, select Fixed-Point Tool.

When a model contains a referenced model, the Fixed-Point Tool Model Hierarchy pane displays a
subnode for the instance of the referenced model and a node for the referenced model. For example,
the ex_mdlref_controller model contains a Model block that references the ex_controller
model. The Fixed-Point Tool shows both models in the model hierarchy.

If a model contains multiple instances of a referenced model, the tool displays each instance of the
referenced model in this model and a node for the referenced model. For example, in the same model,
if you duplicate the referenced model such that the ex_mdlref_controller model contains two
instances of the referenced model ex_controller. The Fixed-Point Tool displays both models and
both instances of the referenced model in the model hierarchy.
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Viewing Simulation Ranges for Referenced Models
1 In the Fixed-Point Tool, under New, select the Iterative Fixed-Point Conversion

workflow.
2 Under System Under Design (SUD), select the ex_controller model as the system you want

to convert to fixed point.
3 Under Range Collection Mode, select Simulation Ranges as the range collection method.
4 In the toolstrip, click Prepare. The Fixed-Point Tool checks the system under design for

compatibility with the conversion process and reports any issues found in the model. In this
example, the tool reports that the model is ready for conversion.

5 Expand the Collect Ranges button arrow and select Double precision. Click the Collect
Ranges button to start the simulation. The Fixed-Point Tool overrides the data types in the model
with doubles and collects the minimum and maximum values for each object in your model that
occur during the simulation. The Fixed-Point Tool stores this range information in a run titled
BaselineRun.

The tool logs and displays the results for each instance of the referenced model. For example, here
are the results for the first instance of the referenced model ex_controller.

Here are the results for the second instance of ex_controller.
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In the referenced model node, the tool displays the union of the results for each instance of the
referenced model.

Fixed-Point Instrumentation and Data Type Override Settings

When you simulate a model that contains referenced models, the data type override and fixed-point
instrumentation settings for the top-level model do not control the settings for the referenced models.
You must specify these settings separately for the referenced model. If the settings are inconsistent,
for example, if you set the top-level model data type override setting to double and the referenced
model to use local settings and the referenced model uses fixed-point data types, data type
propagation issues might occur.

You can define custom data type override settings using set_param. For an example, see “Use
Custom Data Type Override Settings for Range Collection” on page 44-9.

When you change the fixed-point instrumentation and data type override settings for any instance of
a referenced model, the settings change on all instances of the model and on the referenced model
itself.

Propose Data Types for a Referenced Model
1 In the Convert section of the toolstrip, click Settings. Specify the Safety margin for

simulation min/max (%) parameter as 20.
2 Click Propose Data Types.

Because no design minimum and maximum information is supplied, the simulation minimum and
maximum data that was collected during the simulation run is used to propose data types. The
Safety margin for simulation min/max (%) parameter value multiplies the “raw” simulation
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values by a factor of 1.2. Setting the Safety margin for simulation min/max (%) parameter to
a value greater than 1 decreases the likelihood that an overflow will occur when fixed-point data
types are being used.

Because of the nonlinear effects of quantization, a fixed-point simulation produces results that
are different from an idealized, doubles-based simulation. Signals in a fixed-point simulation can
cover a larger or smaller range than in a doubles-based simulation. If the range increases
enough, overflows or saturations could occur. A safety margin decreases the likelihood of this
happening, but it might also decrease the precision of the simulation.

The Fixed-Point Tool analyzes the scaling of all fixed-point blocks whose Lock output data type
setting against changes by the fixed-point tools parameter is not selected.

The Fixed-Point Tool uses the minimum and maximum values collected during simulation to
propose a scaling for each block such that the precision is maximized while the full range of
simulation values is spanned. The tool displays the proposed scaling in the spreadsheet.

3 Review the scaling that the Fixed-Point Tool proposes. You can choose to accept the scaling
proposal for each block by selecting the corresponding Accept check box. By default, the Fixed-
Point Tool accepts all scaling proposals that differ from the current scaling. For this example,
verify that the Accept check box is selected for each of the Controller system’s blocks.

To view more information about a proposal, select the result and view the Result Details pane.
4 In the Fixed-Point Tool, click the Apply Data Types button.

The Fixed-Point Tool applies the scaling proposals that you accepted in the previous step.
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5 In the Verify section of the toolstrip, click the Simulate with Embedded Types button.

Simulink simulates the ex_mdlref_controller model using the new scaling that you applied.
Afterward, the Fixed-Point Tool displays information about blocks that logged fixed-point data.

6 Click Compare Results. The Simulation Data Inspector plots the Analog Plant output for the
floating-point and fixed-point runs and the difference between them.

See Also

Related Examples
• “Iterative Fixed-Point Conversion Using the Fixed-Point Tool” on page 42-9
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Control Views in the Fixed-Point Tool
The following sections describe how to control the amount of information that is shown in the Fixed-
Point Tool. Within the Fixed-Point Tool, you can filter the results that are displayed at a given time by
run, or by the subsystem in which the result belongs. You can also add or remove the columns that
are shown in the spreadsheet of the Fixed-Point Tool.

Filter Results by Run
In the Fixed-Point Tool, each time you collect ranges, either through simulation or derived range
analysis, or run an embedded simulation, the tool stores the collected information in a run. Using the
Workflow Browser, you can filter the results shown in the spreadsheet. Select the runs that you
want to view in the spreadsheet.

Filter Results by Subsystem
By default, the Fixed-Point Tool displays only the results for model objects in your specified system
under design. To filter the results shown or to see additional results, you can select a different node in
the model hierarchy pane. The spreadsheet displays all model objects at and below the selected node.

To view the data objects specified in your model, click the Data Objects node in the tree.

Control Column Views
As you follow the workflow for converting your model to fixed point using the Fixed-Point Tool, the
tool displays the spreadsheet columns that are most pertinent to your current step in the workflow. If
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you want to view additional columns, you can add them to the spreadsheet using the  button in the
top-right corner of the spreadsheet.

You can sort the results in the spreadsheet by clicking the header of the column on which you want to
sort.

Use the Explore Tab to Sort and Filter Results
Using the Explore tab of the Fixed-Point Tool, you can sort and filter results in the tool based on
additional criteria. The Explore tab is available whenever a single run that contains visualization
data is selected in the Run Browser of the Fixed-Point Tool.

When there are unapplied proposals in the Fixed-Point Tool, the tool sorts and filters based on the
ProposedDT. If there are no unapplied proposals, the tool sorts and filters the results based on the
SpecifiedDT. If there is no SpecifiedDT available, for example if the result specifies an inherited
data type, then the tool uses the CompiledDT.

Sort

You can sort results based on the following criteria.

Sorting Criteria Description
Execution Order Order in which the blocks are executed during

simulation
Magnitude The larger of the absolute values of the SimMin

and SimMax
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Sorting Criteria Description
Dynamic Range Difference between the value representable by

the largest bin and smallest bin in the histogram
of logged values

Word Length Total number of bits in the data type
Integer Length Number of bits devoted to representing integer

values in the data type

The tool calculates the integer length as word
length －fraction length. For example, for the
data type fixdt(1,16,12), the tool calculates
the integer length as 4. The data type
fixdt(1,16,-16) would have a calculated
integer length of 32.

Fraction Length Number of bits in the fractional part of the data
type

By default, the tool sorts in ascending order. To have the tool sort in descending order, select
Descending. You can select only one sorting criteria at a time.

Filter

You can filter results based on the following criteria.

Filter Criteria Selections
Data Types • Fixed-Point

• Double
• Single
• Half
• Boolean
• Base Integer

Numerical Issues • Overflow - Show only results containing an
overflow

• Underflow - Show only results containing an
underflow

• None - Show only results containing no
underflows or overflows

Number Space • Integer - Show only results for which the
logged values are always integers.

• Fraction - Show results for which the logged
values contain a fractional part.
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Filter Criteria Selections
Signedness • Signed - Show only results for which the data

type can represent signed values. For
example, int16, fixdt(1,16,12), and
floating-point data types.

• Unsigned - Show only results for which the
data type can represent only unsigned values.
For example, uint16, Boolean,
fixdt(0,16,12)

You can select multiple filtering selections from a criteria category by holding the Ctrl key while you
select additional selections. When you select multiple filtering selections from the same criteria
category, they are combined using OR logic. When you select multiple filtering selections across
different criteria categories, they are combined using AND logic.

You can deselect a selections by holding the Ctrl key. To clear all filters, click the Clear Filter button.

See Also

More About
• “Iterative Fixed-Point Conversion Using the Fixed-Point Tool” on page 42-9
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Model Multiple Data Type Behaviors Using a Data Dictionary
This example shows how to use referenced data dictionaries to store multiple sets of data types for a
model. This example also shows how to change the data types by switching the referenced data
dictionary.

1 Open the folder containing the example. At the MATLAB command line, enter:

cd(fullfile(docroot,'toolbox','fixpoint','examples'))
2 Copy these files to a local writable folder:

• ex_data_dictionary.slx — Simulink model using a data dictionary to store its data types
• mdl_dd.sldd — Main data dictionary
• flt_dd.sldd — Referenced data dictionary using floating-point data types
• fix_dd.sldd — Referenced data dictionary using fixed-point data types

3 In the folder you copied the files to, open the ex_data_dictionary model.

ex_data_dictionary

4
In the lower left corner of the Simulink Editor, click  to open the dictionary.

The data dictionary defines the parameters of the Gain blocks in the F1 and F2 subsystems.
mdl_dd is associated with a referenced data dictionary, flt_dd, which defines the output data
types of the gain blocks in the model’s subsystems.

In the Model Explorer, in the Contents pane, the Data Source column shows the source data
dictionary for each Gain block parameter.
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5 Return to the model. Open the F1 subsystem and double-click the a1 block. The block gain is
specified as f1_a1_param, which is defined in the data dictionary.
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In the Signal Attributes tab, the block output data type is specified as f1_a1_dt. The data type of
f1_a1_dt is defined in the referenced data dictionary, flt_dd.

Change Data Types of Model Parameters
The fix_dd data dictionary contains the same entries as flt_dd, but defines fixed-point data types
instead of floating-point data types. To use the fixed-point data types without changing the model,
replace flt_dd with fix_dd as the referenced data dictionary of mdl_dd.

1 In the Model Explorer, in the Model Hierarchy pane, right-click mdl_dd and select
Properties.

2 Remove the referenced floating-point data dictionary. In the Data Dictionary dialog box, in the
Referenced Dictionaries pane, select flt_dd and click Remove.

3 Add a reference to the fixed-point data dictionary. Click Add and select fix_dd. Click OK to
close the dialog box.

4 In the Model Explorer, right-click mdl_dd and select Save Changes.
5 Return to the Simulink editor and update the model.
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The model now uses fixed-point data types.

See Also

Related Examples
• “Migrate Single Model to Use Dictionary”

More About
• “What Is a Data Dictionary?”
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Compare Numerical Response of Sum Block and Sum in
MATLAB® Function Block

This example shows how to generate simulation inputs and use them to exercise a model over its full
operating range. In this example, generate test data to simulate a model and compare the numerical
response of the Sum block, and sum implemented in a MATLAB® Function block in the ex_testsum
model.

Open the model.

model = 'ex_testsum';
open_system(model);
set_param(model, 'SimulationCommand', 'update');

Specify Data Attributes and Generate Data

Use the fixed.DataSpecification object to specify input data attributes. In this example, create
two DataSpecification objects, one with a double-precision data type, and the other using a
single-precision data type. The interval of values generated by the first object is from 1 to 64, and the
interval of values generated by the second is from 1 to 32.

dataspec1 = fixed.DataSpecification('double', 'Intervals', {1 64});
dataspec2 = fixed.DataSpecification('single', 'Intervals', {1 32});

The DataGenerator object generates combinations of numerically-rich values. To use the output
data in a Simulink® model, set the format of the output to 'timeseries'.

datagen = fixed.DataGenerator;
datagen.DataSpecifications = {dataspec1, dataspec2};
[tsdata1, tsdata2] = outputAllData(datagen, 'timeseries');

Set Up Model and Simulate

Apply the attributes of the DataSpecification objects to the Inport blocks in the model.

applyOnRootInport(datagen.DataSpecifications{1}, model, 1);
applyOnRootInport(datagen.DataSpecifications{2}, model, 2);

Load the generated timeseries data into the model and simulate.

set_param(model, 'LoadExternalInput', 'on',...
    'ExternalInput', 'tsdata1, tsdata2',...
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    'StopTime', string(tsdata1.Time(end)));

simout = sim(model);

Visualize Output

Visualize the output of the simulation, and compare the numerical behavior of the two
implementations of the sum operation.

% Get the unique values in the generated data for each set of data.
[x, y] = datagen.getUniqueValues;
d = abs(simout.yout{1}.Values.Data - simout.yout{2}.Values.Data);
X = reshape(tsdata1.Data, numel(x), []);
Y = reshape(tsdata2.Data, numel(x), []);
D = reshape(d, numel(x), []);

figure;
% Plot the difference between outputs as a function of the input values.
surf(X, Y, D, 'EdgeColor', 'none');
grid on;
view(2);
axis tight;
xlabel('In1');
ylabel('In2');
colorbar;
title('abs(MATLAB Function block output - Sum block output)');
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From the plot, you can see that the difference between the two implementations increases as the
values of the numeric inputs get larger. This difference is due to the difference in the data type of the
accumulator in the two implementations.

Compare Numerical Response with Single-Precision Accumulator

The Accumulator Data Type parameter of the Sum block is set to Inherit: Inherit via
internal rule. In this case, the data type used for the accumulator is a double-precision floating-
point type. Set the Accumulator data type to single and compare the output again.

set_param([model,'/Sum'], 'AccumDataTypeStr', 'single')
simout = sim(model);

Visualize the output. When the accumulator type of the Sum block is set to single, the
implementations return the same result at all values.

[x, y] = datagen.getUniqueValues;
d = abs(simout.yout{1}.Values.Data - simout.yout{2}.Values.Data);
X = reshape(tsdata1.Data, numel(x), []);
Y = reshape(tsdata2.Data, numel(x), []);
D = reshape(d, numel(x), []);
figure;
surf(X, Y, D, 'EdgeColor', 'none');
grid on;
view(2);
axis tight;
xlabel('In1');
ylabel('In2');
colorbar;
title('abs(MATLAB Function block output - Sum block output)');
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Convert Floating-Point Model to Fixed Point
In this section...
“Set up the Model” on page 40-2
“Prepare System for Conversion” on page 40-3
“Collect Ranges” on page 40-5
“Convert Data Types” on page 40-6
“Verify New Settings” on page 40-7
“Replace Unsupported Blocks with a Lookup Table Approximation” on page 40-8
“Verify Behavior of System with Lookup Table Approximation” on page 40-10

In this example, learn how to:

• Convert a floating-point system to an equivalent fixed-point representation.

The Fixed-Point Tool automates the task of specifying fixed-point data types in a system. In this
example, the tool collects range data for model objects, either from design minimum and
maximum values that you specify explicitly for signals and parameters, or from logged minimum
and maximum values that occur during simulation. Based on these values, the tool proposes fixed-
point data types that maximize precision and cover the range. The tool allows you to review the
data type proposals and then apply them selectively to objects in your model.

• Replace blocks that are not supported for conversion with a lookup table approximation.

During the preparation stage of the conversion, the Fixed-Point Tool isolates any blocks that do
not support fixed-point conversion by placing these blocks inside a subsystem surrounded by Data
Type Conversion blocks. You can use the Lookup Table Optimizer to replace the unsupported
blocks with a lookup table approximation.

Set up the Model
Open the model and configure it for fixed-point conversion.

open_system('ex_fixed_point_workflow')

The model consists of a source, a Controller Subsystem that you want to convert to fixed point, and a
scope to visualize the subsystem outputs. Configuring a model in this way helps you to determine the
effect of fixed-point data types on a system. Using this approach, you convert only the subsystem
because this is the system of interest. There is no need to convert the source or scope to fixed point.
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This configuration allows you to modify the inputs and collect simulation data for multiple stimuli. You
can then examine the behavior of the subsystem with different input ranges and scale your fixed-point
data types to provide maximum precision while accommodating the full simulation range.

To compare the behavior before and after conversion, enable signal logging at the outputs of the
system under design.

ph = get_param('ex_fixed_point_workflow/Controller Subsystem','PortHandles');
set_param(ph.Outport(1),'DataLogging','on')
set_param(ph.Outport(2),'DataLogging','on')

Prepare System for Conversion
To convert the model to fixed point, use the Fixed-Point Tool.

1 In the Apps gallery of the ex_fixed_point_workflow model, select Fixed-Point Tool.
2 In the Fixed-Point Tool, under New workflow, select Iterative Fixed-Point Conversion.
3 Under System Under Design (SUD), select the subsystem you want to convert to fixed point. In

this example, select Controller Subsystem.
4 Under Range Collection Mode, select Simulation Ranges as the range collection method.
5 Under Simulation Inputs, you can specify Simulink.SimulationInput objects to exercise

your design over its full operating range. In this example, set Simulation inputs to Use
default model inputs.

6 To specify tolerances for the system, in the table under Signal Tolerances, specify tolerances for
any signal in the model with signal logging enabled. For more information, see “Specify Signal
Tolerances” on page 42-18.

Set the relative tolerance (Rel Tol) of the signals that you logged to 15%.

7 In the toolstrip, click Prepare. The Fixed-Point Tool checks the system under design for
compatibility with the conversion process and reports any issues found in the model. When
possible, the Fixed-Point Tool automatically changes settings that are not compatible. For more
information, see “Use the Fixed-Point Tool to Prepare a System for Conversion” on page 38-2.

 Convert Floating-Point Model to Fixed Point

40-3



The subsystem under design contains an Exp block, which does not support fixed-point data
types. The Fixed-Point Tool surrounds this block with Data Type Conversion blocks and places it
inside a subsystem. When you finish converting the rest of the subsystem to fixed point, you can
replace the subsystem with a lookup table approximation of the exp function.
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Collect Ranges
By default, the Fixed-Point Tool uses the current data type override set on the model. For this
example, override data types in the model with double precision for the range collection run.

1 Expand the Collect Ranges button arrow and select Double precision.
2

Click Collect Ranges  to simulate the model.

The Fixed-Point Tool overrides the data types in the model with doubles and collects the minimum
and maximum values for each object in your model that occur during the simulation. The Fixed-Point
Tool stores this range information in a run titled BaselineRun. You can view the collected ranges in
the SimMin and SimMax columns of the spreadsheet, or in the Result Details pane.

The Visualization of Simulation Data pane offers another view of the simulation results. Select the
Explore tab of the Fixed-Point Tool for additional tools for sorting and filtering the data in the
spreadsheet and the visualization.
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Convert Data Types
Use the Fixed-Point Tool to propose fixed-point data types for appropriately configured blocks based
on the double-precision simulation results stored in the run BaselineRun.

1 In the Convert section of the toolstrip, click the Propose Data Types button.

The Fixed-Point Tool analyzes the scaling of all fixed-point blocks whose Lock output data type
setting against changes by the fixed-point tools parameter is not selected.

The Fixed-Point Tool uses the default proposal settings to propose data types with 16-bit word
length and best-precision fraction length and updates the results in the spreadsheet.

You can edit the proposal settings by clicking the Settings button in the Convert section of the
toolstrip before proposing types.

2 The tool displays the proposed data types in the ProposedDT column in the spreadsheet.

By default, it selects the Accept check box for each result where the proposed data type differs
from the current data type of the object. If you apply data types, the tool applies these proposed
data types to the system under design.

3 Examine the results to resolve any issues and to ensure that you want to accept the proposed
data type for each result. The Visualization of Simulation Data pane indicates results that
would contain overflows or underflows with a red or yellow triangle, respectively. Underflows can
be sources of numerical issues, but can sometimes be safely ignored.

The Fixed-Point Tool indicates results whose proposed data type conflicts with another type with
a red icon . In this example, no results contain conflicts. For more information, see “Examine
Results to Resolve Conflicts” on page 42-26.

4 After reviewing the results and ensuring that there are no issues, you are ready to apply the
proposed data types to the model. Click Apply Data Types to write the proposed data types to
the model.

The Fixed-Point Tool applies the data type proposals to the blocks in the system under design.
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Verify New Settings
Next, simulate the model again using the new fixed-point settings. You then use the Simulation Data
Inspector plotting capabilities to compare the results from the floating-point BaselineRun run with
the fixed-point results.

1 Click Simulate with Embedded Types. The Fixed-Point Tool simulates the model using the new
fixed-point data types and stores the run information in a new run titled EmbeddedRun.

Afterward, the Fixed-Point Tool displays information about blocks that logged fixed-point data.
The CompiledDT column for the run shows that the Controller Subsystem blocks use the new
fixed-point data types.

2 Examine the histograms in the Visualization of Simulation Data pane to verify that there are

no overflows or saturations. Overflows and saturations are marked with a red triangle .
3 The workflow browser indicates that all signals for which you specified tolerances passed.

4 Click Compare Results to open the Simulation Data Inspector. In the Simulation Data Inspector,
select one of the logged signals to view the fixed-point simulation behavior.
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Replace Unsupported Blocks with a Lookup Table Approximation
In the “Prepare System for Conversion” on page 40-3 step of the workflow, the Fixed-Point Tool
placed the Exp block, which is not supported for conversion, inside a subsystem surrounded with
Data Type Conversion blocks. In this step, you replace the subsystem with a lookup table
approximation.

1 To get a list of all of the subsystems the Fixed-Point Tool decoupled for conversion, at the
command line enter:

decoupled = DataTypeWorkflow.findDecoupledSubsystems('ex_fixed_point_workflow')

decoupled =

  1×2 table

    ID                         BlockPath                      
    __    ____________________________________________________

    1     {'ex_fixed_point_workflow/Controller Subsystem/Exp'}

The DataTypeWorkflow.findDecoupledSubsystems function returns a table containing the
block path of any subsystems that were created by the Fixed-Point Tool to isolate an unsupported
block.
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2 Open the Lookup Table Optimizer. In the Apps gallery, select Lookup Table Optimizer.
3 On the Objective page of the Lookup Table Optimizer, select Simulink block or subsystem.

Click Next.
4 Under Block Information, copy from the command line and paste the path to the subsystem

created by the Fixed-Point Tool.
5 Click the Collect Current Values from Model button to update the model diagram and allow

the Lookup Table Optimizer to automatically gather information needed for the optimization
process. Click Next.

6 Specify the constraints to use in the optimization. For this example, use the default values. To
create the lookup table, click Optimize. Click Next.

7 Click Replace Original Function. The Lookup Table Optimizer replaces the Math Function exp
block with a new variant subsystem containing the lookup table approximation.
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Verify Behavior of System with Lookup Table Approximation
Now that the system under design is fully converted, verify that the system still meets the tolerances
you specified before conversion.

1 In the Fixed-Point Tool, in the Verify section of the toolstrip, click Simulate with Embedded
Types.

The Fixed-Point Tool simulates the model, which now contains the lookup table approximation,
and saves the result as EmbeddedRun_2.

2 The Workflow Browser shows that the signals with specified tolerances pass in the model using
the lookup table approximation.

See Also

More About
• “Iterative Fixed-Point Conversion Using the Fixed-Point Tool” on page 42-9
• “Optimize Lookup Tables for Memory-Efficiency” on page 41-15
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Explore Multiple Floating-Point to Fixed-Point Conversions
In this example, you use the Fixed-Point Tool and the ex_fixed_point_workflow model to explore
different word length choices. After you simulate your model using embedded types, and compare the
floating point and fixed-point behavior of your system, determine if the new behavior is satisfactory. If
the behavior of the system using the newly applied fixed-point data types is not acceptable, you can
iterate through the process until you find settings that work for your system.

Set up the Model
Open the model and configure it for fixed-point conversion.

open_system('ex_fixed_point_workflow')

The model consists of a source, a Controller Subsystem that you want to convert to fixed point, and a
scope to visualize the subsystem outputs. Configuring a model in this way helps you to determine the
effect of fixed-point data types on a system. Using this approach, you convert only the subsystem
because this is the system of interest. There is no need to convert the source or scope to fixed point.

This configuration allows you to modify the inputs and collect simulation data for multiple stimuli. You
can then examine the behavior of the subsystem with different input ranges and scale your fixed-point
data types to provide maximum precision while accommodating the full simulation range.

To compare the behavior before and after conversion, enable signal logging at the outputs of the
system under design.

ph = get_param('ex_fixed_point_workflow/Controller Subsystem','PortHandles');
set_param(ph.Outport(1),'DataLogging','on')
set_param(ph.Outport(2),'DataLogging','on')

Convert to Fixed-Point Using Default Proposal Settings
1 In the Apps gallery of the ex_fixed_point_workflow model, select Fixed-Point Tool.
2 In the Fixed-Point Tool, under System Under Design, select the subsystem you want to convert

to fixed point. In this example, select Controller Subsystem.
3 Under Range Collection Mode, select Simulation Ranges as the range collection method.
4 Under Simulation Inputs, you can specify Simulink.SimulationInput objects to exercise

your design over its full operating range. In this example, set Simulation inputs to Use
default model inputs.

5 To specify tolerances for the system, in the table under Signal Tolerances, specify tolerances for
any signal in the model with signal logging enabled.
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Set the relative tolerance (Rel Tol) of the signals that you logged to 15%.

6 In the toolstrip, click Prepare. The Fixed-Point Tool checks the system under design for
compatibility with the conversion process and reports any issues found in the model. When
possible, the Fixed-Point Tool automatically changes settings that are not compatible. For more
information, see “Use the Fixed-Point Tool to Prepare a System for Conversion” on page 38-2.

7 Expand the Collect Ranges button arrow and select Double precision. Click the Collect

Ranges button  to override data types in the model with double precision and start the
range collection simulation.

8
In the Convert section, click the Propose Data Types button .

The Fixed-Point Tool uses the default proposal settings to propose data types with 16-bit word
length and best-precision fraction length and updates the results in the spreadsheet.

9
Click the Apply Data Types button  to write the proposed data types to the model.

10
In the Verify section of the toolstrip, click the Simulate with Embedded Types button .
The Fixed-Point Tool simulates the model using the new fixed-point data types and stores the run
information in a new run titled EmbeddedRun.

11 Click Compare Results to open the Simulation Data Inspector and compare the floating-point
and fixed-point behavior.

Return to the Fixed-Point Tool to update the proposal settings and generate new data type proposals.

Convert Using New Proposal Settings
1

In the Fixed-Point Tool, in the Convert section of the toolstrip, click the Settings button .

Edit the proposal settings to determine if a larger word length improves the fixed-point behavior
of the system. Set the Default Word Length to 32.

2 To generate new proposals, click Propose Data Types.
3 Click the Apply Data Types to write the newly proposed data types to the model.
4 Click Simulate with Embedded Types. The Fixed-Point Tool simulates the model using the new

fixed-point data types and stores the run information in a new run titled EmbeddedRun_2.
5 Click Compare Results to open the Simulation Data Inspector and compare the floating-point

and fixed-point behavior.

You can continue to adjust the data type proposal settings, propose data types, and apply data types
to your model until you find settings for which the fixed-point behavior of your system is acceptable.
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See Also

More About
• “Explore Additional Data Types” on page 42-34
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Optimize Fixed-Point Data Types for a System
Data type optimization seeks to minimize an objective function, such as the total bit-width or an
estimated count of operators in generated code for a specified system, while maintaining original
system behavior within a specified tolerance. During the optimization, the software establishes a
baseline by simulating the original model. It then constructs different fixed-point versions of your
model and runs simulations to determine the behavior using the new data types. The optimization
selects the model that minimizes the objective function while also meeting the specified behavioral
constraints.

The model containing the system you want to optimize must have the following characteristics:

• All blocks in the model must support fixed-point data types.
• The design ranges specified on blocks in the model must be consistent with the simulation ranges.
• If the model contains a MATLAB Function block, it must use MATLAB language features supported

for fixed-point conversion. For more information, see “MATLAB Language Features Supported for
Automated Fixed-Point Conversion” on page 7-35.

• The model must have finite simulation stop time.

During the optimization process, the software makes changes to several settings and model
configuration parameters. These purpose of these changes include suppressing diagnostics, enabling
logging with the Simulation Data Inspector, reducing the memory consumed by the result, ensuring
validity of the model, accelerating the optimization process, and turning off data type override. For
more information, see “Model Configuration Changes Made During Data Type Optimization” on page
42-63. You can restore these diagnostics after the optimization is complete.

Best Practices for Optimizing Data Types
Define Constraints

To determine if the behavior of a new fixed-point implementation is acceptable, the optimization
requires well-defined behavioral constraints. To define a constraint, use the addTolerance method
of the fxpOptimizationOptions object, or use one or more “Model Verification” blocks in your
model. For more information, see “Specify Behavioral Constraints” on page 42-18.

Minimize Locked Data Types

When the Lock data types against changes by the fixed-point tools setting of a block within the
system you want to optimize is enabled, it minimizes the freedom of the optimization process to find
new solutions.

Model Management and Exploration
The fxpopt function returns an OptimizationResult object containing a series of fixed-point
implementations called solutions. If the optimization process finds a fixed-point implementation that
meets the specified behavioral constraints, the solutions are sorted by cost, giving the best solution
with the smallest cost (bit width or operator counts) as the first element of the array.

In cases where the optimization is not able to find a fixed-point implementation meeting the
behavioral constraints, the solutions are ordered by maximum absolute difference from the baseline
model, with the smallest difference as the first element.
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Explore the best found solution using the explore method of the OptimizationResult object. You
can also explore any of the other found solutions in the same manner. Do not save and close the
model until you select the solution you want to keep. Closing or saving the model inhibits further
exploration of different solutions.

Optimize Fixed-Point Data Types
This example shows how to optimize the data types used by a system based on specified tolerances.

To begin, open the system for which you want to optimize the data types.

model = 'ex_auto_gain_controller';
sud = 'ex_auto_gain_controller/sud';
open_system(model)

Create an fxpOptimizationOptions object to define constraints and tolerances to meet your
design goals. Set the UseParallel property of the fxpOptimizationOptions object to true to
run iterations of the optimization in parallel. You can also specify word lengths to allow in your design
through the AllowableWordLengths property.

opt = fxpOptimizationOptions('AllowableWordLengths', 10:24, 'UseParallel', true)

opt = 

  fxpOptimizationOptions with properties:

           MaxIterations: 50
                 MaxTime: 600
                Patience: 10
               Verbosity: High
    AllowableWordLengths: [10 11 12 13 14 15 16 17 18 19 20 21 22 23 24]
             UseParallel: 1

   Advanced Options
         AdvancedOptions: [1×1 struct]
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Use the addTolerance method to define tolerances for the differences between the original
behavior of the system, and the behavior using the optimized fixed-point data types.

tol = 10e-2;
addTolerance(opt, [model '/output_signal'], 1, 'AbsTol', tol);

Use the fxpopt function to run the optimization. The software analyzes ranges of objects in your
system under design and the constraints specified in the fxpOptimizationOptions object to apply
heterogeneous data types to your system while minimizing total bit width.

result = fxpopt(model, sud, opt);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 4).
    + Preprocessing
    + Modeling the optimization problem
        - Constructing decision variables
    + Running the optimization solver
Analyzing and transferring files to the workers ...done.
        - Evaluating new solution: cost 180, does not meet the tolerances.
        - Evaluating new solution: cost 198, does not meet the tolerances.
        - Evaluating new solution: cost 216, does not meet the tolerances.
        - Evaluating new solution: cost 234, does not meet the tolerances.
        - Evaluating new solution: cost 252, does not meet the tolerances.
        - Evaluating new solution: cost 270, does not meet the tolerances.
        - Evaluating new solution: cost 288, does not meet the tolerances.
        - Evaluating new solution: cost 306, meets the tolerances.
        - Evaluating new solution: cost 324, meets the tolerances.
        - Evaluating new solution: cost 342, meets the tolerances.
        - Evaluating new solution: cost 360, meets the tolerances.
        - Evaluating new solution: cost 378, meets the tolerances.
        - Evaluating new solution: cost 396, meets the tolerances.
        - Evaluating new solution: cost 414, meets the tolerances.
        - Evaluating new solution: cost 432, meets the tolerances.
        - Updated best found solution, cost: 306
        - Evaluating new solution: cost 304, meets the tolerances.
        - Evaluating new solution: cost 304, meets the tolerances.
        - Evaluating new solution: cost 301, meets the tolerances.
        - Evaluating new solution: cost 305, does not meet the tolerances.
        - Evaluating new solution: cost 305, meets the tolerances.
        - Evaluating new solution: cost 301, meets the tolerances.
        - Evaluating new solution: cost 299, meets the tolerances.
        - Evaluating new solution: cost 299, meets the tolerances.
        - Evaluating new solution: cost 296, meets the tolerances.
        - Evaluating new solution: cost 299, meets the tolerances.
        - Evaluating new solution: cost 291, meets the tolerances.
        - Evaluating new solution: cost 296, does not meet the tolerances.
        - Evaluating new solution: cost 299, meets the tolerances.
        - Evaluating new solution: cost 300, meets the tolerances.
        - Evaluating new solution: cost 296, does not meet the tolerances.
        - Evaluating new solution: cost 301, meets the tolerances.
        - Evaluating new solution: cost 303, meets the tolerances.
        - Evaluating new solution: cost 299, meets the tolerances.
        - Evaluating new solution: cost 304, does not meet the tolerances.
        - Evaluating new solution: cost 300, meets the tolerances.
        - Updated best found solution, cost: 304
        - Updated best found solution, cost: 301
        - Updated best found solution, cost: 299
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        - Updated best found solution, cost: 296
        - Updated best found solution, cost: 291
        - Evaluating new solution: cost 280, meets the tolerances.
        - Evaluating new solution: cost 287, meets the tolerances.
        - Evaluating new solution: cost 288, does not meet the tolerances.
        - Evaluating new solution: cost 287, does not meet the tolerances.
        - Evaluating new solution: cost 283, meets the tolerances.
        - Evaluating new solution: cost 283, does not meet the tolerances.
        - Evaluating new solution: cost 262, does not meet the tolerances.
        - Evaluating new solution: cost 283, does not meet the tolerances.
        - Evaluating new solution: cost 282, does not meet the tolerances.
        - Evaluating new solution: cost 288, meets the tolerances.
        - Evaluating new solution: cost 289, meets the tolerances.
        - Evaluating new solution: cost 288, meets the tolerances.
        - Evaluating new solution: cost 290, meets the tolerances.
        - Evaluating new solution: cost 281, does not meet the tolerances.
        - Evaluating new solution: cost 286, does not meet the tolerances.
        - Evaluating new solution: cost 287, meets the tolerances.
        - Evaluating new solution: cost 284, meets the tolerances.
        - Evaluating new solution: cost 282, meets the tolerances.
        - Evaluating new solution: cost 285, does not meet the tolerances.
        - Evaluating new solution: cost 277, meets the tolerances.
        - Updated best found solution, cost: 280
        - Updated best found solution, cost: 277
        - Evaluating new solution: cost 272, meets the tolerances.
        - Evaluating new solution: cost 266, meets the tolerances.
        - Evaluating new solution: cost 269, meets the tolerances.
        - Evaluating new solution: cost 271, does not meet the tolerances.
        - Evaluating new solution: cost 274, meets the tolerances.
        - Evaluating new solution: cost 275, meets the tolerances.
        - Evaluating new solution: cost 274, does not meet the tolerances.
        - Evaluating new solution: cost 275, meets the tolerances.
        - Evaluating new solution: cost 276, does not meet the tolerances.
        - Evaluating new solution: cost 271, meets the tolerances.
        - Evaluating new solution: cost 267, meets the tolerances.
        - Evaluating new solution: cost 270, meets the tolerances.
        - Evaluating new solution: cost 272, meets the tolerances.
        - Evaluating new solution: cost 264, does not meet the tolerances.
        - Evaluating new solution: cost 265, does not meet the tolerances.
        - Evaluating new solution: cost 269, meets the tolerances.
        - Evaluating new solution: cost 270, meets the tolerances.
        - Evaluating new solution: cost 269, meets the tolerances.
        - Evaluating new solution: cost 276, meets the tolerances.
        - Evaluating new solution: cost 274, meets the tolerances.
        - Updated best found solution, cost: 272
        - Updated best found solution, cost: 266
    + Optimization has finished.
        - Neighborhood search complete.
        - Maximum number of iterations completed.
    + Fixed-point implementation that met the tolerances found.
        - Total cost: 266
        - Maximum absolute difference: 0.087035
        - Use the explore method of the result to explore the implementation.
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Use the explore method of the OptimizationResult object, result, to launch Simulation Data
Inspector and explore the design containing the smallest total number of bits while maintaining the
numeric tolerances specified in the opt object.

 explore(result);

You can revert your model back to its original state using the revert method of the
OptimizationResult object.

 revert(result);

See Also
Functions
fxpopt

Classes
fxpOptimizationOptions
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More About
• “Data Type Optimization Not Successful” on page 49-31
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Optimize Data Types Using Multiple Simulation Scenarios
This example shows how to create multiple simulation scenarios, and use the scenarios to optimize
the fixed-point data types of a system.

Open the model. In this example, you optimize the data types of the Controller subsystem. The model
is set up to use either a ramp input, or a random input. The model uses an Assertion block rather
than using signal tolerances to verify the numerical behavior of the fixed-point implementation. For
more information, see “Specify Behavioral Constraints” on page 42-18.

model = 'ex_controllerHarness';
open_system(model);

Create the Simulation Scenarios

Create a Simulink.SimulationInput object that contains the different scenarios. Use both the
ramp input as well as four different seeds for the random input.

si = Simulink.SimulationInput.empty(5, 0);

% scan through 4 different seeds for the random input
rng(1);
seeds = randi(1e6, [1 4]);

for sIndex = 1:length(seeds)
    si(sIndex) = Simulink.SimulationInput(model);
    si(sIndex) = si(sIndex).setVariable('SOURCE', 2); % SOURCE == 2 corresponds to the random input
    si(sIndex) = si(sIndex).setBlockParameter([model '/Random/uniformRandom'], 'Seed', num2str(seeds(sIndex))); % scan through the seeds
    si(sIndex) = si(sIndex).setUserString(sprintf('random_%i', seeds(sIndex)));
end

% setting SOURCE == 1 corresponds to the ramp input
si(5) = Simulink.SimulationInput(model);
si(5) = si(5).setVariable('SOURCE', 1);
si(5) = si(5).setUserString('Ramp');

Specify Fixed-Point Optimization Options

To specify options for the optimization, such as the number of iterations and method for range
collection, use the fxpOptimizationOptions object. This example uses derived range analysis to
collect ranges for the system.

options = fxpOptimizationOptions('MaxIterations', 3e2, 'Patience', 50);
options.AdvancedOptions.PerformNeighborhoodSearch = false;
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% use derived range analysis for range collection
options.AdvancedOptions.UseDerivedRangeAnalysis = true

options = 

  fxpOptimizationOptions with properties:

           MaxIterations: 300
                 MaxTime: 600
                Patience: 50
               Verbosity: High
    AllowableWordLengths: [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ... ]
       ObjectiveFunction: BitWidthSum
             UseParallel: 0

   Advanced Options
         AdvancedOptions: [1x1 DataTypeOptimization.AdvancedFxpOptimizationOptions]

Specify the simulation input objects as simulation scenarios in the advanced options.

options.AdvancedOptions.SimulationScenarios = si;

Run Optimization and Explore the Results

During the optimization, the software derives ranges for all simulation scenarios specified in the
advanced options. The software verifies solutions against each simulation input scenario.

result = fxpopt(model, [model '/Controller'], options)

    + Starting data type optimization...
Warning: Non-scalar in Uniform output, at index 3, output 1.
Set 'UniformOutput' to false. 
Warning: Non-scalar in Uniform output, at index 3, output 1.
Set 'UniformOutput' to false. 
    + Checking for unsupported constructs.
    + Preprocessing
Warning: Non-scalar in Uniform output, at index 3, output 1.
Set 'UniformOutput' to false. 
Warning: Non-scalar in Uniform output, at index 3, output 1.
Set 'UniformOutput' to false. 
Warning: Non-scalar in Uniform output, at index 3, output 1.
Set 'UniformOutput' to false. 
Warning: Non-scalar in Uniform output, at index 3, output 1.
Set 'UniformOutput' to false. 
    + Modeling the optimization problem
Warning: Non-scalar in Uniform output, at index 3, output 1.
Set 'UniformOutput' to false. 
Warning: Non-scalar in Uniform output, at index 3, output 1.
Set 'UniformOutput' to false. 
Warning: Non-scalar in Uniform output, at index 3, output 1.
Set 'UniformOutput' to false. 
Warning: Non-scalar in Uniform output, at index 3, output 1.
Set 'UniformOutput' to false. 
Warning: Non-scalar in Uniform output, at index 3, output 1.
Set 'UniformOutput' to false. 
Warning: Non-scalar in Uniform output, at index 3, output 1.
Set 'UniformOutput' to false. 
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        - Constructing decision variables
    + Running the optimization solver
        - Evaluating new solution: cost 496, does not meet the behavioral constraints.
        - Evaluating new solution: cost 976, does not meet the behavioral constraints.
        - Evaluating new solution: cost 1936, meets the behavioral constraints.
        - Updated best found solution, cost: 1936
    + Optimization has finished.
    + Fixed-point implementation that satisfies the behavioral constraints found. The best found solution is applied on the model.
        - Total cost: 1936
        - Use the explore method of the result to explore the implementation.

result = 

  OptimizationResult with properties:

                  Model: 'ex_controllerHarness'
      SystemUnderDesign: 'ex_controllerHarness/Controller'
           FinalOutcome: 'Fixed-point implementation that satisfies the behavioral constraints found. The best found solution is applied on the model.'
    OptimizationOptions: [1x1 fxpOptimizationOptions]
              Solutions: [1x1 DataTypeOptimization.OptimizationSolution]

You can explore each solution as it compares to each simulation scenario you defined. Explore the
best found solution and view it with the ramp simulation input. The ramp input is simulation scenario
five.

solutionIndex = 1; % get the best found solution
scenarioIndex = 5; % get the 5th scenario (ramp)
solution = explore(result, solutionIndex, scenarioIndex);

See Also
Functions
fxpopt

Classes
fxpOptimizationOptions

More About
• “Data Type Optimization Not Successful” on page 49-31
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Optimize Data Types for an FPGA with DSP Slices
This example shows how to use the addSpecification method of the fxpOptimizationOptions
class to achieve better mapping for product blocks on DSP slices for FPGA targets. Use
addSpecification to specify known data types in a system. After specifying these known
parameters, when you optimize data types in the system, the optimization process does not change
the specified block parameter data type.

Many FPGA boards have specific multiply-accumulate hardware accelerators, called DSP slices that
speed up the execution of signal processing functions. DSP slices vary in size depending on the
vendor. To gain the hardware acceleration benefits of DSP slices, it is common in FPGA design to map
multiply and accumulate operations in the algorithm onto these slices.

In this example, optimize data types for 3 DSP families of Xilinx® boards, as well as for a generic
18x18 bit input. Use the addSpecification method to achieve a good mapping between the
Product blocks in the design and the target DSP slices.

This example makes the following assumptions:

1 Only Product and Gain blocks are targeted for mapping to DSP slices. You can handle other
blocks in a similar fashion.

2 Product blocks have only 2 inputs.
3 Driver blocks (blocks that precede Product or Gain blocks) have OutDataTypeStr as a

parameter.
4 Only blocks that do not have the HDL property DSPStyle set to off are targeted.

Instrument the Model and Collect Ranges

To begin, open the system for which you want to optimize data types. In this example, data types are
optimized for an automatic gain control algorithm.

model = 'mQAMAGC';
sud = [model '/Automatic Gain Control'];
open_system(model);

Initialize the QAM Tx subsystem.
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initQAM;

Create a structure array that describes the properties of the target DSP slice. The dspStyle function
included in this example provides information about common Xilinx® DSP slices including DSP48A1
(18x18 bit signed), DSP48E1 (18x25 bit signed), and DSP48E2 (18x27 bit signed). It also provides an
example of a generic 18x18 signed DSP slice.

dspStyle = getDSPStyle('DSP48E2');

In this example, only Product and Gain blocks are targeted for mapping to DSP slices. Find all the
Product and Gain blocks in the system under design that do not have the HDL block property
DSPStyle set to off. For more information, see “DSPStyle” (HDL Coder).

productBlocks = find_system(sud,'LookUnderMasks','on','BlockType','Product');
hasDSPOff = cellfun(@(x)(isequal(hdlget_param(x,'DSPStyle'),'off')), productBlocks);
productDSP = productBlocks(~hasDSPOff);

gainBlocks = find_system(sud,'LookUnderMasks','on','BlockType','Gain');
hasDSPOff = cellfun(@(x)(isequal(hdlget_param(x,'DSPStyle'),'off')), productBlocks);
gainDSP = gainBlocks(~hasDSPOff);

Enable instrumentation to log minimum, maximum, and overflow data during simulation for Product
blocks and driver blocks that preceed Product blocks. Simulate the model to collect ranges.

c = DataTypeWorkflow.Converter(sud,'TopModel',model);
c.CurrentRunName = 'RangeCollection';
c.simulateSystem('MinMaxOverflowLogging','MinMaxAndOverflow');

Get Specifications for Product Blocks

For efficient mapping of Product blocks to available DSP slices, consider the range requirements of
the Product blocks. Create a structure array to store simulation minimum and maximum values for
Product blocks collected during the range collection run.

specs = struct('Block',productDSP{1},'Drivers',[],'Min',[],'Max',[]); %#ok<*SAGROW>
r = c.results(c.CurrentRunName,@(x)(strcmp(x.ResultName,productDSP{1})));
specs.Min = r.SimMin;
specs.Max = r.SimMax;
predecessorBlocks = predecessors(productDSP{1});
for pIndex = 1:numel(predecessorBlocks)
    pBlkObj = get_param(predecessorBlocks{pIndex},'Object');
    specs.Drivers(pIndex) = pBlkObj.Handle;
    r = c.results(c.CurrentRunName,@(x)(strcmp(x.ResultName,pBlkObj.getFullName())));
    specs.Min(pIndex+1) = r.SimMin;
    specs.Max(pIndex+1) = r.SimMax;
end

Store these known parameter specifications for the Product blocks in a
Simulink.Simulation.BlockParameter object.

bpProductBlock = Simulink.Simulation.BlockParameter.empty(0,3);

fout = fi(max([abs(specs.Min(1)) abs(specs.Max(1))]),dspStyle.sout,dspStyle.wout);
bpProductBlock(1) = Simulink.Simulation.BlockParameter(specs.Block, ...
    'OutDataTypeStr', ...
    sprintf('fixdt(%i,%i,%i)',dspStyle.sout,dspStyle.wout,fout.FractionLength));
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Assign the largest type to the largest range of the driver blocks. This ensures that the largest data
type available in the target hardware is applied to the block with the largest range requirement.

dMax1 = max([abs(specs.Min(2)) abs(specs.Max(2))]);
dMax2 = max([abs(specs.Min(3)) abs(specs.Max(3))]);
if dMax1 < dMax2
    win_1 = dspStyle.win_1;
    sin_1 = dspStyle.sin_1;
    win_2 = dspStyle.win_2;
    sin_2 = dspStyle.sin_2;
    if dspStyle.win_1 >= dspStyle.win_2
        win_1 = dspStyle.win_2;
        sin_1 = dspStyle.sin_2;
        win_2 = dspStyle.win_1;
        sin_2 = dspStyle.sin_1;
    end
else
    win_1 = dspStyle.win_2;
    sin_1 = dspStyle.sin_2;
    win_2 = dspStyle.win_1;
    sin_2 = dspStyle.sin_1;
    if dspStyle.win_1 >= dspStyle.win_2
        win_1 = dspStyle.win_1;
        sin_1 = dspStyle.sin_1;
        win_2 = dspStyle.win_2;
        sin_2 = dspStyle.sin_2;
    end
end

Get specifications for blocks preceding Product blocks. Note that this example assumes that Product
blocks have two inputs.

fin1 = fi(dMax1, sin_1, win_1);
blkObj = get_param(specs.Drivers(1), 'Object');
bpProductBlock(2) = Simulink.Simulation.BlockParameter(blkObj.getFullName, ...
    'OutDataTypeStr', ...
    sprintf('fixdt(%i, %i, %i)', sin_1, win_1, fin1.FractionLength));

fin2 = fi(dMax2, sin_2, win_2);
blkObj = get_param(specs.Drivers(2), 'Object');
bpProductBlock(3) = Simulink.Simulation.BlockParameter(blkObj.getFullName, ...
    'OutDataTypeStr', ...
    sprintf('fixdt(%i, %i, %i)', sin_2, win_2, fin2.FractionLength));

Get Specifications for Gain Blocks

Store known parameter specifications for the Gain blocks in a
Simulink.Simulation.BlockParameter object.

bpGainBlock = Simulink.Simulation.BlockParameter.empty(0,3);
specs = struct('Block',gainDSP{1},'Drivers',[],'Min',[],'Max',[]); %#ok<*SAGROW>
r = c.results(c.CurrentRunName,@(x)(strcmp(x.ResultName,gainDSP{1})));
specs.Min = r.SimMin;
specs.Max = r.SimMax;
predecessorBlocks = predecessors(gainDSP{1});
pBlkObj = get_param(predecessorBlocks{1},'Object');
specs.Drivers(1) = pBlkObj.Handle;
r = c.results(c.CurrentRunName,@(x)(strcmp(x.ResultName,pBlkObj.getFullName())));
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specs.Min(2) = r.SimMin;
specs.Max(2) = r.SimMax;

Get specifications for the output of Gain blocks.

fout = fi(max(abs([specs.Min(1) specs.Max(1)])),dspStyle.sout,dspStyle.wout);
bpGainBlock(1) = Simulink.Simulation.BlockParameter(gainDSP{1}, ...
    'OutDataTypeStr', ...
    sprintf('fixdt(%i, %i, %i)',dspStyle.sout,dspStyle.wout,fout.FractionLength));

Get specifications for the blocks preceding Gains blocks and assign this to the first configuration of
the Simulink.Simulation.BlockParameter object bpGainBlock.

blkObj = get_param(specs.Drivers(1),'Object');
fin = fi(max(abs([specs.Min(2) specs.Max(2)])),dspStyle.sin_1,dspStyle.win_1);
bpGainBlock(2) = Simulink.Simulation.BlockParameter(blkObj.getFullName, ...
    'OutDataTypeStr', ...
    sprintf('fixdt(%i,%i,%i)',dspStyle.sin_1,dspStyle.win_1,fin.FractionLength));

Get specifications for the Gain parameter of the system under design and assign this value to the
second configuration of bpGainBlock.

paramValue = str2double(get_param(sud,'AGC_Gain'));
fParam = fi(paramValue,dspStyle.sin_2,dspStyle.win_2);
bpGainBlock(3) = Simulink.Simulation.BlockParameter(gainDSP{1}, ...
    'ParamDataTypeStr', ...
    sprintf('fixdt(%i,%i,%i)',dspStyle.sin_2,dspStyle.win_2,fParam.FractionLength));

Define Constraints and Tolerances

Create an fxpOptimizationOptions object to define constraints and tolerances. Specify allowed
word lengths of 8 bits to 32 bits.

options = fxpOptimizationOptions('AllowableWordLengths',8:2:32);

Use the addTolerance method to define tolerances for the differences between the original
behavior of the system and the behavior using the optimized fixed-point data types.

addTolerance(options,sud,1,'RelTol',1e-2);
addTolerance(options,sud,2,'RelTol',1e-2);
addTolerance(options,sud,1,'AbsTol',1e-3);
addTolerance(options,sud,2,'AbsTol',1e-3);

Use the addSpecification method to define specifications for the Product and Gain blocks.

addSpecification(options,'BlockParameter',bpProductBlock); % set the specifications for the product block
addSpecification(options,'BlockParameter',bpGainBlock); % set the specifications for the gain block
showSpecifications(options);

    Index          Name                            BlockPath                            Value       
    _____    ________________    _____________________________________________    __________________

      1      OutDataTypeStr      mQAMAGC/Automatic Gain Control/LoopGain          'fixdt(1, 45, 53)'
      2      ParamDataTypeStr    mQAMAGC/Automatic Gain Control/LoopGain          'fixdt(1,27,35)'  
      3      OutDataTypeStr      mQAMAGC/Automatic Gain Control/LoopGainDriver    'fixdt(1,18,16)'  
      4      OutDataTypeStr      mQAMAGC/Automatic Gain Control/Product           'fixdt(1,45,43)'  
      5      OutDataTypeStr      mQAMAGC/Automatic Gain Control/ProductDriverA    'fixdt(1, 27, 25)'
      6      OutDataTypeStr      mQAMAGC/Automatic Gain Control/ProductDriverB    'fixdt(1, 18, 17)'
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Optimize Fixed-Point Data Types

Use the fxpopt function to run the optimization. The software analyzes ranges of objects in the
system under design and the constraints specified in the fxpOptimizationOptions object to apply
heterogeneous data types to your system while minimizing the total bit width. Known parameter
specifications included using the addSpecification method is not affected by the optimization
process.

result = fxpopt(model,sud,options);

    + Starting data type optimization...
    + Checking for unsupported constructs.
    + Preprocessing
    + Modeling the optimization problem
        - Constructing decision variables
    + Running the optimization solver
        - Evaluating new solution: cost 200, does not meet the behavioral constraints.
        - Evaluating new solution: cost 250, does not meet the behavioral constraints.
        - Evaluating new solution: cost 300, does not meet the behavioral constraints.
        - Evaluating new solution: cost 350, does not meet the behavioral constraints.
        - Evaluating new solution: cost 400, does not meet the behavioral constraints.
        - Evaluating new solution: cost 450, does not meet the behavioral constraints.
        - Evaluating new solution: cost 500, meets the behavioral constraints.
        - Updated best found solution, cost: 500
        - Evaluating new solution: cost 494, meets the behavioral constraints.
        - Updated best found solution, cost: 494
        - Evaluating new solution: cost 492, meets the behavioral constraints.
        - Updated best found solution, cost: 492
        - Evaluating new solution: cost 490, does not meet the behavioral constraints.
        - Evaluating new solution: cost 486, does not meet the behavioral constraints.
        - Evaluating new solution: cost 490, meets the behavioral constraints.
        - Updated best found solution, cost: 490
        - Evaluating new solution: cost 488, meets the behavioral constraints.
        - Updated best found solution, cost: 488
        - Evaluating new solution: cost 478, meets the behavioral constraints.
        - Updated best found solution, cost: 478
        - Evaluating new solution: cost 474, meets the behavioral constraints.
        - Updated best found solution, cost: 474
        - Evaluating new solution: cost 470, meets the behavioral constraints.
        - Updated best found solution, cost: 470
        - Evaluating new solution: cost 466, meets the behavioral constraints.
        - Updated best found solution, cost: 466
        - Evaluating new solution: cost 462, meets the behavioral constraints.
        - Updated best found solution, cost: 462
        - Evaluating new solution: cost 458, meets the behavioral constraints.
        - Updated best found solution, cost: 458
        - Evaluating new solution: cost 452, meets the behavioral constraints.
        - Updated best found solution, cost: 452
        - Evaluating new solution: cost 450, meets the behavioral constraints.
        - Updated best found solution, cost: 450
        - Evaluating new solution: cost 448, does not meet the behavioral constraints.
        - Evaluating new solution: cost 444, does not meet the behavioral constraints.
        - Evaluating new solution: cost 448, meets the behavioral constraints.
        - Updated best found solution, cost: 448
        - Evaluating new solution: cost 446, meets the behavioral constraints.
        - Updated best found solution, cost: 446
        - Evaluating new solution: cost 436, meets the behavioral constraints.
        - Updated best found solution, cost: 436
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        - Evaluating new solution: cost 432, meets the behavioral constraints.
        - Updated best found solution, cost: 432
        - Evaluating new solution: cost 428, meets the behavioral constraints.
        - Updated best found solution, cost: 428
        - Evaluating new solution: cost 424, meets the behavioral constraints.
        - Updated best found solution, cost: 424
        - Evaluating new solution: cost 420, meets the behavioral constraints.
        - Updated best found solution, cost: 420
        - Evaluating new solution: cost 416, meets the behavioral constraints.
        - Updated best found solution, cost: 416
        - Evaluating new solution: cost 410, meets the behavioral constraints.
        - Updated best found solution, cost: 410
        - Evaluating new solution: cost 408, meets the behavioral constraints.
        - Updated best found solution, cost: 408
        - Evaluating new solution: cost 406, does not meet the behavioral constraints.
        - Evaluating new solution: cost 402, does not meet the behavioral constraints.
        - Evaluating new solution: cost 406, meets the behavioral constraints.
        - Updated best found solution, cost: 406
        - Evaluating new solution: cost 404, meets the behavioral constraints.
        - Updated best found solution, cost: 404
        - Evaluating new solution: cost 394, meets the behavioral constraints.
        - Updated best found solution, cost: 394
        - Evaluating new solution: cost 390, meets the behavioral constraints.
        - Updated best found solution, cost: 390
        - Evaluating new solution: cost 386, meets the behavioral constraints.
        - Updated best found solution, cost: 386
        - Evaluating new solution: cost 382, meets the behavioral constraints.
        - Updated best found solution, cost: 382
        - Evaluating new solution: cost 378, meets the behavioral constraints.
        - Updated best found solution, cost: 378
        - Evaluating new solution: cost 374, meets the behavioral constraints.
        - Updated best found solution, cost: 374
        - Evaluating new solution: cost 368, does not meet the behavioral constraints.
        - Evaluating new solution: cost 372, meets the behavioral constraints.
        - Updated best found solution, cost: 372
        - Evaluating new solution: cost 370, does not meet the behavioral constraints.
        - Evaluating new solution: cost 366, does not meet the behavioral constraints.
        - Evaluating new solution: cost 370, meets the behavioral constraints.
        - Updated best found solution, cost: 370
        - Evaluating new solution: cost 368, meets the behavioral constraints.
        - Updated best found solution, cost: 368
        - Evaluating new solution: cost 358, does not meet the behavioral constraints.
        - Evaluating new solution: cost 364, meets the behavioral constraints.
        - Updated best found solution, cost: 364
        - Evaluating new solution: cost 360, meets the behavioral constraints.
        - Updated best found solution, cost: 360
        - Evaluating new solution: cost 356, meets the behavioral constraints.
        - Updated best found solution, cost: 356
        - Evaluating new solution: cost 352, meets the behavioral constraints.
        - Updated best found solution, cost: 352
        - Evaluating new solution: cost 348, meets the behavioral constraints.
        - Updated best found solution, cost: 348
        - Evaluating new solution: cost 342, does not meet the behavioral constraints.
    + Optimization has finished.
        - Neighborhood search complete.
        - Maximum number of iterations completed.
    + Fixed-point implementation that satisfies the behavioral constraints found. The best found solution is applied on the model.
        - Total cost: 348
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        - Maximum absolute difference: 0.006126
        - Use the explore method of the result to explore the implementation.

Use the explore method of the OptimizationResult object, result, to launch the Simulation
Data Inspector and explore the design.

explore(result)

ans = 

  OptimizationSolution with properties:

             Cost: 348
             Pass: 1
    MaxDifference: 0.0061
            RunID: 23481
          RunName: {'solution_61d4a5478350738e21dfd31a47760c2cbf2e4794_1'}
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Use Data Type Optimization to Minimize Operator Counts
This example shows how to use the ObjectiveFunction property of the
fxpOptimizationOptions class to minimize an estimated count of operators in the generated
code. This results in a lower program memory size for C code generated from Simulink models.

Open the Model
To begin, open the system for which you want to optimize the data types.

model = 'mFilter2D';
sud = [model '/sud'];
openExample('fixedpoint/FxpoptWithOperatorCountsExample')

Define Tolerances and Settings

Create an fxpOptimizationOptions object to define tolerances and optimization settings.

opt = fxpOptimizationOptions();

Use the addTolerance method to define tolerances for the differences between the original
behavior of the system and the behavior using the optimized fixed-point data types.
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tol = 1e-4;
opt.addTolerance([model '/output_signal'],1,'AbsTol',tol);

Set the advanced option PerformNeighborhoodSearch to true to perform a neighborhood search
for the optimized solution.

opt.AdvancedOptions.PerformNeighborhoodSearch = true;

Set the ObjectiveFunction property to OperatorCount to instruct the optimization to minimize
an estimated count of operators in the generated code.

opt.ObjectiveFunction = 'OperatorCount';

Use the fxpopt function to run the optimization. The software analyzes ranges of objects in the
system under design and the constraints specified in the fxpOptimizationOptions object to apply
heterogeneous data types to your system while minimizing the total operator count.

optRes = fxpopt(model,sud,opt);

+ Checking for unsupported constructs.
    + Preprocessing
    + Modeling the optimization problem
        - Constructing decision variables
    + Running the optimization solver
        - Evaluating new solution: cost 87, does not meet the tolerances.
        - Evaluating new solution: cost 87, does not meet the tolerances.
        - Evaluating new solution: cost 87, does not meet the tolerances.
        - Evaluating new solution: cost 87, does not meet the tolerances.
        - Evaluating new solution: cost 87, does not meet the tolerances.
        - Evaluating new solution: cost 85, does not meet the tolerances.
        - Evaluating new solution: cost 81, does not meet the tolerances.
        - Evaluating new solution: cost 83, does not meet the tolerances.
        - Evaluating new solution: cost 83, does not meet the tolerances.
        - Evaluating new solution: cost 83, does not meet the tolerances.
        - Evaluating new solution: cost 83, does not meet the tolerances.
        - Evaluating new solution: cost 83, does not meet the tolerances.
        - Evaluating new solution: cost 83, does not meet the tolerances.
        - Evaluating new solution: cost 83, does not meet the tolerances.
        - Evaluating new solution: cost 81, does not meet the tolerances.
        - Evaluating new solution: cost 83, meets the tolerances.
        - Updated best found solution, cost: 83
        - Evaluating new solution: cost 90, meets the tolerances.
        - Evaluating new solution: cost 83, does not meet the tolerances.
        - Evaluating new solution: cost 85, does not meet the tolerances.
        - Evaluating new solution: cost 89, meets the tolerances.
        - Evaluating new solution: cost 85, does not meet the tolerances.
        - Evaluating new solution: cost 88, meets the tolerances.
        - Evaluating new solution: cost 92, meets the tolerances.
        - Evaluating new solution: cost 90, does not meet the tolerances.
        - Evaluating new solution: cost 83, does not meet the tolerances.
        - Evaluating new solution: cost 89, does not meet the tolerances.
    + Optimization has finished.
        - Neighborhood search complete.
        - Reached limit of number of iterations without updates to the current best solution.
    + Fixed-point implementation that met the tolerances found.
        - Total cost: 83
        - Maximum absolute difference: 0.000091
        - Use the explore method of the result to explore the implementation.

 Use Data Type Optimization to Minimize Operator Counts

40-31



Use the explore method of the OptimizationResult object, optRes, to launch the Simulation
Data Inspector and explore the design containing the minimum number of operator counts while
maintaining the numeric tolerances specified in the opt object.

explore(optRes)

Use the openSimulationManager method of the OptimizationResult object, optRes, to inspect
the simulations run during optimization in Simulation Manager.

openSimulationManager(optRes)

See Also
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Image Denoising Using Fixed-Point Quantized Restricted
Boltzmann Machine Algorithm

This example highlights two workflows that can help you arrive at a fully embedded-efficient fixed-
point design. This example shows how to:

• Use multiple simulation scenarios in data type optimization.
• Use ranges derived from design ranges for data-type optimization.
• Use different benchmarks of numerical behavior for each scenario using blocks from the Model
Verification library.

• Replace math operations that do not support fixed-point data types with efficient lookup tables.

Convert Model to Use Optimal Fixed-Point Data Types

The model in this example uses a Restricted Boltzmann Machine (RBM) algorithm to denoise images.
Load the image data and RBM algorithm weights. The original and distorted images are stored in the
imgOriginal and imgDistorted variables. Each row of each matrix is a test image from the
MNIST data set.

load RBMData;

Open and view the first set of test images.

singleImgDistorted = imgDistorted(1,:);
singleImgOriginal = imgOriginal(1,:);
imgSize = length(singleImgOriginal);

subplot(1,2,1)
imshow(reshape(singleImgOriginal,[28,28])')
title('Original Image');
subplot(1,2,2)
imshow(reshape(singleImgDistorted,[28,28])')
title('Distorted Image')
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Open the model. The model loads a distorted test image, uses the RBM algorithm to denoise the
image, and then compares the denoised image to the original image without added noise. To improve
simulation speed, the video display is turned off in this model. To turn on the video display, set the
DISPLAY_VIEWER variable to 1.

model = 'ex_rbmDenoiser01';
open_system(model);

DISPLAY_VIEWER = 0;

When converting a model to use fixed-point data types, it is important to collect ranges while
exercising the model over its full operating range. You can do this by defining multiple simulation
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scenarios. In this example, each of the five simulation scenarios defines a new set of test images to
denoise and compare to the original image.

IMGN = 5;
si = Simulink.SimulationInput.empty(0, IMGN);

for indx = 1:IMGN
        si(indx) = Simulink.SimulationInput(model);
        si(indx) = si(indx).setVariable('singleImgDistorted', imgDistorted(indx,:));
        si(indx) = si(indx).setVariable('singleImgOriginal', imgOriginal(indx,:));
end

In each simulation scenario, verify that the mean-squared error between the original image and the
denoised image is less than 0.02.

    si(1) = si(1).setBlockParameter([model '/CompareToOriginal/check'], 'max', '0.02');
    si(2) = si(2).setBlockParameter([model '/CompareToOriginal/check'], 'max', '0.02');
    si(3) = si(3).setBlockParameter([model '/CompareToOriginal/check'], 'max', '0.02');
    si(4) = si(4).setBlockParameter([model '/CompareToOriginal/check'], 'max', '0.02');
    si(5) = si(5).setBlockParameter([model '/CompareToOriginal/check'], 'max', '0.03');

Define the options to use during optimization. For this example, restrict the word lengths in the
converted model to be between 8 and 16 bits. You can also restrict the number of iterations the
optimization algorithm performs.

options = fxpOptimizationOptions(...
    'AllowableWordLengths', [8 16], ...
    'MaxIterations', 50, ...
    'Patience', 50);

To collect derived ranges in the model in addition to using the simulation scenarios to collect
simulation ranges, set the UseDerivedRangeAnalysis option to true. Derived range analysis often
returns a more conservative estimate of the dynamic ranges in the system than ranges collected
through simulations.

options.AdvancedOptions.UseDerivedRangeAnalysis = true;

Specify the simulation scenarios to use during the optimization.

options.AdvancedOptions.SimulationScenarios = si;

Use the fxpopt function to optimize the data types in the RBM Denoiser subsystem according to the
options specified in the fxpOptimizationOptions object, options

result = fxpopt(model, [model '/RBM Denoiser'], options);

    + Starting data type optimization...
    + Checking for unsupported constructs.
    + Preprocessing
    + Modeling the optimization problem
        - Constructing decision variables
    + Running the optimization solver
        - Evaluating new solution: cost 344, does not meet the behavioral constraints.
        - Evaluating new solution: cost 656, meets the behavioral constraints.
        - Updated best found solution, cost: 656
        - Evaluating new solution: cost 640, meets the behavioral constraints.
        - Updated best found solution, cost: 640
        - Evaluating new solution: cost 624, does not meet the behavioral constraints.
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        - Evaluating new solution: cost 632, meets the behavioral constraints.
        - Updated best found solution, cost: 632
        - Evaluating new solution: cost 608, meets the behavioral constraints.
        - Updated best found solution, cost: 608
        - Evaluating new solution: cost 600, meets the behavioral constraints.
        - Updated best found solution, cost: 600
        - Evaluating new solution: cost 584, does not meet the behavioral constraints.
        - Evaluating new solution: cost 592, meets the behavioral constraints.
        - Updated best found solution, cost: 592
        - Evaluating new solution: cost 568, meets the behavioral constraints.
        - Updated best found solution, cost: 568
        - Evaluating new solution: cost 560, meets the behavioral constraints.
        - Updated best found solution, cost: 560
        - Evaluating new solution: cost 544, meets the behavioral constraints.
        - Updated best found solution, cost: 544
        - Evaluating new solution: cost 504, meets the behavioral constraints.
        - Updated best found solution, cost: 504
        - Evaluating new solution: cost 440, meets the behavioral constraints.
        - Updated best found solution, cost: 440
        - Evaluating new solution: cost 432, meets the behavioral constraints.
        - Updated best found solution, cost: 432
        - Evaluating new solution: cost 424, meets the behavioral constraints.
        - Updated best found solution, cost: 424
        - Evaluating new solution: cost 408, meets the behavioral constraints.
        - Updated best found solution, cost: 408
        - Evaluating new solution: cost 400, meets the behavioral constraints.
        - Updated best found solution, cost: 400
        - Evaluating new solution: cost 392, meets the behavioral constraints.
        - Updated best found solution, cost: 392
        - Evaluating new solution: cost 376, meets the behavioral constraints.
        - Updated best found solution, cost: 376
        - Evaluating new solution: cost 360, does not meet the behavioral constraints.
        - Evaluating new solution: cost 360, does not meet the behavioral constraints.
        - Evaluating new solution: cost 392, meets the behavioral constraints.
        - Evaluating new solution: cost 416, meets the behavioral constraints.
        - Evaluating new solution: cost 424, meets the behavioral constraints.
        - Evaluating new solution: cost 480, meets the behavioral constraints.
        - Evaluating new solution: cost 472, meets the behavioral constraints.
        - Evaluating new solution: cost 512, meets the behavioral constraints.
    + Optimization has finished.
        - Neighborhood search complete.
        - Maximum number of iterations completed.
    + Fixed-point implementation that satisfies the behavioral constraints found. The best found solution is applied on the model.
        - Total cost: 376
        - Use the explore method of the result to explore the implementation.

To compare the behavior of the double-precision baseline model against the model that uses fixed-
point data types, save the optimized, fixed-point model with a new name.

modelAfterFxpopt = 'ex_rbmDenoiser02';
save_system(model, modelAfterFxpopt);
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Replace Logistic Regression with a Lookup Table

The LogisticExpression subsystems contain operations that do not support fixed-point data types.
Replace these subsystems with lookup tables that closely approximate the original behavior.

functionToApproximate = [modelAfterFxpopt '/RBM Denoiser/Logistic/LogisticExpression'];
problem = FunctionApproximation.Problem(functionToApproximate);
problem.Options.AbsTol = 2^-6;
problem.Options.RelTol = 2^-7;
solution = solve(problem);
replaceWithApproximate(solution);

|  ID |  Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification |             Error(Max,Current) | 
|   0 |             32 |        0 |          2 |               8 |            8 |             EvenSpacing |     1.562500e-02, 5.000000e-01 |
|   1 |            160 |        0 |         18 |               8 |            8 |             EvenSpacing |     1.562500e-02, 1.562500e-01 |
|   2 |            312 |        0 |         37 |               8 |            8 |             EvenSpacing |     1.562500e-02, 9.375000e-02 |
|   3 |            704 |        0 |         86 |               8 |            8 |             EvenSpacing |     1.562500e-02, 3.125000e-02 |
|   4 |           2064 |        1 |        256 |               8 |            8 |             EvenSpacing |     1.562500e-02, 0.000000e+00 |
|   5 |            128 |        0 |         14 |               8 |            8 |             EvenSpacing |     1.562500e-02, 3.593750e-01 |
|   6 |            120 |        0 |         13 |               8 |            8 |             EvenSpacing |     1.562500e-02, 4.218750e-01 |
|   7 |            248 |        0 |         29 |               8 |            8 |             EvenSpacing |     1.562500e-02, 1.718750e-01 |
|   8 |            224 |        0 |         26 |               8 |            8 |             EvenSpacing |     1.562500e-02, 1.875000e-01 |
|   9 |            528 |        0 |         64 |               8 |            8 |             EvenSpacing |     1.562500e-02, 3.125000e-02 |
|  10 |            432 |        0 |         52 |               8 |            8 |             EvenSpacing |     1.562500e-02, 6.250000e-02 |
|  11 |           1040 |        1 |        128 |               8 |            8 |             EvenSpacing |     1.562500e-02, 1.562500e-02 |
|  12 |             96 |        0 |         10 |               8 |            8 |             EvenSpacing |     1.562500e-02, 3.125000e-01 |
|  13 |             88 |        0 |          9 |               8 |            8 |             EvenSpacing |     1.562500e-02, 5.625000e-01 |
|  14 |            168 |        0 |         19 |               8 |            8 |             EvenSpacing |     1.562500e-02, 3.125000e-01 |
|  15 |            128 |        1 |          8 |               8 |            8 |          ExplicitValues |     1.562500e-02, 1.562500e-02 |
|  16 |            128 |        1 |          8 |               8 |            8 |          ExplicitValues |     1.562500e-02, 1.562500e-02 |
|  17 |           2064 |        1 |        256 |               8 |            8 |         EvenPow2Spacing |     1.562500e-02, 0.000000e+00 |
|  18 |           1040 |        1 |        128 |               8 |            8 |         EvenPow2Spacing |     1.562500e-02, 1.562500e-02 |

Best Solution
|  ID |  Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification |             Error(Max,Current) |
|  15 |            128 |        1 |          8 |               8 |            8 |          ExplicitValues |     1.562500e-02, 1.562500e-02 |

Because both of the LogisticExpression subsystems implement the same algorithm, you can replace
the second LogisticExpression subsystem with the same lookup table created in the previous step.

lutBlockPath = functionToApproximate;
subsystemToReplace = [modelAfterFxpopt '/RBM Denoiser/Logistic1/LogisticExpression'];
pos = get_param(subsystemToReplace, 'Position');
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delete_block(subsystemToReplace);
add_block(lutBlockPath, subsystemToReplace,'Position',pos);
set_param(subsystemToReplace, 'Commented', 'off');

Compare Behavior of Original Model with the Embedded-Efficient Version

Compare the simulation behavior of the fixed-point model with the lookup table approximations
against the original double-precision baseline version. Define the same simulation scenarios for the
updated model.

siFA = Simulink.SimulationInput.empty(0, IMGN);
for indx = 1:IMGN
        siFA(indx) = Simulink.SimulationInput(modelAfterFxpopt);
        siFA(indx) = siFA(indx).setVariable('singleImgDistorted', imgDistorted(indx,:));
        siFA(indx) = siFA(indx).setVariable('singleImgOriginal', imgOriginal(indx,:));
end
    siFA(1) = siFA(1).setBlockParameter([modelAfterFxpopt '/CompareToOriginal/check'], 'max', '0.02');
    siFA(2) = siFA(2).setBlockParameter([modelAfterFxpopt '/CompareToOriginal/check'], 'max', '0.02');
    siFA(3) = siFA(3).setBlockParameter([modelAfterFxpopt '/CompareToOriginal/check'], 'max', '0.02');
    siFA(4) = siFA(4).setBlockParameter([modelAfterFxpopt '/CompareToOriginal/check'], 'max', '0.02');
    siFA(5) = siFA(5).setBlockParameter([modelAfterFxpopt '/CompareToOriginal/check'], 'max', '0.03');

Simulate and observe the simulation behavior of the model that contains the lookup table
replacements. The model throws an error if the mean-square error between the original image, and
the denoised image is greater than 0.02.

simOutAfterFA = sim(siFA);
assert(all(arrayfun(@(x)(isempty(x.ErrorMessage)), simOutAfterFA)), 'Final model does not meet the behavioral constraints');

[01-Oct-2020 10:50:29] Running simulations...
[01-Oct-2020 10:50:30] Completed 1 of 5 simulation runs
[01-Oct-2020 10:50:31] Completed 2 of 5 simulation runs
[01-Oct-2020 10:50:32] Completed 3 of 5 simulation runs
[01-Oct-2020 10:50:32] Completed 4 of 5 simulation runs
[01-Oct-2020 10:50:33] Completed 5 of 5 simulation runs

Save the Model

Save the model after replacing the unsupported subsystems with lookup table approximations.

modelAfterFunctionApproximation = 'ex_rbmDenoiser03';
save_system(modelAfterFxpopt, modelAfterFunctionApproximation);
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See Also
Classes
fxpOptimizationOptions

Functions
fxpopt

More About
• “Optimize Fixed-Point Data Types for a System” on page 40-14
• “Propose Data Types For Merged Simulation Ranges” on page 42-54
• “Approximate Functions with Lookup Tables”
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Optimize the Fixed-Point Data Types of a System Using the
Fixed-Point Tool

This example shows how to define simulation scenarios and use the Fixed-Point Tool to collect ranges
by running simulations using these scenarios. You can then use the Fixed-Point Tool to optimize the
fixed-point data types of the system.

During the optimization, the software establishes a baseline by simulating the original model. It then
constructs different fixed-point versions of your model and runs simulations to determine the
behavior using the new data types. The optimization selects the model that minimizes the objective
function while also meeting the specified behavioral constraints. Including a
Simulink.SimulationInput object in the setup allows you to define additional simulation
scenarios to consider during the optimization. A comprehensive set of input signals can help to
ensure that the full operating range of your design is exercised during the optimization process.

Open Model and Define Simulation Scenarios
Open the model. In this example, you optimize the data types of the Controller subsystem. The model
is set up to use either a ramp input, or a random input.

model = 'ex_controllerHarness';
open_system(model)

Create a Simulink.SimulationInput object that contains the different scenarios. Use both the
ramp input as well as four different seeds for the random input.

si = Simulink.SimulationInput.empty(5, 0);

% scan through 4 different seeds for the random input
rng(1);
seeds = randi(1e6, [1 4]);

for sIndex = 1:length(seeds)
    si(sIndex) = Simulink.SimulationInput(model);
    si(sIndex) = si(sIndex).setVariable('SOURCE', 2); % SOURCE == 2 corresponds to the random input
    si(sIndex) = si(sIndex).setBlockParameter([model '/Random/uniformRandom'], 'Seed', num2str(seeds(sIndex))); % scan through the seeds
    si(sIndex) = si(sIndex).setUserString(sprintf('random_%i', seeds(sIndex)));
end

% setting SOURCE == 1 corresponds to the ramp input
si(5) = Simulink.SimulationInput(model);
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si(5) = si(5).setVariable('SOURCE', 1);
si(5) = si(5).setUserString('Ramp');

Prepare System for Conversion
To optimize the data types in the mode, use the Fixed-Point Tool.

1 In the Apps gallery of the ex_controllerHarness model, select Fixed-Point Tool.
2 In the Fixed-Point Tool, under New workflow, select Optimized Fixed-Point Conversion.
3 Under System Under Design (SUD), select the subsystem for which you want to optimize the

data types. In this example, select Controller.
4 Under Range Collection Mode, select Simulation Ranges as the range collection method.
5 Under Simulation Inputs, you can specify Simulink.SimulationInput objects to exercise

your design over its full operating range. In this example, use the simulation scenarios you
defined. Set Simulation Inputs to si.

6 You can specify tolerances for any signal in the model with signal logging enabled in the table
under Signal Tolerances. In this example, the Signal Tolerances section indicates that the
model contains no logged signals. Because this model uses an Assertion block from the Model
Verification library to verify the numerical behavior of the system during optimization, specifying
signal tolerances is optional. For more information, see “Specify Behavioral Constraints” on page
42-18.

If you have an fxpOptimizationOptions object saved from a prior command line optimization,
for example if you previously optimized data types in this model following the example “Optimize
Data Types Using Multiple Simulation Scenarios” on page 40-20, you can import the
fxpOptimizationOptions object under the Advanced Options section. The Setup pane and
toolstrip Settings menu will be updated with the imported values. If an optimization options
object is not imported, the default values are used unless otherwise changed manually in the
Fixed-Point Tool. For this example, you will specify the settings manually in the app.

7 In the toolstrip, click Prepare. The Fixed-Point Tool checks the system under design for
compatibility with the conversion process and reports any issues found in the model. When
possible, the Fixed-Point Tool automatically changes settings that are not compatible. For more
information, see “Use the Fixed-Point Tool to Prepare a System for Conversion” on page 38-2.

Optimize Data Types in the Fixed-Point Tool
1 To specify settings to use during the optimization, in the toolstrip, click Settings.

In this example, use the following settings.

• Set Allowable Word Lengths to [2:32].

This setting defines the word lengths that can be used in your optimized system. Use this
setting to target the neighborhood search of the optimization process. The final result of the
optimization uses word lengths in the intersection of this setting and word lengths compatible
with hardware constraints specified in the Hardware Implementation pane of your model.

• Set Max Iterations to 3e2.

This setting specifies the maximum number of iterations to perform in the optimization. The
optimization process iterates through different solutions until it finds an ideal solution,
reaches the maximum number of iterations, or reaches another stopping criteria.

• Set Patience to 50.
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This setting defines the maximum number of iterations where no new best solution is found.
The optimization continues as long as the algorithm continues to find new best solutions.

• Set Objective Function to Bit Width Sum. Using this setting instructs the optimization to
minimize the total bit width of the final design while meeting the specified constraints.

For more information about optimization settings, see fxpOptimizationOptions.
2 To optimize the data types in the model according to the specified settings, click Optimize Data

Types.

During the optimization process, the software analyzes ranges of objects in your system under
design and the constraints specified in the settings to apply heterogeneous data types to your
system while minimizing the objective function. Details about the optimization process are
printed to the Optimization Details pane in the Fixed-Point Tool.

You can stop the optimization solver before the optimization search is complete by clicking Stop
in the toolstrip of the Fixed-Point Tool. To resume optimization from where you left off, click
Optimize Data Types to restart the optimization solver. Perform Neighborhood Search
must be activated to resume optimization. You can also choose to modify the stopping criteria for
the optimization solver, including Max Iterations, Max Time (sec), and Patience
(iterations). This can help to quickly narrow down a large optimization search space.

Examine Results
When the optimization completes, the Fixed-Point Tool displays a table that contains all of the
solutions found during the optimization process. The first solution in the table corresponds to the
solution with the lowest cost (smallest total bit width).
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To view the settings that were used for optimization, in the Result pane, click View optimization
settings.

To inspect the ranges that were collected for objects in your model during the optimization process,
in the Workflow Browser pane, select BaselineRun.

The Fixed-Point Tool displays a summary of the ranges of objects in your model and histograms of the
bits used by each object. Each column in the Visualization of Simulation Data pane represents a
histogram for one object in your model. Each bin in a histogram corresponds to a bit in the binary
word.

Selecting a column highlights the corresponding model object in the Results spreadsheet of the
Fixed-Point Tool and populates the Result Details pane with more detailed information about the
selected result.

You can use the data type visualization to see a summary of the ranges of objects in your model and
to spot sources of overflow, underflows, and inefficient data types. Using the Explore tab of the
Fixed-Point Tool, you can sort and filter results in the tool based on additional criteria.

Apply Optimized Data Types to the Model
1 To apply the optimized data types to the model, in the solutions table, select the solution that you

want to apply. In the Explore section of the toolstrip, click Apply and Compare. The Fixed-Point
Tool applies the selected solution that contains optimized fixed-point data types to the model and
opens the Simulation Data Inspector.

In this example, select Solution 1, then click Apply and Compare.
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2 In the Controller subsystem, you can see the applied, optimized fixed-point data types.

Tip The Fixed-Point Tool uses the Simulation Data Inspector tool plotting capabilities that enable you
to plot logged signals for graphical analysis. Because this model does not contain any logged signals,
the Compare button remains disabled in this example. To compare results of data type optimization
using the Simulation Data Inspector, log one or more signals in your model.

Export Optimization Workflow Steps to a MATLAB Script
After optimizing data types in the Fixed-Point Tool, you can choose to export optimization workflow
steps to a MATLAB script. This allows you to save the current optimization workflow steps and
continue data type optimization using fxpopt at the command line.

In the toolstrip, click Export Script. The Fixed-Point Tool exports a script called
fxpOptimizationScript.m to the current working directory:

model = 'ex_controllerHarness';

sud = 'ex_controllerHarness/Controller';

options = fxpOptimizationOptions();

options.MaxIterations = 300; % Maximum number of iterations to perform.

options.Patience = 50; % Maximum number of iterations where no new best solution is found.

options.AllowableWordLengths = 2:32; % Word lengths that can be used in your optimized system under design.

savedOptions = load('fxpOptimizationScript');

options.AdvancedOptions.SimulationScenarios = savedOptions.simulationScenarios;

result = fxpopt(model, sud, options);

explore(result);

The Simulink.SimulationInput object, si, used during optimization is exported to a MAT-file
called fxpOptimizationScript.mat.

See Also
fxpopt | Fixed-Point Tool

More About
• “Image Denoising Using Fixed-Point Quantized Restricted Boltzmann Machine Algorithm” on

page 40-33
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• “Propose Data Types For Merged Simulation Ranges” on page 42-54
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Perform Data Type Optimization with Custom Behavioral
Constraints

This example shows how to optimize fixed-point data types with fxpopt using custom behavioral
constraints in the frequency domain. The Simulink® models in this example demonstrate two ways of
using blocks from the Model Verification library to author custom behavioral constraints on the SNR
(signal-to-noise ratio) of a low-pass filter. In the first example, calculate an approximation of the noise
floor; in the second example, calculate the SNR difference between the original model and the
quantized model that uses fixed-point data types.

Behavioral Constraints for Data Type Optimization

Data type optimization seeks to minimize an objective function, such as the total bit width, while
maintaining original system behavior within a specified tolerance. During the optimization, the
software establishes a baseline by simulating the original model. The software then constructs
different fixed-point versions of your model and runs simulations to determine the behavior using the
new data types. The optimization selects the model that minimizes the objective function while also
meeting the specified behavioral constraints.

To determine if the behavior of a new fixed-point implementation is acceptable, the optimization
requires well-defined behavioral constraints. You must specify at least one behavioral constraint.
There are two ways to specify behavioral constraints for use with fxpopt:

1. Tolerance-based simulation comparisons to the baseline reference - You can add tolerances for
signals that have signal logging enabled using the addTolerance method of
fxpOptimizationOptions. A tolerance specifies an envelope of passing behavior with respect to
the baseline simulation of the model.

2. Simulation-based assertion checks - You can use blocks in the Model Verification block library to
author custom verification expressions. Enabled model verification blocks in your model are
interpreted as behavioral constraints by the optimization solver.

You can also use a combination of signal tolerances and model verification blocks to specify
behavioral constraints for your model. For more information, see “Specify Behavioral Constraints” on
page 42-18.

Example 1: Calculate an Approximation of the Noise Floor

In this example, you convert a low-pass filter to use optimized fixed-point data types using fxpopt.
To ensure that the embedded version still meets the SNR requirements, the model
mLowPass_NoiseFloor contains additional logic to compute the noise floor of the signal at the
output of the filter. This signal is then routed to the Validate subsystem, which uses a Check State
Range block from the Model Verification block library. If the noise floor values calculated during
simulation are outside the specified static range, fxpopt will interpret the model as not passing the
behavioral constraints.

To begin, open the system for which you want to optimize the data types.

model = 'mLowPass_NoiseFloor';
sud = [model '/Embedded_Filter'];
open_system(model);
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Use the fxpopt function to run the optimization. Because a model verification block is used to
specify the constraints, it is not required to specify signal tolerances using the addTolerance
method of fxpOptimizationOptions.

result = fxpopt(model,sud)

    + Starting data type optimization...
    + Checking for unsupported constructs.
    + Preprocessing
    + Modeling the optimization problem
        - Constructing decision variables
    + Running the optimization solver
        - Evaluating new solution: cost 110, meets the behavioral constraints.
        - Updated best found solution, cost: 110
    + Optimization has finished.
        - Neighborhood search complete.
        - Reached limit of number of iterations without updates to the current best solution.
    + Fixed-point implementation that satisfies the behavioral constraints found. The best found solution is applied on the model.
        - Total cost: 110
        - Use the explore method of the result to explore the implementation.

result = 

  OptimizationResult with properties:

                  Model: 'mLowPass_NoiseFloor'
      SystemUnderDesign: 'mLowPass_NoiseFloor/Embedded_Filter'
           FinalOutcome: 'Fixed-point implementation that satisfies the behavioral constraints found. The best found solution is applied on the model.'
    OptimizationOptions: [1×1 fxpOptimizationOptions]
              Solutions: [1×1 DataTypeOptimization.OptimizationSolution]

Use the explore method to explore the design containing the optimized fixed-point data types.

explore(result);

Example 2: Calculate SNR Diffierence Between Original and Quantized Models

In this example, optimize fixed-point data types for the low-pass filter model, mLowPass_SNR, using a
different set of behavioral constraints that compare the SNR of the embedded filter with the SNR of
the original filter, which uses double-precision data types. The ValidateSNR subsystem first
computes the SNR then uses a Check Static Lower Bound block from the Model Verification library to
assert that the SNR is greater than 60. If the SNR drops below this specified value, then fxpopt will
interpret the model as not passing the behavioral constraints.
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To begin, open the system for which you want to optimize the data types.

model = 'mLowPass_SNR';
sud = [model '/Embedded_Filter'];
Source = 1;
open_system(model);

For this example, specify additional simulation scenarios by creating a
Simulink.SimulationInput object. Use one sine wave input with a frequency of 100 rad/sec and a
second sine wave input with a frequency of 500 rad/sec. fxpopt will consider both simulation
scenarios during the optimization. A comprehensive set of input signals can help to ensure that the
full operating range of your design is exercised during the optimization process.

si(1) = Simulink.SimulationInput(model);
si(1) = si(1).setVariable('Source',1);
si(2) = Simulink.SimulationInput(model);
si(2) = si(2).setVariable('Source',2);

Create an fxpOptimizationOptions object. Use the advanced options to define simulation
scenarios to consider during optimization.

options = fxpOptimizationOptions();
options.AdvancedOptions.SimulationScenarios = si;

Use the fxpopt function to run the optimization. Because a model verification block is used to
specify the constraints, it is not required to specify signal tolerances using the addTolerance
method of fxpOptimizationOptions.

result = fxpopt(model,sud,options);

    + Starting data type optimization...
    + Checking for unsupported constructs.
    + Preprocessing
    + Modeling the optimization problem
        - Constructing decision variables
    + Running the optimization solver
        - Evaluating new solution: cost 112, does not meet the behavioral constraints.
        - Evaluating new solution: cost 168, does not meet the behavioral constraints.
        - Evaluating new solution: cost 224, does not meet the behavioral constraints.
        - Evaluating new solution: cost 280, does not meet the behavioral constraints.
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        - Evaluating new solution: cost 336, does not meet the behavioral constraints.
        - Evaluating new solution: cost 392, does not meet the behavioral constraints.
        - Evaluating new solution: cost 448, does not meet the behavioral constraints.
        - Evaluating new solution: cost 504, does not meet the behavioral constraints.
        - Evaluating new solution: cost 560, does not meet the behavioral constraints.
        - Evaluating new solution: cost 616, does not meet the behavioral constraints.
        - Evaluating new solution: cost 672, does not meet the behavioral constraints.
        - Evaluating new solution: cost 728, does not meet the behavioral constraints.
        - Evaluating new solution: cost 784, does not meet the behavioral constraints.
        - Evaluating new solution: cost 840, does not meet the behavioral constraints.
        - Evaluating new solution: cost 896, does not meet the behavioral constraints.
        - Evaluating new solution: cost 952, does not meet the behavioral constraints.
        - Evaluating new solution: cost 1008, meets the behavioral constraints.
        - Updated best found solution, cost: 1008
        - Evaluating new solution: cost 995, meets the behavioral constraints.
        - Updated best found solution, cost: 995
        - Evaluating new solution: cost 994, meets the behavioral constraints.
        - Updated best found solution, cost: 994
        - Evaluating new solution: cost 993, meets the behavioral constraints.
        - Updated best found solution, cost: 993
        - Evaluating new solution: cost 992, meets the behavioral constraints.
        - Updated best found solution, cost: 992
        - Evaluating new solution: cost 991, meets the behavioral constraints.
        - Updated best found solution, cost: 991
        - Evaluating new solution: cost 990, meets the behavioral constraints.
        - Updated best found solution, cost: 990
        - Evaluating new solution: cost 989, meets the behavioral constraints.
        - Updated best found solution, cost: 989
        - Evaluating new solution: cost 988, meets the behavioral constraints.
        - Updated best found solution, cost: 988
        - Evaluating new solution: cost 987, meets the behavioral constraints.
        - Updated best found solution, cost: 987
        - Evaluating new solution: cost 986, meets the behavioral constraints.
        - Updated best found solution, cost: 986
        - Evaluating new solution: cost 985, meets the behavioral constraints.
        - Updated best found solution, cost: 985
        - Evaluating new solution: cost 984, meets the behavioral constraints.
        - Updated best found solution, cost: 984
        - Evaluating new solution: cost 982, meets the behavioral constraints.
        - Updated best found solution, cost: 982
        - Evaluating new solution: cost 981, does not meet the behavioral constraints.
        - Evaluating new solution: cost 981, does not meet the behavioral constraints.
        - Evaluating new solution: cost 981, does not meet the behavioral constraints.
        - Evaluating new solution: cost 981, does not meet the behavioral constraints.
        - Evaluating new solution: cost 981, does not meet the behavioral constraints.
        - Evaluating new solution: cost 981, does not meet the behavioral constraints.
        - Evaluating new solution: cost 981, meets the behavioral constraints.
        - Updated best found solution, cost: 981
        - Evaluating new solution: cost 980, meets the behavioral constraints.
        - Updated best found solution, cost: 980
        - Evaluating new solution: cost 979, does not meet the behavioral constraints.
        - Evaluating new solution: cost 979, meets the behavioral constraints.
        - Updated best found solution, cost: 979
        - Evaluating new solution: cost 978, does not meet the behavioral constraints.
        - Evaluating new solution: cost 978, meets the behavioral constraints.
        - Updated best found solution, cost: 978
        - Evaluating new solution: cost 977, does not meet the behavioral constraints.
        - Evaluating new solution: cost 977, meets the behavioral constraints.
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        - Updated best found solution, cost: 977
        - Evaluating new solution: cost 976, meets the behavioral constraints.
        - Updated best found solution, cost: 976
        - Evaluating new solution: cost 975, meets the behavioral constraints.
        - Updated best found solution, cost: 975
        - Evaluating new solution: cost 974, does not meet the behavioral constraints.
        - Evaluating new solution: cost 974, meets the behavioral constraints.
        - Updated best found solution, cost: 974
        - Evaluating new solution: cost 973, does not meet the behavioral constraints.
        - Evaluating new solution: cost 973, meets the behavioral constraints.
        - Updated best found solution, cost: 973
        - Evaluating new solution: cost 972, does not meet the behavioral constraints.
        - Evaluating new solution: cost 972, meets the behavioral constraints.
        - Updated best found solution, cost: 972
        - Evaluating new solution: cost 971, meets the behavioral constraints.
        - Updated best found solution, cost: 971
        - Evaluating new solution: cost 970, meets the behavioral constraints.
        - Updated best found solution, cost: 970
        - Evaluating new solution: cost 969, meets the behavioral constraints.
        - Updated best found solution, cost: 969
        - Evaluating new solution: cost 968, meets the behavioral constraints.
        - Updated best found solution, cost: 968
        - Evaluating new solution: cost 967, meets the behavioral constraints.
        - Updated best found solution, cost: 967
        - Evaluating new solution: cost 966, meets the behavioral constraints.
        - Updated best found solution, cost: 966
        - Evaluating new solution: cost 965, meets the behavioral constraints.
        - Updated best found solution, cost: 965
        - Evaluating new solution: cost 964, meets the behavioral constraints.
        - Updated best found solution, cost: 964
        - Evaluating new solution: cost 951, does not meet the behavioral constraints.
        - Evaluating new solution: cost 963, does not meet the behavioral constraints.
        - Evaluating new solution: cost 963, does not meet the behavioral constraints.
        - Evaluating new solution: cost 963, does not meet the behavioral constraints.
        - Evaluating new solution: cost 963, does not meet the behavioral constraints.
        - Evaluating new solution: cost 963, does not meet the behavioral constraints.
    + Optimization has finished.
        - Neighborhood search complete.
        - Maximum number of iterations completed.
    + Fixed-point implementation that satisfies the behavioral constraints found. The best found solution is applied on the model.
        - Total cost: 964
        - Use the explore method of the result to explore the implementation.

Use the explore method to explore the design containing the optimized fixed-point data types.

explore(result);
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Producing Lookup Table Data

• “Producing Lookup Table Data” on page 41-2
• “Worst-Case Error for a Lookup Table” on page 41-3
• “Create Lookup Tables for a Sine Function” on page 41-5
• “Use Lookup Table Approximation Functions” on page 41-14
• “Optimize Lookup Tables for Memory-Efficiency” on page 41-15
• “Optimize Lookup Tables for Memory-Efficiency Programmatically” on page 41-19
• “Generate an Optimized Lookup Table as a MATLAB Function” on page 41-36
• “Generate an Optimized Lookup Table as a MATLAB Function Programmatically” on page 41-38
• “Convert Neural Network Algorithms to Fixed-Point using fxpopt and Generate HDL Code”

on page 41-41
• “Convert Neural Network Algorithms to Fixed Point and Generate C Code” on page 41-51
• “Effects of Spacing on Speed, Error, and Memory Usage” on page 41-58
• “Approximate Functions with a Direct Lookup Table” on page 41-64
• “Convert Digit Recognition Neural Network to Fixed Point and Generate C Code” on page 41-69
• “Calculate Complex dB Using a Direct Lookup Table” on page 41-78
• “Optimize Lookup Tables for Periodic Functions” on page 41-81
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Producing Lookup Table Data
A function lookup table is a method by which you can approximate a function by a table with a finite
number of points (X,Y). Function lookup tables are essential to many fixed-point applications. The
function you want to approximate is called the ideal function. The X values of the lookup table are
called the breakpoints. You approximate the value of the ideal function at a point by linearly
interpolating between the two breakpoints closest to the point.

In creating the points for a function lookup table, you generally want to achieve one or both of the
following goals:

• Minimize the worst-case error for a specified maximum number of breakpoints
• Minimize the number of breakpoints for a specified maximum allowed error

“Create Lookup Tables for a Sine Function” on page 41-5 shows you how to create function lookup
tables using the function fixpt_look1_func_approx. You can optimize the lookup table to
minimize the number of data points, the error, or both. You can also restrict the spacing of the
breakpoints to be even or even powers of two to speed up computations using the table.

“Worst-Case Error for a Lookup Table” on page 41-3 explains how to use the function
fixpt_look1_func_plot to find the worst-case error of a lookup table and plot the errors at all
points.
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Worst-Case Error for a Lookup Table
The error at any point of a function lookup table is the absolute value of the difference between the
ideal function at the point and the corresponding Y value found by linearly interpolating between the
adjacent breakpoints. The worst-case error, or maximum absolute error, of a lookup table is the
maximum absolute value of all errors in the interval containing the breakpoints.

For example, if the ideal function is the square root, and the breakpoints of the lookup table are 0,
0.25, and 1, then in a perfect implementation of the lookup table, the worst-case error is 1/8 = 0.125,
which occurs at the point 1/16 = 0.0625. In practice, the error could be greater, depending on the
fixed-point quantization and other factors.

The section that follows shows how to use the function fixpt_look1_func_plot to find the worst-
case error of a lookup table for the square root function.

Approximate the Square Root Function
This example shows how to use the function fixpt_look1_func_plot to find the maximum
absolute error for the simple lookup table whose breakpoints are 0, 0.25, and 1. The corresponding Y
data points of the lookup table, which you find by taking the square roots of the breakpoints, are 0,
0.5, and 1.

To use the function fixpt_look1_func_plot , you need to define its parameters first. To do so,
type the following at the MATLAB prompt:

funcstr = 'sqrt(x)'; % Define the square root function
xdata = [0;.25;1]; % Set the breakpoints
ydata = sqrt(xdata); % Find the square root of the breakpoints
xmin = 0; % Set the minimum breakpoint
xmax = 1; % Set the maximum breakpoint
xdt = ufix(16); % Set the x data type
xscale = 2^-16; % Set the x data scaling
ydt = sfix(16); % Set the y data type
yscale = 2^-14; % Set the y data scaling
rndmeth = 'Floor'; % Set the rounding method

To get the worst-case error of the lookup table and a plot of the error, type:

errworst = fixpt_look1_func_plot(xdata,ydata,funcstr, ...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth)
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errworst = 0.1250

The upper box (Outputs) displays a plot of the square root function with a plot of the fixed-point
lookup approximation underneath. The approximation is found by linear interpolation between the
breakpoints. The lower box (Absolute Error) displays the errors at all points in the interval from 0 to
1. Notice that the maximum absolute error occurs at 0.0625. The error at the breakpoints is 0.
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Create Lookup Tables for a Sine Function
In this section...
“Introduction” on page 41-5
“Set Function Parameters for the Lookup Table” on page 41-5
“Specifying Both errmax and nptsmax” on page 41-12
“Comparison of Example Results” on page 41-13

Introduction
The sections that follow explain how to use the function fixpt_look1_func_approx to create
lookup tables. It gives examples that show how to create lookup tables for the function sin(2πx) on
the interval from 0 to 0.25.

Set Function Parameters for the Lookup Table
First, define parameter values for the fixpt_look1_func_approx function.

% Required parameters
funcstr = 'sin(2*pi*x)'; % Ideal function
xmin = 0; % Minimum input of interest
xmax = 0.25; % Maximum input of interest
xdt = ufix(16); % x data type
xscale = 2^-16; % x data scaling
ydt = sfix(16); % y data type
yscale = 2^-14; % y data scaling
rndmeth = 'Floor'; % Rounding method
% Optional parameters
errmax = 2^-10; % Maximum allowed error of the lookup table
nptsmax = 21; % Maximum number of points of the lookup table

The parameters errmax, nptsmax, and spacing are optional. You must use at least one of the
parameters errmax and nptsmax. If you use only the errmax parameter without nptsmax, the
function creates a lookup table with the fewest points for which the worst-case error is at most
errmax. If you use only the nptsmax parameter without errmax, the function creates a lookup table
with at most nptsmax points which has the smallest worst-case error. You can use the optional
spacing parameter to restrict the spacing between breakpoints of the lookup table.

Use errmax with Unrestricted Spacing

Create a lookup table that has the fewest data points for a specified worst-case error, with
unrestricted spacing.

[xdata,ydata,errworst] = fixpt_look1_func_approx(funcstr, ...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[]);

Note that the nptsmax and spacing parameters are not specified.

length(xdata)

ans = 16
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16 points are required to approximate sin 2πx  to within the tolerance specified by errmax. The
maximum error is:

errworst

errworst = 9.7656e-04

The value of errworst is less than or equal to the value of errmax.

Plot the results:

figure(1)
fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt, ...
xscale,ydt,yscale,rndmeth);

The upper plot shows the ideal function sin 2πx  and the fixed-point lookup table approximation
between the breakpoints. In this example, the ideal function and the approximation are so close
together that the two graphs appear to coincide. The lower plot displays the errors.

In this example, the Y data points, ydata, are equal to the ideal function applied to the point in
xdata. However, you can define a different set of values for ydata after running
fixpt_look1_func_approx. This can sometimes reduce the maximum error.

You can also change the values of xmin and xmax to evaluate the lookup table on a subset of the
original interval.

To find the new maximum error after changing ydata, xmin, or xmax, type
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errworst = fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax, ...

xdt,xscale,ydt,yscale,rndmeth)

Use nptsmax with Unrestricted Spacing

Create a lookup table that minimizes the worst-case error for a specified maximum number of data
points, with unrestricted spacing.

[xdata, ydata, errworst] = fixpt_look1_func_approx(funcstr, ...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,[],nptsmax);

The empty brackets tell the function to ignore the parameter errmax. Omitting errmax causes the
function to return a lookup table of size specified by nptsmax, with the smallest worst-case error.

length(xdata)

ans = 21

The function returns a vector xdata with 21 points. The maximum error is:

errworst

errworst = 5.1139e-04

The value of errworst is less than or equal to the value of errmax.

Plot the results:

figure(2)
fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt, ...
xscale,ydt,yscale,rndmeth);
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Restricting the Spacing

In the previous two examples, the function fixpt_look1_func_approx creates lookup tables with
unrestricted spacing between the points. You can restrict the spacing to improve the computational
efficiency of the lookup table using the spacing parameter. Both power of two, 'pow2', and even
spacing, 'even', increase the computational speed of the lookup table and use less command read-
only memory (ROM). However, specifying either of the spacing restrictions along with errmax usually
requires more data points in the lookup table than does unrestricted spacing to achieve the same
degree of accuracy. See Effects of Spacing on Speed, Error, and Memory Usage for more information.

Use errmax with Even Spacing

Create a lookup table that has evenly spaced breakpoints and a specified worst-case error.

spacing = 'even';
[xdata,ydata,errworst] = fixpt_look1_func_approx(funcstr, ...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[],spacing);
length(xdata)

ans = 20

errworst

errworst = 9.2109e-04

Plot the results:
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figure(3)
fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt, ...
xscale,ydt,yscale,rndmeth);

Use nptsmax with Even Spacing

Create a lookup table that has evenly spaced breakpoints and minimizes the worst-case error for a
specified maximum number of points.

spacing = 'even';
[xdata, ydata, errworst] = fixpt_look1_func_approx(funcstr, ...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,[],nptsmax,spacing);
length(xdata)

ans = 21

errworst

errworst = 8.3793e-04

The result requires 21 evenly spaced points to achieve a maximum absolute error of 2^-10.2209.

Plot the results:

figure(4)
fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt, ...
xscale,ydt,yscale,rndmeth);
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Use errmax with Power of Two Spacing

Create a lookup table that has power of two spacing and a specified worst-case error.

spacing = 'pow2';
[xdata, ydata, errworst] = ...
fixpt_look1_func_approx(funcstr,xmin, ...
xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[],spacing);
length(xdata)

ans = 33

33 points are required to achieve the worst-case error specified by errmax. To verify that these
points are evenly spaced, type

widths = diff(xdata)

widths = 32×1

    0.0078
    0.0078
    0.0078
    0.0078
    0.0078
    0.0078
    0.0078
    0.0078
    0.0078
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    0.0078
      ⋮

This generates a vector whose entries are the differences between the consecutive points in xdata.
Every entry of widths is 2^-7.

The maximum error is:

errworst

errworst = 3.7209e-04

This is less than the value of errmax.

Plot the results:

figure(5)
fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt, ...
xscale,ydt,yscale,rndmeth);

Use nptsmax with Power of Two Spacing

Create a lookup table that has power of two spacing and minimizes the worst-case error for a
specified number of points.

spacing = 'pow2';
[xdata, ydata, errworst] = ...
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fixpt_look1_func_approx(funcstr,xmin, ...
xmax,xdt,xscale,ydt,yscale,rndmeth,[],nptsmax,spacing);
length(xdata)

ans = 17

errworst

errworst = 0.0013

The result requires 17 points to achieve a maximum absolute error of 2^-9.6267.

Plot the results:

figure(6)
fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt, ...
xscale,ydt,yscale,rndmeth);

Specifying Both errmax and nptsmax
If you include both the errmax and the nptsmax parameters, the function
fixpt_look1_func_approx tries to find a lookup table with at most nptsmax data points, whose
worst-case error is at most errmax. If it can find a lookup table meeting both conditions, it uses the
following order of priority for spacing:

1 Power of two
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2 Even
3 Unrestricted

If the function cannot find any lookup table satisfying both conditions, it ignores nptsmax and
returns a lookup table with unrestricted spacing, whose worst-case error is at most errmax. In this
case, the function behaves the same as if the nptsmax parameter were omitted.

The following examples illustrate the results of using different values for nptsmax when you enter

[xdata ydata errworst] = fixpt_look1_func_approx(funcstr, ...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,nptsmax);

The results for three different settings for nptsmax are as follows:

• nptsmax = 33; — The function creates the lookup table with 33 points having power of two
spacing, as in Example 3.

• nptsmax = 21; — Because the errmax and nptsmax conditions cannot be met with power of
two spacing, the function creates the lookup table with 20 points having even spacing, as in
Example 5.

• nptsmax = 16; — Because the errmax and nptsmax conditions cannot be met with either
power of two or even spacing, the function creates the lookup table with 16 points having
unrestricted spacing, as in Example 1.

Comparison of Example Results
The following table summarizes the results for the examples. When you specify errmax, even spacing
requires more data points than unrestricted, and power of two spacing requires more points than
even spacing.

Example Options Spacing Worst-Case Error Number of Points in
Table

1 errmax=2^-10 'unrestricted' 2^-10 16
2 nptsmax=21 'unrestricted' 2^-10.933 21
3 errmax=2^-10 'even' 2^-10.0844 20
4 nptsmax=21 'even' 2^-10.2209 21
5 errmax=2^-10 'pow2' 2^-11.3921 33
6 nptsmax=21 'pow2' 2^-9.627 17
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Use Lookup Table Approximation Functions
The following steps summarize how to use the lookup table approximation functions.

1 Define:

a The ideal function to approximate
b The range, xmin to xmax, over which to find X and Y data
c The fixed-point implementation: data type, scaling, and rounding method
d The maximum acceptable error, the maximum number of points, and the spacing

2 Run the fixpt_look1_func_approx function to generate X and Y data.
3 Use the fixpt_look1_func_plot function to plot the function and error between the ideal and

approximated functions using the selected X and Y data, and to calculate the error and the
number of points used.

4 Vary input criteria, such as errmax, nptsmax, and spacing, to produce sets of X and Y data that
generate functions with varying worst-case error, number of points required, and spacing.

5 Compare results of the number of points required and maximum absolute error from various runs
to choose the best set of X and Y data.
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Optimize Lookup Tables for Memory-Efficiency
The Lookup Table Optimizer optimizes the spacing of breakpoints and the data types of lookup
table data to reduce the memory used by a lookup table. Using the Lookup Table Optimizer and its
command-line equivalent, you can:

• Optimize an existing Lookup Table block.
• Generate a lookup table from a Simulink block, including a Math Function block or a subsystem.
• Generate a lookup table from a function or function handle.

Optimize an Existing Lookup Table Using the Lookup Table Optimizer
To optimize an existing lookup table, open the model containing the Lookup Table block.

openExample('simulink_automotive/ModelingAFaultTolerantFuelControlSystemExample','supportingfile','sldemo_fuelsys');
open_system('sldemo_fuelsys/fuel_rate_control/airflow_calc');

This example shows how to optimize the Pumping Constant Lookup Table block.

1 To open the Lookup Table Optimizer, select the Pumping Constant Lookup Table block. The
context-sensitive Lookup Table tab appears in the Simulink toolstrip. In the Lookup Table tab,
select Lookup Table Optimizer.

2 Select the type of block you want to optimize. To optimize a Simulink block or subsystem,
including an existing Lookup Table block or a Math Function block, select Simulink block or
subsystem. To generate a lookup table approximation for a function handle, select MATLAB
Function Handle.

In this example, select Simulink block or subsystem to optimize the Pumping Constant
lookup table. Click Next.

3 Under Block Information, enter the path to the Pumping Constant Lookup Table block.
Select the block in the model, then click Get Current Block in the Lookup Table Optimizer to fill
in the block path automatically.

4 Click Collect Current Values from Model to update the model diagram and allow the Lookup
Table Optimizer to automatically gather information needed for the optimization process
including current output data type, and input number, data type, and value range. You can
manually edit all of these fields to specify ranges and data types other than those currently
specified on the block.

• Specify the Desired Output Data Type of the generated lookup table as a numerictype or
Simulink.NumericType object.

• Specify the data type of each input to the block as a numerictype or
Simulink.NumericType object.

• Specify the minimum and maximum values of each input of the generated lookup table as
scalars in the table.

For this example, use the current values specified on the model. Click Next.
5 Specify constraints to use in the optimization. Set the Output Error Tolerance that is

acceptable for your design.

• Absolute tolerance is defined as the absolute value of the difference between the original
output value and the output value of the optimized lookup table.
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• Relative tolerance measures the error relative to the value at that point, specified as a non-
negative.

6 Specify the allowed word lengths as a vector based on types that are efficient for your intended
hardware target. For example, if you want to allow the optimizer to consider only 8-, 16-, and 32-
bit types, specify [8 16 32] in the Allowed Word Lengths (Vector) field.

7 To specify additional properties for the optimized lookup table, click LUT Specification. For
more information on each of the properties, see FunctionApproximation.Options. In this
example, use the default values for these properties.

8 Specify options for the optimization, such as the maximum time or maximum memory usage for
the generated lookup table by clicking the  button.

9 After you set the constraints, click Optimize.

Optionally, you can choose to stop the optimization solver before the optimization solver is
complete by clicking Stop. The optimizer will choose the best solution found at the time the Stop
button is selected and display it in the app.

When the optimization is complete, the optimizer reports the memory of the optimized lookup
table. You can edit the constraints and run the optimization again to achieve further memory
reduction.

Using the default settings, the Lookup Table Optimizer reduces the memory used by the
Pumping Constant Lookup Table block from 1516 bytes to 505 bytes (66.69%).

Click Next.
10 Click Show Comparison Plot to view a plot of the original block output compared to the output

of the new optimized lookup table.
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Click Replace Original Function to generate a new lookup table using the optimized settings
found by the app, and replace the original block.

The new block is a masked variant subsystem in which the active variant is the optimized lookup
table block. The inactive variant is the original block.

Edit the Optimization Settings and Generate a New Approximate
You can iteratively change the approximation block by editing the settings used during the
optimization to generate a new lookup table.

1 Double-click the Pumping Constant block. To edit the optimization settings, in the Block
Parameters dialog, click Redesign approximate.

2 In the Lookup Table Optimizer, click Next to proceed to the Create page of the app. In this
example, edit the absolute and relative tolerances to a slightly larger value so that you can
further reduce the size of the lookup table.
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• Set the Absolute tolerance to 0.01, or 1%.
• Set the Relative tolerance to 0.01, or 1%.

3 Click Optimize to optimize the lookup table with the new options.

Using these tolerance values, the new lookup table uses only 304 bytes of memory.
4 Click Next. On the Results page, click the Replace Original Function button to replace the

first iteration of the approximation block with this newest iteration.
5 In the model, double-click the Pumping Constant block to open the Block Parameters. The Block

Parameters displays the settings used for the approximation

To make the original block or subsystem the active variant, next to Select desired function
version, select Original.

To delete the lookup table approximation from the model, in the Block Parameters, click Revert
to original.

See Also
Apps
Lookup Table Optimizer

Classes
FunctionApproximation.Problem | FunctionApproximation.Options |
FunctionApproximation.LUTSolution |
FunctionApproximation.LUTMemoryUsageCalculator

More About
• “Optimize Lookup Tables for Memory-Efficiency Programmatically” on page 41-19
• “Generate an Optimized Lookup Table as a MATLAB Function” on page 41-36
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Optimize Lookup Tables for Memory-Efficiency
Programmatically

The following examples show how to generate memory-efficient lookup tables programmatically.
Using the command-line equivalent of the Lookup Table Optimizer, you can:

• Optimize an existing Lookup Table block.
• Generate a lookup table from a Math Function block.
• Generate a lookup table from a function or function handle.
• Generate a lookup table from a Subsystem block.

Approximate a Function Using a Lookup Table
This example shows how to generate a memory-efficient lookup table that approximates the sin
function. Define the approximation problem by creating a FunctionApproximation.Problem
object.

P = FunctionApproximation.Problem('sin')

P = 

  1x1 FunctionApproximation.Problem with properties:

    FunctionToApproximate: @(x)sin(x)
           NumberOfInputs: 1
               InputTypes: "numerictype(0,16,13)"
         InputLowerBounds: 0
         InputUpperBounds: 6.2832
               OutputType: "numerictype(1,16,14)"
                  Options: [1x1 FunctionApproximation.Options]

The FunctionToApproximate and NumberOfInputs properties of the Problem object are inferred
from the definition of the object, and cannot be edited after creation. All other properties are
writable.

Edit the FunctionApproximation.Options object to specify additional constraints to use in the
optimization process. For example, constrain the breakpoints of the generated lookup table to even
spacing.

P.Options.BreakpointSpecification = 'EvenSpacing'

P = 

  1x1 FunctionApproximation.Problem with properties:

    FunctionToApproximate: @(x)sin(x)
           NumberOfInputs: 1
               InputTypes: "numerictype(0,16,13)"
         InputLowerBounds: 0
         InputUpperBounds: 6.2832
               OutputType: "numerictype(1,16,14)"
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                  Options: [1x1 FunctionApproximation.Options]

Specify additional constraints, such as the absolute and relative tolerances of the output, and word
length constraints.

P.Options.AbsTol = 2^-10;
P.Options.RelTol = 2^-6;
P.Options.WordLengths = [8,16];

Use the solve method to solve the optimization problem. MATLAB™ displays the iterations of the
optimization process. The solve method returns a FunctionApproximation.LUTSolution object.

S = solve(P)

|  ID |  Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification |             Error(Max,Current) | 
|   0 |             48 |        0 |          2 |               8 |           16 |             EvenSpacing |     9.765625e-04, 1.007261e+00 |
|   1 |             32 |        0 |          2 |               8 |            8 |             EvenSpacing |     9.765625e-04, 1.007261e+00 |
|   2 |            672 |        0 |         41 |               8 |           16 |             EvenSpacing |     9.765625e-04, 3.322094e-02 |
|   3 |            560 |        0 |         34 |               8 |           16 |             EvenSpacing |     9.765625e-04, 9.553784e-02 |
|   4 |           1104 |        0 |         68 |               8 |           16 |             EvenSpacing |     9.765625e-04, 1.970943e-03 |
|   5 |           1648 |        1 |        102 |               8 |           16 |             EvenSpacing |     9.765625e-04, 7.988139e-05 |
|   6 |            480 |        0 |         29 |               8 |           16 |             EvenSpacing |     9.765625e-04, 1.575496e-01 |
|   7 |            832 |        0 |         51 |               8 |           16 |             EvenSpacing |     9.765625e-04, 3.322094e-02 |
|   8 |            320 |        0 |         19 |               8 |           16 |             EvenSpacing |     9.765625e-04, 9.553784e-02 |
|   9 |             64 |        0 |          2 |              16 |           16 |             EvenSpacing |     9.765625e-04, 9.853516e-01 |
|  10 |             48 |        0 |          2 |              16 |            8 |             EvenSpacing |     9.765625e-04, 9.853516e-01 |
|  11 |            640 |        1 |         38 |              16 |           16 |             EvenSpacing |     9.765625e-04, 6.281694e-04 |
|  12 |            624 |        0 |         37 |              16 |           16 |             EvenSpacing |     9.765625e-04, 3.435787e-03 |
|  13 |            496 |        0 |         29 |              16 |           16 |             EvenSpacing |     9.765625e-04, 9.943803e-04 |
|  14 |            480 |        0 |         28 |              16 |           16 |             EvenSpacing |     9.765625e-04, 1.238521e-03 |
|  15 |            560 |        0 |         33 |              16 |           16 |             EvenSpacing |     9.765625e-04, 1.970943e-03 |
|  16 |            592 |        0 |         35 |              16 |           16 |             EvenSpacing |     9.765625e-04, 3.679927e-03 |
|  17 |            608 |        0 |         36 |              16 |           16 |             EvenSpacing |     9.765625e-04, 2.703365e-03 |
|  18 |            352 |        1 |         20 |              16 |           16 |             EvenSpacing |     9.765625e-04, 5.671342e-04 |
|  19 |            336 |        0 |         19 |              16 |           16 |             EvenSpacing |     9.765625e-04, 1.325779e-03 |
|  20 |            208 |        0 |         11 |              16 |           16 |             EvenSpacing |     9.765625e-04, 3.430176e-02 |
|  21 |            272 |        0 |         15 |              16 |           16 |             EvenSpacing |     9.765625e-04, 1.043701e-02 |
|  22 |            304 |        0 |         17 |              16 |           16 |             EvenSpacing |     9.765625e-04, 4.526615e-03 |
|  23 |            320 |        0 |         18 |              16 |           16 |             EvenSpacing |     9.765625e-04, 2.378452e-03 |
|  24 |             48 |        0 |          2 |               8 |           16 |         EvenPow2Spacing |     9.765625e-04, 1.300802e+00 |
|  25 |            224 |        0 |         13 |               8 |           16 |         EvenPow2Spacing |     9.765625e-04, 2.794368e-01 |
|  26 |             64 |        0 |          2 |              16 |           16 |         EvenPow2Spacing |     9.765625e-04, 1.300802e+00 |
|  27 |            240 |        0 |         13 |              16 |           16 |         EvenPow2Spacing |     9.765625e-04, 2.794368e-01 |
|  28 |           1648 |        1 |        102 |               8 |           16 |         EvenPow2Spacing |     9.765625e-04, 7.988139e-05 |

Best Solution
|  ID |  Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification |             Error(Max,Current) |
|  18 |            352 |        1 |         20 |              16 |           16 |             EvenSpacing |     9.765625e-04, 5.671342e-04 |

S = 

  1x1 FunctionApproximation.LUTSolution with properties:

          ID: 18
    Feasible: "true"
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Compare the numerical behavior of the original function with the numerical behavior of the
generated lookup table stored in the solution, S.

err = compare(S)

err = 

  struct with fields:

    Breakpoints: [51473x1 double]
       Original: [51473x1 double]
    Approximate: [51473x1 double]

You can access the lookup table data stored in the LUTSolution object.

t = S.TableData

t = 

  struct with fields:

       BreakpointValues: {[0 0.3307 0.6614 0.9921 1.3228 1.6534 1.9841 ... ]}
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    BreakpointDataTypes: [1x1 embedded.numerictype]
            TableValues: [4.2725e-04 0.3278 0.6200 0.8420 0.9759 1.0063 ... ]
          TableDataType: [1x1 embedded.numerictype]
          IsEvenSpacing: 1
          Interpolation: Linear

To access the generated Lookup Table block, use the approximate method.

approximate(S)

Optimize an Existing Lookup Table
This example shows how to optimize an existing Lookup Table block for memory efficiency. Open the
model containing the Lookup Table block that you want to optimize.

load_system('sldemo_fuelsys');
open_system('sldemo_fuelsys/fuel_rate_control/airflow_calc');

Create a FunctionApproximation.Problem object to define the optimization problem and
constraints.
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P = FunctionApproximation.Problem('sldemo_fuelsys/fuel_rate_control/airflow_calc/Pumping Constant')

P = 

  1×1 FunctionApproximation.Problem with properties:

    FunctionToApproximate: 'sldemo_fuelsys/fuel_rate_control/airflow_calc/Pumping Constant'
           NumberOfInputs: 2
               InputTypes: ["numerictype('single')"    …    ]
         InputLowerBounds: [50 0.0500]
         InputUpperBounds: [1000 0.9500]
               OutputType: "numerictype('single')"
                  Options: [1×1 FunctionApproximation.Options]

Specify additional constraints by modifying the Options object associated with the Problem object,
P.

P.Options.BreakpointSpecification = "EvenSpacing"

P = 

  1×1 FunctionApproximation.Problem with properties:

    FunctionToApproximate: 'sldemo_fuelsys/fuel_rate_control/airflow_calc/Pumping Constant'
           NumberOfInputs: 2
               InputTypes: ["numerictype('single')"    …    ]
         InputLowerBounds: [50 0.0500]
         InputUpperBounds: [1000 0.9500]
               OutputType: "numerictype('single')"
                  Options: [1×1 FunctionApproximation.Options]

Solve the optimization problem.

S = solve(P)

|  ID |  Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification |             Error(Max,Current) | 
|   0 |          12128 |        1 |    [18 19] |         [32 32] |           32 |          ExplicitValues |     7.812500e-03, 0.000000e+00 |
|   1 |          11840 |        1 |    [18 19] |         [16 32] |           32 |          ExplicitValues |     7.812500e-03, 0.000000e+00 |
|   2 |             80 |        0 |      [2 2] |          [16 8] |            8 |             EvenSpacing |     7.812500e-03, 1.047640e-01 |
|   3 |            336 |        0 |      [6 6] |          [16 8] |            8 |             EvenSpacing |     7.812500e-03, 5.359873e-02 |
|   4 |            288 |        0 |      [5 6] |          [16 8] |            8 |             EvenSpacing |     7.812500e-03, 5.763923e-02 |
|   5 |            288 |        0 |      [6 5] |          [16 8] |            8 |             EvenSpacing |     7.812500e-03, 5.852598e-02 |
|   6 |            248 |        0 |      [5 5] |          [16 8] |            8 |             EvenSpacing |     7.812500e-03, 6.255026e-02 |
|   7 |           1016 |        0 |    [11 11] |          [16 8] |            8 |             EvenSpacing |     7.812500e-03, 3.738934e-02 |
|   8 |            928 |        0 |    [10 11] |          [16 8] |            8 |             EvenSpacing |     7.812500e-03, 3.983925e-02 |
|   9 |            928 |        0 |    [11 10] |          [16 8] |            8 |             EvenSpacing |     7.812500e-03, 3.738934e-02 |
|  10 |            848 |        0 |    [10 10] |          [16 8] |            8 |             EvenSpacing |     7.812500e-03, 3.983925e-02 |
|  11 |           3744 |        0 |    [21 22] |          [16 8] |            8 |             EvenSpacing |     7.812500e-03, 3.080366e-02 |
|  12 |           3568 |        0 |    [20 22] |          [16 8] |            8 |             EvenSpacing |     7.812500e-03, 3.188371e-02 |
|  13 |           3408 |        0 |    [21 20] |          [16 8] |            8 |             EvenSpacing |     7.812500e-03, 3.080366e-02 |
|  14 |           3248 |        0 |    [20 20] |          [16 8] |            8 |             EvenSpacing |     7.812500e-03, 3.188371e-02 |
|  15 |           7008 |        0 |    [29 30] |          [16 8] |            8 |             EvenSpacing |     7.812500e-03, 3.208317e-02 |
|  16 |           9024 |        0 |    [33 34] |          [16 8] |            8 |             EvenSpacing |     7.812500e-03, 2.954298e-02 |
|  17 |          10968 |        0 |    [35 39] |          [16 8] |            8 |             EvenSpacing |     7.812500e-03, 2.700278e-02 |
|  18 |          11280 |        0 |    [36 39] |          [16 8] |            8 |             EvenSpacing |     7.812500e-03, 2.700279e-02 |

 Optimize Lookup Tables for Memory-Efficiency Programmatically

41-23



|  19 |          11592 |        0 |    [37 39] |          [16 8] |            8 |             EvenSpacing |     7.812500e-03, 2.700279e-02 |
|  20 |            840 |        0 |     [9 11] |          [16 8] |            8 |             EvenSpacing |     7.812500e-03, 4.118272e-02 |
|  21 |            768 |        0 |     [9 10] |          [16 8] |            8 |             EvenSpacing |     7.812500e-03, 4.118272e-02 |
|  22 |           3392 |        0 |    [19 22] |          [16 8] |            8 |             EvenSpacing |     7.812500e-03, 3.296377e-02 |
|  23 |           3216 |        0 |    [18 22] |          [16 8] |            8 |             EvenSpacing |     7.812500e-03, 3.404382e-02 |
|  24 |           3088 |        0 |    [19 20] |          [16 8] |            8 |             EvenSpacing |     7.812500e-03, 3.296377e-02 |
|  25 |           2928 |        0 |    [18 20] |          [16 8] |            8 |             EvenSpacing |     7.812500e-03, 3.404382e-02 |
|  26 |           1848 |        0 |    [15 15] |          [16 8] |            8 |             EvenSpacing |     7.812500e-03, 3.396479e-02 |
|  27 |           1728 |        0 |    [14 15] |          [16 8] |            8 |             EvenSpacing |     7.812500e-03, 3.528193e-02 |
|  28 |           1728 |        0 |    [15 14] |          [16 8] |            8 |             EvenSpacing |     7.812500e-03, 3.396479e-02 |
|  29 |           1616 |        0 |    [14 14] |          [16 8] |            8 |             EvenSpacing |     7.812500e-03, 3.528193e-02 |
|  30 |           6768 |        0 |    [28 30] |          [16 8] |            8 |             EvenSpacing |     7.812500e-03, 3.208317e-02 |
|  31 |            128 |        0 |      [2 2] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 1.050016e-01 |
|  32 |            384 |        0 |      [6 6] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 5.586659e-02 |
|  33 |            336 |        0 |      [5 6] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 5.984835e-02 |
|  34 |            336 |        0 |      [6 5] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 6.017463e-02 |
|  35 |            296 |        0 |      [5 5] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 6.433061e-02 |
|  36 |           1064 |        0 |    [11 11] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 3.046093e-02 |
|  37 |            976 |        0 |    [10 11] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 3.175766e-02 |
|  38 |            976 |        0 |    [11 10] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 3.295625e-02 |
|  39 |            896 |        0 |    [10 10] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 3.429314e-02 |
|  40 |           3624 |        0 |    [21 21] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 1.124774e-02 |
|  41 |           3456 |        0 |    [20 21] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 1.233026e-02 |
|  42 |           3456 |        0 |    [21 20] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 1.124774e-02 |
|  43 |           3296 |        0 |    [20 20] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 1.233026e-02 |
Warning: The file containing block diagram '<a href="matlab:open_system
('sldemo_fuelsys')">sldemo_fuelsys</a>' is shadowed by a file of the same name
higher on the MATLAB path. This can cause unexpected behavior. For more
information see <a href="matlab:helpview([docroot
'/toolbox/simulink/helptargets.map'], 'shadowing')">"Avoiding Problems with
Shadowed Files"</a> in the Simulink documentation.

The file containing the block diagram is: C:\Users\jclayton\OneDrive -
MathWorks\Documents\MATLAB\ExampleManager\jclayton.Bdoc22a.j1818507\fixedpoint-ex20928000\sldemo_fuelsys.slx.
The file higher on the MATLAB path is:
S:\21\jclayton.Bdoc22a.j1818507\matlab\toolbox\simulink\simdemos\automotive\fuelsys\sldemo_fuelsys.slx 
Warning: The file containing block diagram '<a href="matlab:open_system
('sldemo_fuelsys')">sldemo_fuelsys</a>' is shadowed by a file of the same name
higher on the MATLAB path. This can cause unexpected behavior. For more
information see <a href="matlab:helpview([docroot
'/toolbox/simulink/helptargets.map'], 'shadowing')">"Avoiding Problems with
Shadowed Files"</a> in the Simulink documentation.

The file containing the block diagram is: C:\Users\jclayton\OneDrive -
MathWorks\Documents\MATLAB\ExampleManager\jclayton.Bdoc22a.j1818507\fixedpoint-ex20928000\sldemo_fuelsys.slx.
The file higher on the MATLAB path is:
S:\21\jclayton.Bdoc22a.j1818507\matlab\toolbox\simulink\simdemos\automotive\fuelsys\sldemo_fuelsys.slx 
|  44 |           6824 |        1 |    [29 29] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 5.957022e-03 |
|  45 |           5096 |        0 |    [25 25] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 1.076232e-02 |
|  46 |           5928 |        0 |    [27 27] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 9.914692e-03 |
|  47 |           6368 |        0 |    [28 28] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 9.589452e-03 |
|  48 |            888 |        0 |     [9 11] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 3.302356e-02 |
|  49 |            816 |        0 |     [9 10] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 3.558207e-02 |
|  50 |           3288 |        0 |    [19 21] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 1.350690e-02 |
|  51 |           3120 |        0 |    [18 21] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 1.479964e-02 |
|  52 |           3136 |        0 |    [19 20] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 1.350690e-02 |
|  53 |           2976 |        0 |    [18 20] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 1.479964e-02 |
|  54 |           4704 |        0 |    [24 24] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 1.145920e-02 |
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|  55 |           5504 |        0 |    [26 26] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 1.017491e-02 |
|  56 |           1896 |        0 |    [15 15] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 1.783914e-02 |
|  57 |           1776 |        0 |    [14 15] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 1.897344e-02 |
|  58 |           1776 |        0 |    [15 14] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 2.034441e-02 |
|  59 |           1664 |        0 |    [14 14] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 2.103841e-02 |
|  60 |           6592 |        0 |    [28 29] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 9.247549e-03 |
|  61 |           6592 |        0 |    [29 28] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 9.316519e-03 |
|  62 |           2984 |        0 |    [19 19] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 1.350690e-02 |
|  63 |           2832 |        0 |    [18 19] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 1.479964e-02 |
|  64 |           3576 |        0 |    [15 29] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 1.783914e-02 |
|  65 |           5200 |        0 |    [22 29] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 1.143289e-02 |
|  66 |           5896 |        0 |    [25 29] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 1.042340e-02 |
|  67 |           6360 |        0 |    [27 29] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 9.646382e-03 |
|  68 |           3576 |        0 |    [29 15] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 1.082333e-02 |
Warning: The file containing block diagram '<a href="matlab:open_system
('sldemo_fuelsys')">sldemo_fuelsys</a>' is shadowed by a file of the same name
higher on the MATLAB path. This can cause unexpected behavior. For more
information see <a href="matlab:helpview([docroot
'/toolbox/simulink/helptargets.map'], 'shadowing')">"Avoiding Problems with
Shadowed Files"</a> in the Simulink documentation.

The file containing the block diagram is: C:\Users\jclayton\OneDrive -
MathWorks\Documents\MATLAB\ExampleManager\jclayton.Bdoc22a.j1818507\fixedpoint-ex20928000\sldemo_fuelsys.slx.
The file higher on the MATLAB path is:
S:\21\jclayton.Bdoc22a.j1818507\matlab\toolbox\simulink\simdemos\automotive\fuelsys\sldemo_fuelsys.slx 
Warning: The file containing block diagram '<a href="matlab:open_system
('sldemo_fuelsys')">sldemo_fuelsys</a>' is shadowed by a file of the same name
higher on the MATLAB path. This can cause unexpected behavior. For more
information see <a href="matlab:helpview([docroot
'/toolbox/simulink/helptargets.map'], 'shadowing')">"Avoiding Problems with
Shadowed Files"</a> in the Simulink documentation.

The file containing the block diagram is: C:\Users\jclayton\OneDrive -
MathWorks\Documents\MATLAB\ExampleManager\jclayton.Bdoc22a.j1818507\fixedpoint-ex20928000\sldemo_fuelsys.slx.
The file higher on the MATLAB path is:
S:\21\jclayton.Bdoc22a.j1818507\matlab\toolbox\simulink\simdemos\automotive\fuelsys\sldemo_fuelsys.slx 
|  69 |           5200 |        1 |    [29 22] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 4.794985e-03 |
Warning: The file containing block diagram '<a href="matlab:open_system
('sldemo_fuelsys')">sldemo_fuelsys</a>' is shadowed by a file of the same name
higher on the MATLAB path. This can cause unexpected behavior. For more
information see <a href="matlab:helpview([docroot
'/toolbox/simulink/helptargets.map'], 'shadowing')">"Avoiding Problems with
Shadowed Files"</a> in the Simulink documentation.

The file containing the block diagram is: C:\Users\jclayton\OneDrive -
MathWorks\Documents\MATLAB\ExampleManager\jclayton.Bdoc22a.j1818507\fixedpoint-ex20928000\sldemo_fuelsys.slx.
The file higher on the MATLAB path is:
S:\21\jclayton.Bdoc22a.j1818507\matlab\toolbox\simulink\simdemos\automotive\fuelsys\sldemo_fuelsys.slx 
|  70 |           4272 |        1 |    [29 18] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 6.289935e-03 |
|  71 |           3808 |        0 |    [29 16] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 9.146322e-03 |
Warning: The file containing block diagram '<a href="matlab:open_system
('sldemo_fuelsys')">sldemo_fuelsys</a>' is shadowed by a file of the same name
higher on the MATLAB path. This can cause unexpected behavior. For more
information see <a href="matlab:helpview([docroot
'/toolbox/simulink/helptargets.map'], 'shadowing')">"Avoiding Problems with
Shadowed Files"</a> in the Simulink documentation.

The file containing the block diagram is: C:\Users\jclayton\OneDrive -
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MathWorks\Documents\MATLAB\ExampleManager\jclayton.Bdoc22a.j1818507\fixedpoint-ex20928000\sldemo_fuelsys.slx.
The file higher on the MATLAB path is:
S:\21\jclayton.Bdoc22a.j1818507\matlab\toolbox\simulink\simdemos\automotive\fuelsys\sldemo_fuelsys.slx 
Warning: The file containing block diagram '<a href="matlab:open_system
('sldemo_fuelsys')">sldemo_fuelsys</a>' is shadowed by a file of the same name
higher on the MATLAB path. This can cause unexpected behavior. For more
information see <a href="matlab:helpview([docroot
'/toolbox/simulink/helptargets.map'], 'shadowing')">"Avoiding Problems with
Shadowed Files"</a> in the Simulink documentation.

The file containing the block diagram is: C:\Users\jclayton\OneDrive -
MathWorks\Documents\MATLAB\ExampleManager\jclayton.Bdoc22a.j1818507\fixedpoint-ex20928000\sldemo_fuelsys.slx.
The file higher on the MATLAB path is:
S:\21\jclayton.Bdoc22a.j1818507\matlab\toolbox\simulink\simdemos\automotive\fuelsys\sldemo_fuelsys.slx 
|  72 |           4040 |        1 |    [29 17] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 4.853550e-03 |
|  73 |            112 |        0 |      [2 2] |          [16 8] |           16 |             EvenSpacing |     7.812500e-03, 1.054412e-01 |
|  74 |            624 |        0 |      [6 6] |          [16 8] |           16 |             EvenSpacing |     7.812500e-03, 5.441330e-02 |
|  75 |            528 |        0 |      [5 6] |          [16 8] |           16 |             EvenSpacing |     7.812500e-03, 5.850855e-02 |
|  76 |            528 |        0 |      [6 5] |          [16 8] |           16 |             EvenSpacing |     7.812500e-03, 5.939646e-02 |
|  77 |            448 |        0 |      [5 5] |          [16 8] |           16 |             EvenSpacing |     7.812500e-03, 6.331635e-02 |
|  78 |           1984 |        0 |    [11 11] |          [16 8] |           16 |             EvenSpacing |     7.812500e-03, 3.825822e-02 |
|  79 |           1808 |        0 |    [10 11] |          [16 8] |           16 |             EvenSpacing |     7.812500e-03, 4.057692e-02 |
|  80 |           1808 |        0 |    [11 10] |          [16 8] |           16 |             EvenSpacing |     7.812500e-03, 3.825822e-02 |
|  81 |           1648 |        0 |    [10 10] |          [16 8] |           16 |             EvenSpacing |     7.812500e-03, 4.057692e-02 |
|  82 |           2752 |        0 |    [13 13] |          [16 8] |           16 |             EvenSpacing |     7.812500e-03, 3.730308e-02 |
|  83 |           3184 |        0 |    [14 14] |          [16 8] |           16 |             EvenSpacing |     7.812500e-03, 3.596578e-02 |
|  84 |           3648 |        0 |    [15 15] |          [16 8] |           16 |             EvenSpacing |     7.812500e-03, 3.462848e-02 |
|  85 |           1632 |        0 |     [9 11] |          [16 8] |           16 |             EvenSpacing |     7.812500e-03, 4.191638e-02 |
|  86 |           1488 |        0 |     [9 10] |          [16 8] |           16 |             EvenSpacing |     7.812500e-03, 4.191638e-02 |
|  87 |           3408 |        0 |    [14 15] |          [16 8] |           16 |             EvenSpacing |     7.812500e-03, 3.596578e-02 |
|  88 |           3408 |        0 |    [15 14] |          [16 8] |           16 |             EvenSpacing |     7.812500e-03, 3.462848e-02 |
|  89 |            160 |        0 |      [2 2] |         [16 32] |           16 |             EvenSpacing |     7.812500e-03, 1.056962e-01 |
|  90 |            672 |        0 |      [6 6] |         [16 32] |           16 |             EvenSpacing |     7.812500e-03, 5.635968e-02 |
|  91 |            576 |        0 |      [5 6] |         [16 32] |           16 |             EvenSpacing |     7.812500e-03, 6.042931e-02 |
|  92 |            576 |        0 |      [6 5] |         [16 32] |           16 |             EvenSpacing |     7.812500e-03, 6.089415e-02 |
|  93 |            496 |        0 |      [5 5] |         [16 32] |           16 |             EvenSpacing |     7.812500e-03, 6.486682e-02 |
|  94 |           2032 |        0 |    [11 11] |         [16 32] |           16 |             EvenSpacing |     7.812500e-03, 3.087381e-02 |
|  95 |           1856 |        0 |    [10 11] |         [16 32] |           16 |             EvenSpacing |     7.812500e-03, 3.201155e-02 |
|  96 |           1856 |        0 |    [11 10] |         [16 32] |           16 |             EvenSpacing |     7.812500e-03, 3.321355e-02 |
|  97 |           1696 |        0 |    [10 10] |         [16 32] |           16 |             EvenSpacing |     7.812500e-03, 3.438402e-02 |
|  98 |           2800 |        0 |    [13 13] |         [16 32] |           16 |             EvenSpacing |     7.812500e-03, 2.427534e-02 |
|  99 |           3232 |        0 |    [14 14] |         [16 32] |           16 |             EvenSpacing |     7.812500e-03, 2.115314e-02 |
| 100 |           3696 |        0 |    [15 15] |         [16 32] |           16 |             EvenSpacing |     7.812500e-03, 1.867522e-02 |
| 101 |           1680 |        0 |     [9 11] |         [16 32] |           16 |             EvenSpacing |     7.812500e-03, 3.326033e-02 |
| 102 |           1536 |        0 |     [9 10] |         [16 32] |           16 |             EvenSpacing |     7.812500e-03, 3.565893e-02 |
| 103 |           3456 |        0 |    [14 15] |         [16 32] |           16 |             EvenSpacing |     7.812500e-03, 1.988021e-02 |
| 104 |           3456 |        0 |    [15 14] |         [16 32] |           16 |             EvenSpacing |     7.812500e-03, 2.043030e-02 |
| 105 |             80 |        0 |      [2 2] |          [16 8] |            8 |         EvenPow2Spacing |     7.812500e-03, 8.762666e-02 |
| 106 |            560 |        0 |      [8 8] |          [16 8] |            8 |         EvenPow2Spacing |     7.812500e-03, 4.444923e-02 |
| 107 |           1848 |        0 |    [15 15] |          [16 8] |            8 |         EvenPow2Spacing |     7.812500e-03, 3.133052e-02 |
| 108 |            128 |        0 |      [2 2] |         [16 32] |            8 |         EvenPow2Spacing |     7.812500e-03, 8.876663e-02 |
| 109 |            608 |        0 |      [8 8] |         [16 32] |            8 |         EvenPow2Spacing |     7.812500e-03, 4.280622e-02 |
| 110 |           1896 |        0 |    [15 15] |         [16 32] |            8 |         EvenPow2Spacing |     7.812500e-03, 1.728861e-02 |
| 111 |            112 |        0 |      [2 2] |          [16 8] |           16 |         EvenPow2Spacing |     7.812500e-03, 8.821256e-02 |
| 112 |           1072 |        0 |      [8 8] |          [16 8] |           16 |         EvenPow2Spacing |     7.812500e-03, 4.520058e-02 |
| 113 |           3648 |        0 |    [15 15] |          [16 8] |           16 |         EvenPow2Spacing |     7.812500e-03, 3.195386e-02 |
| 114 |            160 |        0 |      [2 2] |         [16 32] |           16 |         EvenPow2Spacing |     7.812500e-03, 8.949983e-02 |
| 115 |           1120 |        0 |      [8 8] |         [16 32] |           16 |         EvenPow2Spacing |     7.812500e-03, 4.298368e-02 |
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| 116 |           3696 |        0 |    [15 15] |         [16 32] |           16 |         EvenPow2Spacing |     7.812500e-03, 1.766077e-02 |
| 117 |            176 |        0 |      [2 2] |          [16 8] |           32 |         EvenPow2Spacing |     7.812500e-03, 8.821365e-02 |
| 118 |           2096 |        0 |      [8 8] |          [16 8] |           32 |         EvenPow2Spacing |     7.812500e-03, 4.520053e-02 |
| 119 |            224 |        0 |      [2 2] |         [16 32] |           32 |             EvenSpacing |     7.812500e-03, 1.056971e-01 |
| 120 |           1248 |        0 |      [6 6] |         [16 32] |           32 |             EvenSpacing |     7.812500e-03, 5.635974e-02 |
| 121 |           1056 |        0 |      [5 6] |         [16 32] |           32 |             EvenSpacing |     7.812500e-03, 6.042954e-02 |
| 122 |           1056 |        0 |      [6 5] |         [16 32] |           32 |             EvenSpacing |     7.812500e-03, 6.089419e-02 |
| 123 |            896 |        0 |      [5 5] |         [16 32] |           32 |             EvenSpacing |     7.812500e-03, 6.486649e-02 |
| 124 |           3968 |        0 |    [11 11] |         [16 32] |           32 |             EvenSpacing |     7.812500e-03, 3.087266e-02 |
| 125 |           3616 |        0 |    [10 11] |         [16 32] |           32 |             EvenSpacing |     7.812500e-03, 3.201098e-02 |
| 126 |           3616 |        0 |    [11 10] |         [16 32] |           32 |             EvenSpacing |     7.812500e-03, 3.321287e-02 |
| 127 |           3296 |        0 |    [10 10] |         [16 32] |           32 |             EvenSpacing |     7.812500e-03, 3.438386e-02 |
| 128 |           3264 |        0 |     [9 11] |         [16 32] |           32 |             EvenSpacing |     7.812500e-03, 3.325982e-02 |
| 129 |           2976 |        0 |     [9 10] |         [16 32] |           32 |             EvenSpacing |     7.812500e-03, 3.565864e-02 |
| 130 |            224 |        0 |      [2 2] |         [16 32] |           32 |         EvenPow2Spacing |     7.812500e-03, 8.950080e-02 |
| 131 |           2144 |        0 |      [8 8] |         [16 32] |           32 |         EvenPow2Spacing |     7.812500e-03, 4.298387e-02 |
| 132 |            128 |        0 |      [2 2] |         [16 32] |            8 |         EvenPow2Spacing |     7.812500e-03, 9.900912e-02 |
| 133 |            416 |        0 |      [8 5] |         [16 32] |            8 |         EvenPow2Spacing |     7.812500e-03, 5.790341e-02 |
| 134 |           1176 |        0 |     [15 9] |         [16 32] |            8 |         EvenPow2Spacing |     7.812500e-03, 3.455174e-02 |
| 135 |           3936 |        0 |    [30 16] |         [16 32] |            8 |         EvenPow2Spacing |     7.812500e-03, 1.060568e-02 |
| 136 |            224 |        0 |      [2 2] |         [16 32] |           32 |         EvenPow2Spacing |     7.812500e-03, 1.067945e-01 |
| 137 |           1216 |        0 |      [7 5] |         [16 32] |           32 |         EvenPow2Spacing |     7.812500e-03, 6.091571e-02 |

Best Solution
|  ID |  Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification |             Error(Max,Current) |
|  72 |           4040 |        1 |    [29 17] |         [16 32] |            8 |             EvenSpacing |     7.812500e-03, 4.853550e-03 |

S = 

  1×1 FunctionApproximation.LUTSolution with properties:

          ID: 72
    Feasible: "true"

Compare the numerical behavior of the original lookup table, with the optimized lookup table.

compare(S)

ans = 

  1×2 struct array with fields:

    Breakpoints
    Original
    Approximate
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Generate the new Lookup Table block using the approximate method.

S.approximate

%#ok<*NOPTS>

Visualize Pareto Front for Memory Optimization Versus Absolute
Tolerance
When you want to optimize for both memory and absolute tolerance, it is helpful to visualize the
tradeoffs between the two. This example creates a lookup table approximation of the function 1-
exp(-x) with varying levels of absolute tolerance and creates a plot of each solution found. In the
final plot you can view the tradeoffs between memory efficiency and numeric fidelity.

nTol = 32; % Initialize variables
solutions = cell(1,nTol);
objectiveValues = cell(1,nTol);
constraintValues = cell(1,nTol);
memoryUnits = 'bytes';
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% Options for absolute tolerance
absTol = 2.^linspace(-12,-4,nTol);

% Relative tolerance is set to 0
relTol = 0;

% Initialize options
options = FunctionApproximation.Options( ...
    'RelTol', relTol, ...
    'BreakpointSpecification', 'EvenSpacing', ...
    'Display', false, ...
    'WordLengths', 16);

% Setup the approximation problem
problem = FunctionApproximation.Problem( ...
    @(x) 1 - exp(-x), ...
    'InputTypes',numerictype(0,16), ...
    'OutputType',numerictype(1,16,14), ...
    'InputLowerBounds',0, ...
    'InputUpperBounds',5, ...
    'Options',options);

% Execute to find solutions with different tolerances
for iTol = 1:nTol
    problem.Options.AbsTol = absTol(iTol);
    solution = solve(problem);
    objectiveValues{iTol} = arrayfun(@(x) x.totalMemoryUsage(memoryUnits), solution.AllSolutions);
    constraintValues{iTol} = arrayfun(@(x) x.Feasible, solution.AllSolutions);
    solutions{iTol} = solution;
end

% Plot results

h = figure();
hold on;

for iTol = 1:nTol
    for iObjective = 1:numel(objectiveValues{iTol})
        if constraintValues{iTol}(iObjective)
            markerColor = 'g';
        else
            markerColor = 'r';
        end
        plot(absTol(iTol),objectiveValues{iTol}(iObjective), ...
            'Marker', '.' ,'LineStyle', 'none', ...
            'MarkerSize', 24, ...
            'MarkerEdgeColor', markerColor)
    end
end

xlabel('AbsTol')
ylabel(['MemoryUsage (',memoryUnits,')'])
h.Children.XScale = 'log';
h.Children.YMinorGrid = 'on';
grid on
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box on
hold off;

Solutions that are infeasible, meaning they do not meet the required absolute tolerance are marked
in red. Solutions that are feasible are marked in green. As the absolute tolerance increases, the
approximation finds solutions which use less memory. When the absolute tolerance is lower,
indicating higher numerical fidelity, the required memory also increases.

Compare Approximations Using On Curve and Off Curve Table Values
This example compares the lookup table approximations generated for the tanh function when the
OnCurveTableValues property of the FunctionApproximation.Options object is set to true
and false. The OnCurveTableValues property specifies whether the table values of the optimized
lookup table approximation must be equal to the quantized output of the original function being
approximated. In some cases, by setting this value to false, the generated lookup table
approximation can maintain the same error tolerances while reducing the memory used by the lookup
table.

Create a Lookup Table Approximation Using On Curve Table Values

Use the FunctionApproximation.Problem object to define a function to approximate with a
lookup table. By default, the OnCurveTableValues property of the associated Options object is set
to false. Set this property to true to constrain table values to the quantized output of the function
being approximated.
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P1 = FunctionApproximation.Problem('tanh');
P1.Options.OnCurveTableValues = 1

P1 = 
  1x1 FunctionApproximation.Problem with properties:

    FunctionToApproximate: @(x)tanh(x)
           NumberOfInputs: 1
               InputTypes: "numerictype(1,16,12)"
         InputLowerBounds: -8
         InputUpperBounds: 8
               OutputType: "numerictype(1,16,15)"
                  Options: [1x1 FunctionApproximation.Options]

Generate the lookup table approximation.

S1 = solve(P1)

|  ID |  Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification |             Error(Max,Current) | 
|   0 |             64 |        0 |          2 |              16 |           16 |             EvenSpacing |     7.812500e-03, 7.229091e-01 |
|   1 |           1248 |        1 |         76 |              16 |           16 |             EvenSpacing |     7.812500e-03, 4.368265e-03 |
|   2 |           1232 |        1 |         75 |              16 |           16 |             EvenSpacing |     7.812500e-03, 4.439035e-03 |
|   3 |            944 |        1 |         57 |              16 |           16 |             EvenSpacing |     7.812500e-03, 7.780470e-03 |
|   4 |            928 |        0 |         56 |              16 |           16 |             EvenSpacing |     7.812500e-03, 7.990307e-03 |
|   5 |            656 |        0 |         39 |              16 |           16 |             EvenSpacing |     7.812500e-03, 1.678519e-02 |
|   6 |            640 |        0 |         38 |              16 |           16 |             EvenSpacing |     7.812500e-03, 1.660649e-02 |
|   7 |            784 |        0 |         47 |              16 |           16 |             EvenSpacing |     7.812500e-03, 1.102459e-02 |
|   8 |            864 |        0 |         52 |              16 |           16 |             EvenSpacing |     7.812500e-03, 9.403441e-03 |
|   9 |            896 |        0 |         54 |              16 |           16 |             EvenSpacing |     7.812500e-03, 8.643626e-03 |
|  10 |            912 |        0 |         55 |              16 |           16 |             EvenSpacing |     7.812500e-03, 8.316993e-03 |
|  11 |            496 |        0 |         29 |              16 |           16 |             EvenSpacing |     7.812500e-03, 2.894880e-02 |
|  12 |            720 |        0 |         43 |              16 |           16 |             EvenSpacing |     7.812500e-03, 1.355547e-02 |
|  13 |            832 |        0 |         50 |              16 |           16 |             EvenSpacing |     7.812500e-03, 1.019267e-02 |
|  14 |            880 |        0 |         53 |              16 |           16 |             EvenSpacing |     7.812500e-03, 8.881069e-03 |
|  15 |            448 |        1 |         14 |              16 |           16 |          ExplicitValues |     7.812500e-03, 7.801827e-03 |

Best Solution
|  ID |  Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification |             Error(Max,Current) |
|  15 |            448 |        1 |         14 |              16 |           16 |          ExplicitValues |     7.812500e-03, 7.801827e-03 |

S1 = 
  1x1 FunctionApproximation.LUTSolution with properties:

          ID: 15
    Feasible: "true"

Create a Lookup Table Approximation Using Any Table Values

Create another FunctionApproximation.Problem object. Set the OnCurveTableValues
property of this object to false to allow the optimization to optimize the table values as well as the
breakpoints.

P2 = FunctionApproximation.Problem('tanh');
P2.Options.OnCurveTableValues = 0

P2 = 
  1x1 FunctionApproximation.Problem with properties:
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    FunctionToApproximate: @(x)tanh(x)
           NumberOfInputs: 1
               InputTypes: "numerictype(1,16,12)"
         InputLowerBounds: -8
         InputUpperBounds: 8
               OutputType: "numerictype(1,16,15)"
                  Options: [1x1 FunctionApproximation.Options]

Generate the lookup table approximation.

S2 = solve(P2)

|  ID |  Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification |             Error(Max,Current) | 
|   0 |             64 |        0 |          2 |              16 |           16 |             EvenSpacing |     7.812500e-03, 7.229091e-01 |
|   1 |           1248 |        1 |         76 |              16 |           16 |             EvenSpacing |     7.812500e-03, 4.368265e-03 |
|   2 |           1232 |        1 |         75 |              16 |           16 |             EvenSpacing |     7.812500e-03, 4.439035e-03 |
|   3 |            944 |        1 |         57 |              16 |           16 |             EvenSpacing |     7.812500e-03, 7.780470e-03 |
|   4 |            928 |        1 |         56 |              16 |           16 |             EvenSpacing |     7.812500e-03, 6.110240e-03 |
|   5 |            656 |        0 |         39 |              16 |           16 |             EvenSpacing |     7.812500e-03, 1.678519e-02 |
|   6 |            640 |        0 |         38 |              16 |           16 |             EvenSpacing |     7.812500e-03, 1.660649e-02 |
|   7 |            784 |        1 |         47 |              16 |           16 |             EvenSpacing |     7.812500e-03, 7.743777e-03 |
|   8 |            704 |        1 |         42 |              16 |           16 |             EvenSpacing |     7.812500e-03, 7.805676e-03 |
|   9 |            672 |        1 |         40 |              16 |           16 |             EvenSpacing |     7.812500e-03, 7.809550e-03 |
|  10 |            368 |        0 |         21 |              16 |           16 |             EvenSpacing |     7.812500e-03, 4.855583e-02 |
|  11 |            512 |        0 |         30 |              16 |           16 |             EvenSpacing |     7.812500e-03, 2.773526e-02 |
|  12 |            592 |        0 |         35 |              16 |           16 |             EvenSpacing |     7.812500e-03, 2.088471e-02 |
|  13 |            624 |        0 |         37 |              16 |           16 |             EvenSpacing |     7.812500e-03, 1.870074e-02 |
|  14 |            384 |        1 |         12 |              16 |           16 |          ExplicitValues |     7.812500e-03, 7.812317e-03 |
|  15 |            384 |        0 |         12 |              16 |           16 |          ExplicitValues |     7.812500e-03, 1.196141e-02 |
|  16 |            384 |        1 |         12 |              16 |           16 |          ExplicitValues |     7.812500e-03, 7.812317e-03 |

Best Solution
|  ID |  Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification |             Error(Max,Current) |
|  14 |            384 |        1 |         12 |              16 |           16 |          ExplicitValues |     7.812500e-03, 7.812317e-03 |

S2 = 
  1x1 FunctionApproximation.LUTSolution with properties:

          ID: 14
    Feasible: "true"

View Results

Compare the best solutions for each lookup table approximation.

compare(S1)

41 Producing Lookup Table Data

41-32



ans = struct with fields:
    Breakpoints: [65536x1 double]
       Original: [65536x1 double]
    Approximate: [65536x1 double]

compare(S2)
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ans = struct with fields:
    Breakpoints: [65536x1 double]
       Original: [65536x1 double]
    Approximate: [65536x1 double]

The maximum error between the original function and the two lookup table approximations are
approximately equal, however the memory used by the lookup table that was not constrained to using
only on curve table values is significantly lower.

percent_reduction = S2.totalMemoryUsage/S1.totalMemoryUsage

percent_reduction = 0.8571

See Also
Apps
Lookup Table Optimizer
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Classes
FunctionApproximation.Problem | FunctionApproximation.Options |
FunctionApproximation.LUTSolution |
FunctionApproximation.LUTMemoryUsageCalculator

More About
• “Optimize Lookup Tables for Memory-Efficiency” on page 41-15
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Generate an Optimized Lookup Table as a MATLAB Function
This example shows how to approximate y = 1/(1+exp^(-x)) as a MATLAB function lookup table
using the Lookup Table Optimizer.

1 To open the Lookup Table Optimizer, on the Simulink Apps tab, in the Code Generation gallery,
click Lookup Table Optimizer.

2 In the Objective pane of the app, select the source as MATLAB Function Handle. Click Next.
3 In the Setup pane, provide the function handle @(x)(1/(1+exp(-x))).

The attributes populate in the table below. You can manually edit the fields to specify ranges and
data types other than those populated. For this example, set Minimum to 0 and Maximum to
0.25.

Click Next.
4 In the Create pane, specify the Output Error Tolerance that is acceptable for your design.

To specify additional properties for the optimized lookup table, click LUT Specification. Change
the Solution Type to MATLAB.

After you are satisfied with the constraints and additional options, click Optimize. When the
optimization is complete, the Lookup Table Optimizer reports the memory of the optimized
lookup table. You can edit the constraints and run the optimization again to achieve further
memory reduction.

Click Next to view the Results pane.
5 Click Show Comparison Plot to view a plot of the original function output compared to the

output of the new optimized lookup table.
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6 Click Show Optimized LUT to view the lookup table function launched in the MATLAB
Command Window.

See Also
Lookup Table Optimizer

Related Examples
• “Optimize Lookup Tables for Memory-Efficiency” on page 41-15
• “Generate an Optimized Lookup Table as a MATLAB Function Programmatically” on page 41-

38
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Generate an Optimized Lookup Table as a MATLAB Function
Programmatically

This example shows how to generate an optimized lookup table as a MATLAB® function to
approximate hyperbolic tangent. The MATLAB function lookup table approximation can then be used
to replace the hyperbolic tangent function and generate C code.

Use the FunctionApproximation.Options object to specify a MATLAB function as the solution
type. Use the default values for accuracy and word length constraints.

options = FunctionApproximation.Options();
options.ApproximateSolutionType = 'MATLAB';

Specify the function to approximate and the input ranges and data types in the
FunctionApproximation.Problem object.

functionToApproximate = 'tanh';

problem = FunctionApproximation.Problem(functionToApproximate, 'Options', options);
problem.InputLowerBounds = 0;
problem.InputUpperBounds = 0.25;

Use the solve method to solve the optimization problem and create a lookup table solution.

solution = solve(problem)

|  ID |  Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification |             Error(Max,Current) | 
|   0 |             64 |        1 |          2 |              16 |           16 |             EvenSpacing |     7.812500e-03, 1.962196e-03 |
|   1 |             64 |        1 |          2 |              16 |           16 |         EvenPow2Spacing |     7.812500e-03, 1.962196e-03 |

Best Solution
|  ID |  Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification |             Error(Max,Current) |
|   1 |             64 |        1 |          2 |              16 |           16 |         EvenPow2Spacing |     7.812500e-03, 1.962196e-03 |

solution = 
  1x1 FunctionApproximation.LUTSolution with properties:

          ID: 1
    Feasible: "true"

To obtain the generated lookup table as a MATLAB function, use the approximate method. Use
optional name-value arguments to specify the name and path for the lookup table function.

filename = 'tanhApproximate';
filepath = cd;
approximate(solution,'Name',filename,'Path',filepath);
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If you have MATLAB Coder™ installed, you can use the codegen command to generate C code from
the approximate lookup table function.

inputArgs = linspace(1,10,10);
codegen tanhApproximate.m -args {inputArgs}

Code generation successful.
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See Also
FunctionApproximation.Problem | FunctionApproximation.Options | solve |
approximate

Related Examples
• “Generate an Optimized Lookup Table as a MATLAB Function” on page 41-36

41 Producing Lookup Table Data

41-40



Convert Neural Network Algorithms to Fixed-Point using
fxpopt and Generate HDL Code

This example shows how to convert a neural network regression model in Simulink to fixed point
using the fxpopt function and Lookup Table Optimizer.

Overview

Fixed-Point Designer provides workflows via the Fixed Point Tool that can convert a design from
floating-point data types to fixed-point data types. The fxpopt function optimizes data types in a
model based on specified system behavioral constraints. For additional information, refer to the
documentation link https://www.mathworks.com/help/fixedpoint/ref/fxpopt.html The Lookup Table
Optimizer generates memory-efficient lookup table replacements for unbounded functions such as
exp and log2. Using these tools, this example showcases how to convert a trained floating-point
neural network regression model to use embedded-efficient fixed-point data types.

Data and Neural Network Training

The engine_dataset contains data representing the relationship between the fuel rate and speed of
the engine, and its torque and gas emissions.

% Use the function fitting tool (nftool) from Deep Learning Toolbox (TM) to
% train a neural network to estimate torque and gas emissions of an engine
% given the fuel rate and speed. Use the following commands to train
% the neural network.
load engine_dataset;
x = engineInputs;
t = engineTargets;
net = fitnet(10);
net = train(net,x,t);
view(net)
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Close the view of the network.

nnet.guis.closeAllViews();

Model Preparation for Fixed-Point Conversion

Once the network is trained, use the gensim function from the Deep Learning Toolbox (TM) to
generate a Simulink model.
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[sysName, netName] = gensim(net, 'Name', 'mTrainedNN');

The model generated by the gensim function contains the neural network with trained weights and
biases. To prepare this generated model for fixed-point conversion, follow the preparation steps in the
best practices guidelines. https://www.mathworks.com/help/fixedpoint/ug/best-practices-for-using-the-
fixed-point-tool-to-propose-data-types-for-your-simulink-model.html

After applying these principles, the trained neural network is further modified to enable signal
logging at the output of the network, add input stimuli and verification blocks.

Open and inspect the model.

model = 'ex_fxpdemo_neuralnet_regression';
system_under_design = [model '/Function Fitting Neural Network'];
baseline_output = [model '/yarr'];
open_system(model);

% Set up model for HDL code generation
hdlsetup(model);

### <a href="matlab:configset.internal.open('ex_fxpdemo_neuralnet_regression','SingleTaskRateTransMsg')">SingleTaskRateTransMsg</a> value is set from 'none' to 'error' (<a href="matlab:set_param('ex_fxpdemo_neuralnet_regression','SingleTaskRateTransMsg', 'none')">revert</a>).
### <a href="matlab:configset.internal.open('ex_fxpdemo_neuralnet_regression','Solver')">Solver</a> value is set from 'FixedStepAuto' to 'FixedStepDiscrete' (<a href="matlab:set_param('ex_fxpdemo_neuralnet_regression','Solver', 'FixedStepAuto')">revert</a>).
### <a href="matlab:configset.internal.open('ex_fxpdemo_neuralnet_regression','AlgebraicLoopMsg')">AlgebraicLoopMsg</a> value is set from 'warning' to 'error' (<a href="matlab:set_param('ex_fxpdemo_neuralnet_regression','AlgebraicLoopMsg', 'warning')">revert</a>).
### <a href="matlab:configset.internal.open('ex_fxpdemo_neuralnet_regression','BlockReduction')">BlockReduction</a> value is set from 'on' to 'off' (<a href="matlab:set_param('ex_fxpdemo_neuralnet_regression','BlockReduction', 'on')">revert</a>).
### <a href="matlab:configset.internal.open('ex_fxpdemo_neuralnet_regression','ConditionallyExecuteInputs')">ConditionallyExecuteInputs</a> value is set from 'on' to 'off' (<a href="matlab:set_param('ex_fxpdemo_neuralnet_regression','ConditionallyExecuteInputs', 'on')">revert</a>).
### <a href="matlab:configset.internal.open('ex_fxpdemo_neuralnet_regression','DefaultParameterBehavior')">DefaultParameterBehavior</a> value is set from 'Tunable' to 'Inlined' (<a href="matlab:set_param('ex_fxpdemo_neuralnet_regression','DefaultParameterBehavior', 'Tunable')">revert</a>).
### <a href="matlab:configset.internal.open('ex_fxpdemo_neuralnet_regression','ProdHWDeviceType')">ProdHWDeviceType</a> value is set from 'Intel->x86-64 (Windows64)' to 'ASIC/FPGA->ASIC/FPGA' (<a href="matlab:set_param('ex_fxpdemo_neuralnet_regression','ProdHWDeviceType', 'Intel->x86-64 (Windows64)')">revert</a>).
### <a href="matlab:configset.internal.open('ex_fxpdemo_neuralnet_regression','InheritOutputTypeSmallerThanSingle')">InheritOutputTypeSmallerThanSingle</a> value is set from 'off' to 'on' (<a href="matlab:set_param('ex_fxpdemo_neuralnet_regression','InheritOutputTypeSmallerThanSingle', 'off')">revert</a>).
### The listed configuration parameter values are modified as a part of hdlsetup. Please refer to <a href="matlab:helpview(fullfile(docroot, 'hdlcoder', 'helptargets.map'), 'msg_hdlsetup_function')">hdlsetup</a> document for best practices on model settings.

Simulate the model to observe model performance when using double-precision floating-point data
types.
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loggingInfo = get_param(model, 'DataLoggingOverride');
sim_out = sim(model, 'SaveFormat', 'Dataset');

plotRegression(sim_out, baseline_output, system_under_design, 'Regression before conversion');

Define System Behavioral Constraints for Fixed Point Conversion

opts = fxpOptimizationOptions();
opts.addTolerance(system_under_design, 1, 'RelTol', 0.05);
opts.addTolerance(system_under_design, 1, 'AbsTol', 50)
opts.AllowableWordLengths = 8:32;

Optimize Data Types

Use the fxpopt function to optimize the data types in the system under design and explore the
solution. The software analyzes the range of objects in system_under_design and wordlength and
tolerance constraints specified in opts to apply heterogeneous data types to the model while
minimizing total bit width.

solution  = fxpopt(model, system_under_design, opts);
best_solution = solution.explore;
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    + Starting data type optimization...
    + Checking for unsupported constructs.
        - The paths below have constructs that do not support fixed-point data types. These constructs will be surrounded with Data Type Conversion blocks.
    'ex_fxpdemo_neuralnet_regression/Function Fitting Neural Network/Layer 1/tansig/tanh'

    + Preprocessing
    + Modeling the optimization problem
        - Constructing decision variables
    + Running the optimization solver
        - Evaluating new solution: cost 515, does not meet the behavioral constraints.
        - Evaluating new solution: cost 577, does not meet the behavioral constraints.
        - Evaluating new solution: cost 639, does not meet the behavioral constraints.
        - Evaluating new solution: cost 701, does not meet the behavioral constraints.
        - Evaluating new solution: cost 763, does not meet the behavioral constraints.
        - Evaluating new solution: cost 825, does not meet the behavioral constraints.
        - Evaluating new solution: cost 887, does not meet the behavioral constraints.
        - Evaluating new solution: cost 949, meets the behavioral constraints.
        - Updated best found solution, cost: 949
        - Evaluating new solution: cost 945, meets the behavioral constraints.
        - Updated best found solution, cost: 945
        - Evaluating new solution: cost 944, meets the behavioral constraints.
        - Updated best found solution, cost: 944
        - Evaluating new solution: cost 943, meets the behavioral constraints.
        - Updated best found solution, cost: 943
        - Evaluating new solution: cost 942, meets the behavioral constraints.
        - Updated best found solution, cost: 942
        - Evaluating new solution: cost 941, meets the behavioral constraints.
        - Updated best found solution, cost: 941
        - Evaluating new solution: cost 940, meets the behavioral constraints.
        - Updated best found solution, cost: 940
        - Evaluating new solution: cost 939, meets the behavioral constraints.
        - Updated best found solution, cost: 939
        - Evaluating new solution: cost 938, meets the behavioral constraints.
        - Updated best found solution, cost: 938
        - Evaluating new solution: cost 937, meets the behavioral constraints.
        - Updated best found solution, cost: 937
        - Evaluating new solution: cost 936, meets the behavioral constraints.
        - Updated best found solution, cost: 936
        - Evaluating new solution: cost 926, meets the behavioral constraints.
        - Updated best found solution, cost: 926
        - Evaluating new solution: cost 925, meets the behavioral constraints.
        - Updated best found solution, cost: 925
        - Evaluating new solution: cost 924, meets the behavioral constraints.
        - Updated best found solution, cost: 924
        - Evaluating new solution: cost 923, meets the behavioral constraints.
        - Updated best found solution, cost: 923
        - Evaluating new solution: cost 922, meets the behavioral constraints.
        - Updated best found solution, cost: 922
        - Evaluating new solution: cost 917, meets the behavioral constraints.
        - Updated best found solution, cost: 917
        - Evaluating new solution: cost 916, meets the behavioral constraints.
        - Updated best found solution, cost: 916
        - Evaluating new solution: cost 914, meets the behavioral constraints.
        - Updated best found solution, cost: 914
        - Evaluating new solution: cost 909, meets the behavioral constraints.
        - Updated best found solution, cost: 909
        - Evaluating new solution: cost 908, meets the behavioral constraints.
        - Updated best found solution, cost: 908
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        - Evaluating new solution: cost 906, meets the behavioral constraints.
        - Updated best found solution, cost: 906
        - Evaluating new solution: cost 898, meets the behavioral constraints.
        - Updated best found solution, cost: 898
        - Evaluating new solution: cost 897, meets the behavioral constraints.
        - Updated best found solution, cost: 897
        - Evaluating new solution: cost 893, does not meet the behavioral constraints.
        - Evaluating new solution: cost 896, meets the behavioral constraints.
        - Updated best found solution, cost: 896
        - Evaluating new solution: cost 895, meets the behavioral constraints.
        - Updated best found solution, cost: 895
        - Evaluating new solution: cost 894, meets the behavioral constraints.
        - Updated best found solution, cost: 894
        - Evaluating new solution: cost 893, meets the behavioral constraints.
        - Updated best found solution, cost: 893
        - Evaluating new solution: cost 892, meets the behavioral constraints.
        - Updated best found solution, cost: 892
        - Evaluating new solution: cost 891, meets the behavioral constraints.
        - Updated best found solution, cost: 891
        - Evaluating new solution: cost 890, meets the behavioral constraints.
        - Updated best found solution, cost: 890
        - Evaluating new solution: cost 889, meets the behavioral constraints.
        - Updated best found solution, cost: 889
        - Evaluating new solution: cost 888, meets the behavioral constraints.
        - Updated best found solution, cost: 888
        - Evaluating new solution: cost 878, meets the behavioral constraints.
        - Updated best found solution, cost: 878
        - Evaluating new solution: cost 877, meets the behavioral constraints.
        - Updated best found solution, cost: 877
        - Evaluating new solution: cost 876, meets the behavioral constraints.
        - Updated best found solution, cost: 876
        - Evaluating new solution: cost 875, meets the behavioral constraints.
        - Updated best found solution, cost: 875
        - Evaluating new solution: cost 874, meets the behavioral constraints.
        - Updated best found solution, cost: 874
        - Evaluating new solution: cost 869, meets the behavioral constraints.
        - Updated best found solution, cost: 869
        - Evaluating new solution: cost 868, does not meet the behavioral constraints.
        - Evaluating new solution: cost 867, meets the behavioral constraints.
        - Updated best found solution, cost: 867
        - Evaluating new solution: cost 862, does not meet the behavioral constraints.
        - Evaluating new solution: cost 866, does not meet the behavioral constraints.
        - Evaluating new solution: cost 865, does not meet the behavioral constraints.
    + Optimization has finished.
        - Neighborhood search complete.
        - Maximum number of iterations completed.
    + Fixed-point implementation that satisfies the behavioral constraints found. The best found solution is applied on the model.
        - Total cost: 867
        - Maximum absolute difference: 49.714162
        - Use the explore method of the result to explore the implementation.

Verify model accuracy after conversion by simulating the model.

set_param(model, 'DataLoggingOverride', loggingInfo);
Simulink.sdi.markSignalForStreaming([model '/yarr'], 1, 'on');
Simulink.sdi.markSignalForStreaming([model '/diff'], 1, 'on');
sim_out = sim(model, 'SaveFormat', 'Dataset');
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Plot the regression accuracy of the fixed-point model.

plotRegression(sim_out, baseline_output, system_under_design, 'Regression after conversion');

Replace Activation Function With an Optimized Lookup Table

The Tanh Activation function in Layer 1 can be replaced with either a lookup table or a CORDIC
implementation for more efficient fixed-point code generation. In this example, we will be using the
Lookup Table Optimizer to get a lookup table as a replacement for tanh. We will be using
EvenPow2Spacing for faster execution speed. For more information, see https://
www.mathworks.com/help/fixedpoint/ref/functionapproximation.options-class.html.

block_path = [system_under_design '/Layer 1/tansig'];
p = FunctionApproximation.Problem(block_path);
p.Options.WordLengths = 8:32;
p.Options.BreakpointSpecification = 'EvenPow2Spacing';
solution  = p.solve;
solution.replaceWithApproximate;

|  ID |  Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification |             Error(Max,Current) | 
|   0 |             44 |        0 |          2 |              14 |            8 |         EvenPow2Spacing |     7.812500e-03, 1.000000e+00 |
|   1 |           4124 |        1 |        512 |              14 |            8 |         EvenPow2Spacing |     7.812500e-03, 7.812500e-03 |
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|   2 |           4114 |        1 |        512 |               9 |            8 |         EvenPow2Spacing |     7.812500e-03, 7.812500e-03 |
|   3 |           2076 |        0 |        256 |              14 |            8 |         EvenPow2Spacing |     7.812500e-03, 1.831055e-02 |
|   4 |           2064 |        0 |        256 |               8 |            8 |         EvenPow2Spacing |     7.812500e-03, 1.831055e-02 |
|   5 |             46 |        0 |          2 |              14 |            9 |         EvenPow2Spacing |     7.812500e-03, 1.000000e+00 |
|   6 |           2332 |        0 |        256 |              14 |            9 |         EvenPow2Spacing |     7.812500e-03, 2.563477e-02 |
|   7 |           2320 |        0 |        256 |               8 |            9 |         EvenPow2Spacing |     7.812500e-03, 2.563477e-02 |
|   8 |             48 |        0 |          2 |              14 |           10 |         EvenPow2Spacing |     7.812500e-03, 1.000000e+00 |
|   9 |           2588 |        0 |        256 |              14 |           10 |         EvenPow2Spacing |     7.812500e-03, 2.416992e-02 |
|  10 |           2576 |        0 |        256 |               8 |           10 |         EvenPow2Spacing |     7.812500e-03, 2.416992e-02 |
|  11 |             50 |        0 |          2 |              14 |           11 |         EvenPow2Spacing |     7.812500e-03, 1.000000e+00 |
|  12 |           2844 |        0 |        256 |              14 |           11 |         EvenPow2Spacing |     7.812500e-03, 2.319336e-02 |
|  13 |           2832 |        0 |        256 |               8 |           11 |         EvenPow2Spacing |     7.812500e-03, 2.319336e-02 |
|  14 |             52 |        0 |          2 |              14 |           12 |         EvenPow2Spacing |     7.812500e-03, 1.000000e+00 |
|  15 |           3100 |        0 |        256 |              14 |           12 |         EvenPow2Spacing |     7.812500e-03, 2.319336e-02 |
|  16 |           3088 |        0 |        256 |               8 |           12 |         EvenPow2Spacing |     7.812500e-03, 2.319336e-02 |
|  17 |             54 |        0 |          2 |              14 |           13 |         EvenPow2Spacing |     7.812500e-03, 1.000000e+00 |
|  18 |           3356 |        0 |        256 |              14 |           13 |         EvenPow2Spacing |     7.812500e-03, 2.343750e-02 |
|  19 |           3344 |        0 |        256 |               8 |           13 |         EvenPow2Spacing |     7.812500e-03, 2.343750e-02 |

Best Solution
|  ID |  Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification |             Error(Max,Current) |
|   2 |           4114 |        1 |        512 |               9 |            8 |         EvenPow2Spacing |     7.812500e-03, 7.812500e-03 |

Verify model accuracy after function replacement

sim_out = sim(model, 'SaveFormat', 'Dataset');

Plot regression accuracy after function replacement.

plotRegression(sim_out, baseline_output, system_under_design, 'Regression after function replacement');
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Generate HDL Code and Test Bench

Generating HDL code requires an HDL Coder™ license.

Choose the model for which to generate HDL code and a test bench.

systemname = 'ex_fxpdemo_neuralnet_regression/Function Fitting Neural Network';

Use a temporary directory for the generated files.

workingdir = tempname;

You can run the following command to check for HDL code generation compatibility.

checkhdl(systemname,'TargetDirectory',workingdir);

### Begin compilation of the model 'ex_fxpdemo_neuralnet_regression'...
### Running HDL checks on the model 'ex_fxpdemo_neuralnet_regression'.
### Creating HDL Code Generation Check Report file://C:\TEMP\tpdf3381d4_776f_4252_91eb_38f30ac1fbbd\ex_fxpdemo_neuralnet_regression\Function_Fitting_Neural_Network_report.html
### HDL check for 'ex_fxpdemo_neuralnet_regression' complete with 0 errors, 0 warnings, and 0 messages.

Run the following command to generate HDL code.
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makehdl(systemname,'TargetDirectory',workingdir);

Run the following command to generate the test bench.

makehdltb(systemname,'TargetDirectory',workingdir);
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Convert Neural Network Algorithms to Fixed Point and
Generate C Code

This example shows how to convert a neural network regression model in Simulink to fixed point
using the Fixed-Point Tool and Lookup Table Optimizer and generate C code using Simulink Coder.

Overview

Fixed-Point Designer provides workflows via the Fixed Point Tool that can convert a design from
floating-point data types to fixed-point data types. The Lookup Table Optimizer generates memory-
efficient lookup table replacements for unbounded functions such as exp and log2. Using these
tools, this example showcases how to convert a trained floating-point neural network regression
model to use embedded-efficient fixed-point data types.

Data and Neural Network Training

The engine_dataset contains data representing the relationship between the fuel rate, speed of the
engine, and its torque and gas emissions.

load engine_dataset;

Use the function fitting tool nftool from Deep Learning Toolbox™ to train a neural network to
estimate torque and gas emissions of an engines given the fuel rate and speed. Use the following
commands to train the neural network.

x = engineInputs;
t = engineTargets;
net = fitnet(10);
net = train(net,x,t);
view(net)
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Close the view of the network.

nnet.guis.closeAllViews();

Model Preparation for Fixed-Point Conversion

Once the network is trained, use the gensim function from the Deep Learning Toolbox™ to generate
a simulink model.
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sys_name = gensim(net, 'Name', 'mTrainedNN');

The model generated by the gensim function contains the neural network with trained weights and
biases. To prepare this generated model for fixed-point conversion, follow the preparation steps in the
best practices guidelines. https://www.mathworks.com/help/fixedpoint/ug/best-practices-for-using-the-
fixed-point-tool-to-propose-data-types-for-your-simulink-model.html

After applying these principles, the trained neural network is further modified to enable signal
logging at the output of the network, add input stimuli and verification blocks.

Open and inspect the model.

model = 'ex_fxpdemo_neuralnet_regression';
system_under_design = [model '/Function Fitting Neural Network'];
baseline_output = [model '/yarr'];
open_system(model);

To open the Fixed-Point Tool, right click on the Function Fitting Neural Network subsystem and select
Fixed-Point Tool. Alternatively, use the command-line interface of the Fixed-Point Tool. Fixed
Point Tool and the command-line interface provide workflow steps for model preparation for fixed
point conversion, range and overflow instrumentation of objects via simulation and range analysis,
homogeneous wordlength exploration for fixed point data typing and additional overflow diagnostics.

converter = DataTypeWorkflow.Converter(system_under_design);

Run Simulation to Collect Ranges

Simulate the model with instrumentation to collect ranges. This is achieved by clicking the Collect
Ranges button in the tool or the following commands.

converter.applySettingsFromShortcut('Range collection using double override');
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% Save simulation run name generated as collect_ranges. This run name is used in
% later steps to propose fixed point data types.
collect_ranges = converter.CurrentRunName;
sim_out = converter.simulateSystem();

Plot the regression accuracy before the conversion.

plotRegression(sim_out, baseline_output, system_under_design, 'Regression before conversion');

Propose Fixed-Point Data Types

Range information obtained from simulation can be used by the Fixed-Point Tool to propose fixed-
point data types for blocks in the system under design. In this example, to ensure that the tools
propose signed data types for all blocks in the subsystem, disable the ProposeSignedness option in
the ProposalSettings object.

ps = DataTypeWorkflow.ProposalSettings;
ps.ProposeSignedness  = false;
converter.proposeDataTypes(collect_ranges, ps);
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Apply Proposed Data Types

By default, the Fixed-Point Tool applies all of the proposed data types. Use the applyDataTypes
method to apply the data types. If you want to only apply a subset of the proposals, in the Fixed-Point
Tool use the Accept check box to specify the proposals that you want to apply.

converter.applyDataTypes(collect_ranges);

Verify Data Types

Proposed types should handle all possible inputs correctly. Set the model to simulate using the newly
applied types, simulate the model, and observe that the neural network regression accuracy is
retained post fixed-point conversion.

converter.applySettingsFromShortcut('Range collection with specified data types');
sim_out = converter.simulateSystem();

Plot the regression accuracy of the fixed-point model.

plotRegression(sim_out, baseline_output, system_under_design, 'Regression after conversion');
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Replace Activation Function With an Optimized Lookup Table

The Tanh Activation function in Layer 1 can be replaced with either a lookup table or a CORDIC
implementation for more efficient fixed-point code generation. In this example, we will be using the
Lookup Table Optimizer to get a lookup table as a replacement for tanh. We will be using
EvenPow2Spacing for faster execution speed. For more information, see https://
www.mathworks.com/help/fixedpoint/ref/functionapproximation.options-class.html.

block_path = [system_under_design '/Layer 1/tansig'];
p = FunctionApproximation.Problem(block_path);
p.Options.WordLengths = 16;
p.Options.BreakpointSpecification = 'EvenPow2Spacing';
solution  = p.solve;
solution.replaceWithApproximate;

|  ID |  Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification |             Error(Max,Current) | 
|   0 |             64 |        0 |          2 |              16 |           16 |         EvenPow2Spacing |     7.812500e-03, 1.000000e+00 |
|   1 |           8224 |        1 |        512 |              16 |           16 |         EvenPow2Spacing |     7.812500e-03, 5.981445e-03 |
|   2 |           4128 |        0 |        256 |              16 |           16 |         EvenPow2Spacing |     7.812500e-03, 2.331543e-02 |

Best Solution
|  ID |  Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification |             Error(Max,Current) |
|   1 |           8224 |        1 |        512 |              16 |           16 |         EvenPow2Spacing |     7.812500e-03, 5.981445e-03 |

Verify model accuracy after function approximation replacement.

converter.applySettingsFromShortcut(converter.ShortcutsForSelectedSystem{2});
sim_out = converter.simulateSystem;

Plot regression accuracy.

plotRegression(sim_out, baseline_output, system_under_design, 'Regression after function replacement');
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Generate C Code

To generate C code using Simulink Coder™, right-click on the Function Fitting Neural Network
subsystem, select C/C++ Code > Build Subsystem, then click the Build button when prompted for
tunable parameters. You can also generate code by using the following command.
slbuild('fxpdemo_neuralnet_regression_toconvert/Function Fitting Neural
Network')
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Effects of Spacing on Speed, Error, and Memory Usage
In this section...
“Criteria for Comparing Types of Breakpoint Spacing” on page 41-58
“Model That Illustrates Effects of Breakpoint Spacing” on page 41-58
“Data ROM Required for Each Lookup Table” on page 41-58
“Determination of Out-of-Range Inputs” on page 41-59
“How the Lookup Tables Determine Input Location” on page 41-59
“Interpolation for Each Lookup Table” on page 41-61
“Summary of the Effects of Breakpoint Spacing” on page 41-62

Criteria for Comparing Types of Breakpoint Spacing
The sections that follow compare implementations of lookup tables that use breakpoints whose
spacing is uneven, even, and power of two. The comparison focuses on:

• Execution speed of commands
• Rounding error during interpolation
• The amount of read-only memory (ROM) for data
• The amount of ROM for commands

This comparison is valid only when the breakpoints are not tunable. If the breakpoints are tunable in
the generated code, all three cases generate the same code. For a summary of the effects of
breakpoint spacing on execution speed, error, and memory usage, see “Summary of the Effects of
Breakpoint Spacing” on page 41-62.

Model That Illustrates Effects of Breakpoint Spacing
This comparison uses the model fxpdemo_approx_sin. Three fixed-point lookup tables appear in
this model. All three tables approximate the function sin(2*pi*u) over the first quadrant and
achieve a worst-case error of less than 2^-8. However, they have different restrictions on their
breakpoint spacing.

You can use the model fxpdemo_approx, which fxpdemo_approx_sin opens, to generate Simulink
Coder code (Simulink Coder software license required). The sections that follow present several
segments of generated code to emphasize key differences.

To open the model, type at the MATLAB prompt:

fxpdemo_approx_sin

Data ROM Required for Each Lookup Table
This section looks at the data ROM required by each of the three spacing options.

Uneven Case

Uneven spacing requires both Y data points and breakpoints:
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int16_T  yuneven[8];
uint16_T xuneven[8];

The total bytes used are 32.

Even Case

Even spacing requires only Y data points:

int16_T yeven[10];

The total bytes used are 20. The breakpoints are not explicitly required. The code uses the spacing
between the breakpoints, and might use the smallest and largest breakpoints. At most, three values
related to the breakpoints are necessary.

Power of Two Case

Power of two spacing requires only Y data points:

int16_T ypow2[17];

The total bytes used are 34. The breakpoints are not explicitly required. The code uses the spacing
between the breakpoints, and might use the smallest and largest breakpoints. At most, three values
related to the breakpoints are necessary.

Determination of Out-of-Range Inputs
In all three cases, you must guard against the chance that the input is less than the smallest
breakpoint or greater than the biggest breakpoint. There can be differences in how occurrences of
these possibilities are handled. However, the differences are generally minor and are normally not a
key factor in deciding to use one spacing method over another. The subsequent sections assume that
out-of-range inputs are impossible or have already been handled.

How the Lookup Tables Determine Input Location
This section describes how the three fixed-point lookup tables determine where the current input is
relative to the breakpoints.

Uneven Case

Unevenly spaced breakpoints require a general-purpose algorithm such as a binary search to
determine where the input lies in relation to the breakpoints. The following code provides an
example:

iLeft = 0;
iRght = 7; /* number of breakpoints minus 1 */

while ( ( iRght - iLeft ) > 1 )
{
  i = ( iLeft + iRght ) >> 1;

if ( uAngle < xuneven[i] )
  {
    iRght = i;
  }
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  else
  {
    iLeft = i;
  }
}

The while loop executes up to log2(N) times, where N is the number of breakpoints.

Even Case

Evenly spaced breakpoints require only one step to determine where the input lies in relation to the
breakpoints:

iLeft = uAngle / 455U;

The divisor 455U represents the spacing between breakpoints. In general, the dividend would be
(uAngle - SmallestBreakPoint). In this example, the smallest breakpoint is zero, so the code
optimizes out the subtraction.

Power of Two Case

Power of two spaced breakpoints require only one step to determine where the input lies in relation
to the breakpoints:

iLeft = uAngle >> 8;

The number of shifts is 8 because the breakpoints have spacing 2^8. The smallest breakpoint is zero,
so uAngle replaces the general case of (uAngle - SmallestBreakPoint).

Comparison

To determine where the input lies with respect to the breakpoints, the unevenly spaced case requires
much more code than the other two cases. This code requires additional command ROM. If many
lookup tables share the binary search algorithm as a function, you can reduce this ROM penalty. Even
if the code is shared, the number of clock cycles required to determine the location of the input is
much higher for the unevenly spaced cases than the other two cases. If the code is shared, function
call overhead decreases the speed of execution a little more.

In the evenly spaced case and the power of two spaced case, you can determine the location of the
input with a single line of code. The evenly spaced case uses a general integer division. The power of
two case uses a shift instead of general division because the divisor is an exact power of two. Without
knowing the specific processor, you cannot be certain that a shift is better than division.

Many processors can implement division with a single assembly language instruction, so the code will
be small. However, this instruction often takes many clock cycles to complete. Many processors do
not provide a division instruction. Division on these processors occurs through repeated subtractions.
This process is slow and requires a lot of machine code, but this code can be shared.

Most processors provide a way to do logical and arithmetic shifts left and right. A key difference is
whether the processor can do N shifts in one instruction (barrel shift) or requires N instructions that
shift one bit at a time. The barrel shift requires less code. Whether the barrel shift also increases
speed depends on the hardware that supports the operation.

The compiler can also complicate the comparison. In the previous example, the command uAngle >>
8 essentially takes the upper 8 bits in a 16-bit word. The compiler can detect this situation and
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replace the bit shifts with an instruction that takes the bits directly. If the number of shifts is some
other value, such as 7, this optimization would not occur.

Interpolation for Each Lookup Table
In theory, you can calculate the interpolation with the following code:

y = ( yData[iRght] - yData[iLeft] ) * ( u - xData[iLeft] ) ...
    / ( xData[iRght] - xData[iLeft] ) + yData[iLeft]

The term (xData[iRght] - xData[iLeft]) is the spacing between neighboring breakpoints. If
this value is constant, due to even spacing, some simplification is possible. If spacing is not just even
but also a power of two, significant simplifications are possible for fixed-point implementations.

Uneven Case

For the uneven case, one possible implementation of the ideal interpolation in fixed point is:

xNum  = uAngle         - xuneven[iLeft];
xDen  = xuneven[iRght] - xuneven[iLeft];
yDiff = yuneven[iRght] - yuneven[iLeft];

MUL_S32_S16_U16( bigProd, yDiff, xNum ); 

  DIV_NZP_S16_S32_U16_FLOOR( yDiff, bigProd, xDen );

  yUneven = yuneven[iLeft] + yDiff;

The multiplication and division routines are not shown here. These routines can be complex and
depend on the target processor. For example, these routines look different for a 16-bit processor than
for a 32-bit processor.

Even Case

Evenly spaced breakpoints implement interpolation using slightly different calculations than the
uneven case. The key difference is that the calculations do not directly use the breakpoints. When the
breakpoints are not required in ROM, you can save a lot of memory.

xNum  = uAngle - ( iLeft * 455U );

  yDiff = yeven[iLeft+1] - yeven[iLeft];

  MUL_S32_S16_U16( bigProd, yDiff, xNum ); 

  DIV_NZP_S16_S32_U16_FLOOR( yDiff, bigProd, 455U );

  yEven = yeven[iLeft] + yDiff;

Power of Two Case

Power of two spaced breakpoints implement interpolation using very different calculations than the
other two cases. As in the even case, breakpoints are not used in the generated code and therefore
not required in ROM.

lambda = uAngle & 0x00FFU;
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  yPow2 = ypow2[iLeft)+1] - ypow2[iLeft];

  MUL_S16_U16_S16_SR8(yPow2,lambda,yPow2);

  yPow2 += ypow2[iLeft];

This implementation has significant advantages over the uneven and even implementations:

• A bitwise AND combined with a shift right at the end of the multiplication replaces a subtraction
and a division.

• The term (u - xData[iLeft] ) / ( xData[iRght] - xData[iLeft]) results in no loss of
precision, because the spacing is a power of two.

In contrast, the uneven and even cases usually introduce rounding error in this calculation.

Summary of the Effects of Breakpoint Spacing
The following table summarizes the effects of breakpoint spacing on execution speed, error, and
memory usage.

Parameter Even Power of 2 Spaced
Data

Evenly Spaced Data Unevenly Spaced Data

Execution speed The execution speed is the
fastest. The position
search and interpolation
are the same as for evenly
spaced data. However, to
increase the speed more, a
bit shift replaces the
position search, and a bit
mask replaces the
interpolation.

The execution speed is
faster than that for
unevenly spaced data,
because the position
search is faster and the
interpolation requires a
simple division.

The execution speed is the
slowest of the different
spacings because the
position search is slower,
and the interpolation
requires more operations.

Error The error can be larger
than that for unevenly
spaced data because
approximating a function
with nonuniform curvature
requires more points to
achieve the same accuracy.

The error can be larger
than that for unevenly
spaced data because
approximating a function
with nonuniform curvature
requires more points to
achieve the same accuracy.

The error can be smaller
because approximating a
function with nonuniform
curvature requires fewer
points to achieve the same
accuracy.

ROM usage Uses less command ROM,
but more data ROM.

Uses less command ROM,
but more data ROM.

Uses more command
ROM, but less data ROM.

RAM usage Not significant. Not significant. Not significant.

The number of Y data points follows the expected pattern. For the same worst-case error, unrestricted
spacing (uneven) requires the fewest data points, and power-of-two-spaced breakpoints require the
most. However, the implementation for the evenly spaced and the power of two cases does not need
the breakpoints in the generated code. This reduces their data ROM requirements by half. As a result,
the evenly spaced case actually uses less data ROM than the unevenly spaced case. Also, the power of
two case requires only slightly more ROM than the uneven case. Changing the worst-case error can
change these rankings. Nonetheless, when you compare data ROM usage, you should always take
into account the fact that the evenly spaced and power of two spaced cases do not require their
breakpoints in ROM.
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The effort of determining where the current input is relative to the breakpoints strongly favors the
evenly spaced and power of two spaced cases. With uneven spacing, you use a binary search method
that loops up to log2(N) times. With even and power of two spacing, you can determine the location
with the execution of one line of C code. But you cannot decide the relative advantages of power of
two versus evenly spaced without detailed knowledge of the hardware and the C compiler.

The effort of calculating the interpolation favors the power of two case, which uses a bitwise AND
operation and a shift to replace a subtraction and a division. The advantage of this behavior depends
on the specific hardware, but you can expect an advantage in code size, speed, and also in accuracy.
The evenly spaced case calculates the interpolation with a minor improvement in efficiency over the
unevenly spaced case.
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Approximate Functions with a Direct Lookup Table
Using the Lookup Table Optimizer, you can generate a direct lookup table approximating a Simulink
block, or a function. Direct lookup tables are efficient to implement on hardware because they do not
require any calculations.

Generate a Two-Dimensional Direct Lookup Table Approximation
Create a FunctionApproximation.Problem object specifying the function for which to generate
the approximate. To generate a direct lookup table, set the interpolation method to None in the
FunctionApproximation.Options object.

problem = FunctionApproximation.Problem('atan2');
problem.InputTypes = [numerictype(0,4,2) numerictype(0,8,4)];
problem.OutputType = fixdt(0,8,7);
problem.Options.Interpolation = "None";
problem.Options.AbsTol = 2^-4;
problem.Options.RelTol = 0;
problem.Options.WordLengths = 1:8;

Use the solve method to generate the optimal lookup table.

solution = solve(problem)

|  ID |  Memory (bits) | Feasible |   Table Size | Intermediate WLs | TableData WL |             Error(Max,Current) | 
|   0 |          32768 |        1 |     [16 256] |            [4 8] |            8 |     6.250000e-02, 3.902460e-03 |
|   1 |          28672 |        1 |     [16 256] |            [4 8] |            7 |     6.250000e-02, 7.811287e-03 |
|   2 |          24576 |        1 |     [16 256] |            [4 8] |            6 |     6.250000e-02, 1.561990e-02 |
|   3 |          16384 |        1 |     [16 128] |            [4 7] |            8 |     6.250000e-02, 6.242016e-02 |
|   4 |          14336 |        1 |     [16 128] |            [4 7] |            7 |     6.250000e-02, 5.707978e-02 |
|   5 |          12288 |        1 |     [16 128] |            [4 7] |            6 |     6.250000e-02, 5.870371e-02 |
|   6 |          10240 |        0 |     [16 128] |            [4 7] |            5 |     6.250000e-02, 8.585766e-02 |
|   7 |           8192 |        0 |     [16 128] |            [4 7] |            4 |     6.250000e-02, 1.020576e-01 |

Best Solution
|  ID |  Memory (bits) | Feasible |   Table Size | Intermediate WLs | TableData WL |             Error(Max,Current) |
|   5 |          12288 |        1 |     [16 128] |            [4 7] |            6 |     6.250000e-02, 5.870371e-02 |

solution = 

  1x1 FunctionApproximation.LUTSolution with properties:

          ID: 5
    Feasible: "true"

Use the compare method to compare the output of the original function and the approximate.

compare(solution);
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Use the approximate method to generate a Simulink™ subsystem containing the generated direct
lookup table.

approximate(solution)
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Generate a Direct Lookup Table Approximation for a Subsystem
This example shows how to approximate a Simulink™ subsystem with a direct lookup table.

Open the model containing the subsystem to approximate.

functionToApproximate = 'ex_direct_approximation/MathExpression';
open_system('ex_direct_approximation');

To generate a direct lookup table, set the interpolation method to None.

problem = FunctionApproximation.Problem(functionToApproximate);
problem.Options.Interpolation = 'None';
problem.Options.RelTol = 0;
problem.Options.AbsTol = 0.2;
problem.Options.WordLengths = [7 8 9 16];
solution = solve(problem);

|  ID |  Memory (bits) | Feasible |   Table Size | Intermediate WLs | TableData WL |             Error(Max,Current) | 
|   0 |        2097152 |        1 |        65536 |               16 |           32 |     2.000000e-01, 0.000000e+00 |
|   1 |            896 |        0 |          128 |                7 |            7 |     2.000000e-01, 2.265625e+00 |
|   2 |           1024 |        0 |          128 |                7 |            8 |     2.000000e-01, 2.265625e+00 |
|   3 |           1152 |        0 |          128 |                7 |            9 |     2.000000e-01, 2.265625e+00 |
|   4 |           2048 |        0 |          128 |                7 |           16 |     2.000000e-01, 2.267090e+00 |

Best Solution
|  ID |  Memory (bits) | Feasible |   Table Size | Intermediate WLs | TableData WL |             Error(Max,Current) |
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|   0 |        2097152 |        1 |        65536 |               16 |           32 |     2.000000e-01, 0.000000e+00 |

Compare the original subsystem behavior to the lookup table approximation.

compare(solution);

Generate a new subsystem containing the lookup table approximation.

approximate(solution);

Replace the original subsystem with the new subsystem containing the lookup table approximation.

replaceWithApproximate(solution);
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You can revert your model back to its original state using the revertToOriginal function. This
function places the original subsystem back into the model.

revertToOriginal(solution);

See Also
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Convert Digit Recognition Neural Network to Fixed Point and
Generate C Code

This example shows how to convert a neural network classification model in Simulink™ to fixed point
using the Fixed-Point Tool and Lookup Table Optimizer. Following the conversion, you can generate C
code using Simulink Coder.

Overview

Using the Fixed-Point Tool, you can convert a design from floating point to fixed point. Use the
Lookup Table Optimizer to generate memory-efficient lookup table replacements for unbounded
functions such as exp and log2. Using these tools, this example shows how to convert a trained
floating-point neural network classification model to use embedded-efficient fixed-point data types.

Digit Classification and MNIST Dataset

MNIST handwritten digit dataset is a commonly used dataset in the field of neural networks. For an
example showing a simple way to create a two-layered neural network using this dataset, see https://
blogs.mathworks.com/loren/2015/08/04/artificial-neural-networks-for-beginners/

Data and Neural Network Training

Load the data and train the network.

%Load Data
tr = csvread('train.csv', 1, 0);                  % read train.csv
sub = csvread('test.csv', 1, 0);                  % read test.csv

% Prepare Data
n = size(tr, 1);                    % number of samples in the dataset
targets  = tr(:,1);                 % 1st column is |label|
targets(targets == 0) = 10;         % use '10' to present '0'
targetsd = dummyvar(targets);       % convert label into a dummy variable
inputs = tr(:,2:end);               % the rest of columns are predictors

inputs = inputs';                   % transpose input
targets = targets';                 % transpose target
targetsd = targetsd';               % transpose dummy variable

rng(1);                             % for reproducibility
c = cvpartition(n,'Holdout',n/3);   % hold out 1/3 of the dataset

Xtrain = inputs(:, training(c));    % 2/3 of the input for training
Ytrain = targetsd(:, training(c));  % 2/3 of the target for training
Xtest = inputs(:, test(c));         % 1/3 of the input for testing
Ytest = targets(test(c));           % 1/3 of the target for testing
Ytestd = targetsd(:, test(c));      % 1/3 of the dummy variable for testing

% Train Network
hiddenLayerSize = 100;
net = patternnet(hiddenLayerSize);

[net, tr] = train(net, Xtrain, Ytrain);
view(net);

outputs = net(Xtest);

 Convert Digit Recognition Neural Network to Fixed Point and Generate C Code

41-69

https://blogs.mathworks.com/loren/2015/08/04/artificial-neural-networks-for-beginners/
https://blogs.mathworks.com/loren/2015/08/04/artificial-neural-networks-for-beginners/


errors = gsubtract(Ytest, outputs);
performance = perform(net, Ytest, outputs);

figure, plotperform(tr);
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Close the view of the network.

nnet.guis.closeAllViews();

Model Preparation for Fixed-Point Conversion

After training the network, use the gensim function from the Deep Learning Toolbox™ to generate a
Simulink model.

sys_name = gensim(net, 'Name', 'mTrainedNN');

The model generated by the gensim function contains the neural network with trained weights and
biases. Prepare the trained neural network for conversion to fixed point by enabling signal logging at
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the output of the network, and adding input stimuli and verification blocks. The modified model is
fxpdemo_mnist_classification.

Open and inspect the model.

model = 'fxpdemo_mnist_classification';
system_under_design = [model '/Pattern Recognition Neural Network'];
baseline_output = [model '/yarr'];
open_system(model);

To open the Fixed-Point Tool, right-click the Function Fitting Neural Network subsystem and select
Fixed-Point Tool. Alternatively, use the command-line interface of the Fixed-Point Tool. The Fixed
Point Tool and its command-line interface help you prepare your model for conversion, and convert
your system to fixed point. You can use the Fixed-Point Tool to collect range and overflow
instrumentation of objects in your model via simulation and range analysis. In this example, use the
command-line interface of the Fixed-Point Tool to convert the neural network to fixed point.

converter = DataTypeWorkflow.Converter(system_under_design);

Run Simulation to Collect Ranges

Simulate the model with instrumentation to collect ranges. Enable instrumentation using the 'Range
collection using double override' shortcut. Save the simulation run name for use in later
steps.

converter.applySettingsFromShortcut('Range collection using double override');
collect_ranges = converter.CurrentRunName;
sim_out = converter.simulateSystem();

Plot the correct classification rate before the conversion to establish baseline behavior.

plotConfusionMatrix(sim_out, baseline_output, system_under_design, 'Classification rate before conversion');
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Propose Fixed-Point Data Types

The Fixed-Point Tool uses range information obtained through simulation to propose fixed-point data
types for blocks in the system under design. In this example, to ensure that the tools propose signed
data types for all blocks in the subsystem, disable the ProposeSignedness option in the
ProposalSettings object.

ps = DataTypeWorkflow.ProposalSettings;
converter.proposeDataTypes(collect_ranges, ps);

Apply Proposed Data Types

By default, the Fixed-Point Tool applies all of the proposed data types. Use the applyDataTypes
method to apply the data types. If you want to only apply a subset of the proposals, in the Fixed-Point
Tool use the Accept check box to specify the proposals that you want to apply.
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converter.applyDataTypes(collect_ranges);

Verify Data Types

Proposed types should handle all possible inputs correctly. Set the model to simulate using the newly
applied types, simulate the model, and observe that the neural network regression accuracy remains
the same after the conversion.

converter.applySettingsFromShortcut('Range collection with specified data types');
sim_out = converter.simulateSystem();

Plot the correct classification rate of the fixed-point model.

plotConfusionMatrix(sim_out, baseline_output, system_under_design, 'Classification rate after fixed-point conversion');
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Replace Activation Functions With an Optimized Lookup Table

For more efficient code, replace the Tanh Activation function in the first layer with either a lookup
table or a CORDIC implementation. In this example, use the Lookup Table Optimizer to get a lookup
table to replace tanh. In this example, specify EvenPow2Spacing for the breakpoint spacing for
faster execution speed.

block_path = [system_under_design '/Layer 1/tansig'];
p = FunctionApproximation.Problem(block_path);
p.Options.WordLengths = 16;
p.Options.BreakpointSpecification = 'EvenPow2Spacing';
solution  = p.solve;
solution.replaceWithApproximate;

|  ID |  Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification |             Error(Max,Current) | 
|   0 |             64 |        0 |          2 |              16 |           16 |         EvenPow2Spacing |     7.812500e-03, 1.000000e+00 |
|   1 |           8224 |        1 |        512 |              16 |           16 |         EvenPow2Spacing |     7.812500e-03, 1.525879e-03 |
|   2 |           4128 |        1 |        256 |              16 |           16 |         EvenPow2Spacing |     7.812500e-03, 5.981445e-03 |
|   3 |           2080 |        0 |        128 |              16 |           16 |         EvenPow2Spacing |     7.812500e-03, 2.331543e-02 |

Best Solution
|  ID |  Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification |             Error(Max,Current) |
|   2 |           4128 |        1 |        256 |              16 |           16 |         EvenPow2Spacing |     7.812500e-03, 5.981445e-03 |

Follow the same steps to replace the exp function in the softmax implementation in the second layer
with a lookup table.

block_path = [system_under_design '/Layer 2/softmax/Exp'];
p = FunctionApproximation.Problem(block_path);
p.Options.WordLengths = 16;
p.Options.BreakpointSpecification = 'EvenPow2Spacing';

To get an optimized lookup table, define finite lower and upper bounds for the inputs.

p.InputLowerBounds = -40;
p.InputUpperBounds = 0;
solution  = p.solve;
solution.replaceWithApproximate;

|  ID |  Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification |             Error(Max,Current) | 
|   0 |             64 |        0 |          2 |              16 |           16 |         EvenPow2Spacing |     7.812500e-03, 9.996643e-01 |
|   1 |           2608 |        1 |        161 |              16 |           16 |         EvenPow2Spacing |     7.812500e-03, 6.907394e-03 |
|   2 |           1328 |        0 |         81 |              16 |           16 |         EvenPow2Spacing |     7.812500e-03, 2.451896e-02 |

Best Solution
|  ID |  Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification |             Error(Max,Current) |
|   1 |           2608 |        1 |        161 |              16 |           16 |         EvenPow2Spacing |     7.812500e-03, 6.907394e-03 |

Verify model accuracy after replacing the functions with the lookup table approximations.

converter.applySettingsFromShortcut(converter.ShortcutsForSelectedSystem{2});
sim_out = converter.simulateSystem;

plotConfusionMatrix(sim_out, baseline_output, system_under_design, 'Classification rate after function replacement');
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Generate C code

To generate C code, right-click the Function Fitting Neural Network subsystem, select C/C++ Code
> Build Subsystem. Click the Build button when prompted for tunable parameters.
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Calculate Complex dB Using a Direct Lookup Table
You can calculate complex decibel levels using the following formula.

However, this equation contains expressions, such as the log calculation, that are not efficient to
implement on hardware. Using a direct lookup table, you can very closely approximate this
expression in a way that is efficient on hardware.

To begin, define the function to approximate with a lookup table.

f = @(re,im) 20*log10(sqrt(re.^2 + im.^2));

To specify the tolerances that are acceptable, and the desired word lengths to use in the lookup table,
use the FunctionApproximation.Options object. To generate a direct lookup table, set the
Interpolation property of the Options object to None. Use the ApproximateSolutionType
property to specify whether to return the lookup table as a Simulink™ subsystem or as a MATLAB®
function.

options = FunctionApproximation.Options('Interpolation', 'None', 'AbsTol', 0.25, 'RelTol', 0, 'WordLengths', 5:10, 'ApproximateSolutionType', 'Simulink');

% Problem setup
problem = FunctionApproximation.Problem(f, 'Options', options);
problem.InputTypes = [numerictype(0,5,0) numerictype(0,5,0)];
problem.InputLowerBounds = [1 1];
problem.InputUpperBounds = [Inf Inf]; % upper bound will clip to input types range
problem.OutputType = numerictype(0,10,4);

The solve function returns the optimal lookup table as a FunctionApproximation.LUTSolution
object. As the software optimizes the parameters of the lookup table, MATLAB® displays information
about each iteration of the optimization, including the total memory used by the lookup table, the
word lengths used for data in the lookup table, and the maximum difference in output between the
original function and the lookup table approximation. The best solution is defined as the lookup table
using the smallest memory that meets the tolerances and other constraints defined in the Options
object.

solution = solve(problem)

Upper bound for input 2 has been set to the maximum representable value of the type numerictype(0,5,0) = 31.

Upper bound for input 1 has been set to the maximum representable value of the type numerictype(0,5,0) = 31.

|  ID |  Memory (bits) | Feasible |   Table Size | Intermediate WLs | TableData WL |             Error(Max,Current) | 
|   0 |          10240 |        1 |      [32 32] |            [5 5] |           10 |     2.500000e-01, 3.119254e-02 |
|   1 |           9216 |        1 |      [32 32] |            [5 5] |            9 |     2.500000e-01, 6.228219e-02 |
|   2 |           8192 |        1 |      [32 32] |            [5 5] |            8 |     2.500000e-01, 1.248211e-01 |
|   3 |           7168 |        1 |      [32 32] |            [5 5] |            7 |     2.500000e-01, 2.481815e-01 |

Best Solution
|  ID |  Memory (bits) | Feasible |   Table Size | Intermediate WLs | TableData WL |             Error(Max,Current) |
|   3 |           7168 |        1 |      [32 32] |            [5 5] |            7 |     2.500000e-01, 2.481815e-01 |

solution = 
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  1x1 FunctionApproximation.LUTSolution with properties:

          ID: 3
    Feasible: "true"

Compare the output of the original function and the lookup table approximation. The left plot shows
the output of the original function defined in the Problem object, and the lookup table
approximation. The plot on the right shows the difference between the output of the original function
and the corresponding output from the generated lookup table approximation. The difference
between the two outputs is less than the tolerance specified in the Options object.

compareData = compare(solution)

compareData = 

  1x2 struct array with fields:

    Breakpoints
    Original
    Approximate
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Access the TableData property of the solution to use the lookup table in a MATLAB® application.

tableData = solution.TableData

tableData = 

  struct with fields:

       BreakpointValues: {1x2 cell}
    BreakpointDataTypes: [2x1 embedded.numerictype]
            TableValues: [32x32 double]
          TableDataType: [1x1 embedded.numerictype]
          IsEvenSpacing: 1
          Interpolation: None

Use the approximate function to generate a Simulink™ subsystem containing the lookup table
approximation.

approximate(solution)

You can use the generated subsystem containing the lookup table in an HDL application. To check
that the lookup table is compatible with HDL code generation using HDL Coder™, use the checkhdl
function.
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Optimize Lookup Tables for Periodic Functions
This example shows how to use translational and reflectional symmetries in functions in order to
optimize lookup tables.

Functions with Symmetry

Functions have symmetry if the functions are unchanged by simple mathematical operations such as
translation, rotation, or reflection. When a function has symmetry, the entire range of the function
can be generated from a smaller region of the function. After constructing this smaller region, you
can translate, reflect, and rotate it to obtain the remainder of the function. This property of functions
with symmetry is useful for embedded applications.

Periodic Functions and Discrete Translational Symmetry

Periodic functions are functions with discrete translational symmetry. Discrete translational symmetry

means that for the period ,  for any integer . Given any , you can

calculate the value of  by using the identity . This calculation is
equivalent to translating  by an integer multiple of , such that .

Periodic Functions and Reflectional Symmetry

Functions can also have reflectional symmetries about lines or points in the Cartesian plane. The
most common examples are odd and even functions. Even functions are symmetric about the y-axis,

meaning . Odd functions are symmetric under reflection through the origin, which

is expressed as . Functions may also be even or odd with respect to other lines
and points in the plane. A function that is even with respect to the line  will obey

. Similarly, a function that is odd with respect to the point

 will obey .

Lookup Tables for Symmetric Functions

Lookup tables are used to store the results of expensive calculations. These tables approximate a
function by finding the appropriate entry in the table for a given input. Often, the input does not
exactly match one that is stored. In this case, further approximation, such as interpolation or
rounding, is needed. Further approximation causes numerical errors that can be reduced by creating
a larger table. Thus, there is a tradeoff between the accuracy of the approximating lookup table and
the memory efficiency of the table.

When approximating a symmetric function, you only need to store a region of the full image of the
function. You can construct the remainder by applying the symmetry operations to this region. This
process creates smaller, more memory-efficient lookup tables without sacrificing numerical
performance.

Use a Lookup Table to Approximate a Superposition of Sinusoids

To demonstrate how to use symmetries to reduce the space in a lookup table, we will use a
superposition of two sinusoid functions. This function should be viewed as a non-trivial model that
illustrates this concept.
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When two or more sinusoids are superimposed, they create a distinct interference pattern that is
dependent upon the amplitude and relative phase of each sinusoid. If the ratio of the periods of the
sinusoids is rational, then the superposition of the sinusoids is periodic as well, with a period equal to
the least common multiple of each period. The interference can lead to a symmetric substructure
within each period, though not always.

Consider the function . This

function has a period of , as well as an even axis of symmetry about the line . You can exploit
both of these values to create an efficient lookup table.

The plot below shows the first period of the function, with the axis of even symmetry shown as a
dotted vertical line.

h = figure;
x = 0:0.001:0.5;
f = @(x) 3.*sin(20.*pi.*(x - 0.125)) + 4 .* cos(24.*pi.*(x-0.125));
p0 = plot(x, f(x), 'k-');
YLim = [-8, 8];
hold on;
a = h.Children(1);
a.YLim = YLim;
p1 = plot(a, [0.25 0.25], YLim, 'k--');

Consider the case where inputs range from 0 to 10, with a precision of approximately three decimal
places. To model this, use an input numeric type with 14 bits, 10 of them fractional.
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inputNt = numerictype(0, 14, 10);

Use function approximation to generate a memory-efficient lookup table for any test function. Define
the approximation problem by creating a FunctionApproximation.Problem object. Use the
solve method to solve the optimization problem.

problem = FunctionApproximation.Problem(f);
problem.InputLowerBounds = 0;
problem.InputUpperBounds = 10;
problem.InputTypes = inputNt;
s1 = problem.solve();
fprintf("Lookup table uses %3.2f Kilobytes\n", s1.totalMemoryUsage ./ 2^10);

|  ID |  Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification |             Error(Max,Current) | 
|   0 |             92 |        0 |          2 |              14 |           32 |             EvenSpacing |     7.812500e-03, 1.368395e+01 |
|   1 |         163900 |        1 |       5121 |              14 |           32 |             EvenSpacing |     7.812500e-03, 5.173779e-03 |
|   2 |         109276 |        0 |       3414 |              14 |           32 |             EvenSpacing |     7.812500e-03, 1.037254e-02 |
|   3 |          65596 |        0 |       2049 |              14 |           32 |             EvenSpacing |     7.812500e-03, 5.183705e-02 |
|   4 |          81980 |        0 |       2561 |              14 |           32 |             EvenSpacing |     7.812500e-03, 2.058212e-02 |
|   5 |            156 |        0 |          2 |              14 |           64 |             EvenSpacing |     7.812500e-03, 1.368395e+01 |
|   6 |            128 |        0 |          2 |              32 |           32 |             EvenSpacing |     7.812500e-03, 1.368395e+01 |
|   7 |         131164 |        0 |       2049 |              14 |           64 |             EvenSpacing |     7.812500e-03, 5.183710e-02 |
|   8 |             92 |        0 |          2 |              14 |           32 |         EvenPow2Spacing |     7.812500e-03, 1.368395e+01 |
|   9 |          81980 |        0 |       2561 |              14 |           32 |         EvenPow2Spacing |     7.812500e-03, 2.058212e-02 |
|  10 |            156 |        0 |          2 |              14 |           64 |         EvenPow2Spacing |     7.812500e-03, 1.368395e+01 |
|  11 |            128 |        0 |          2 |              32 |           32 |         EvenPow2Spacing |     7.812500e-03, 1.368395e+01 |
|  12 |         138000 |        0 |       3000 |              14 |           32 |          ExplicitValues |     7.812500e-03, 1.037254e-02 |
|  13 |         150006 |        1 |       3261 |              14 |           32 |          ExplicitValues |     7.812500e-03, 7.548735e-03 |
|  14 |         150006 |        0 |       3261 |              14 |           32 |          ExplicitValues |     7.812500e-03, 7.920225e-03 |
|  15 |         150006 |        0 |       3261 |              14 |           32 |          ExplicitValues |     7.812500e-03, 7.920225e-03 |
|  16 |         150006 |        0 |       3261 |              14 |           32 |          ExplicitValues |     7.812500e-03, 7.920225e-03 |
|  17 |         150006 |        0 |       3261 |              14 |           32 |          ExplicitValues |     7.812500e-03, 7.920225e-03 |

Best Solution
|  ID |  Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification |             Error(Max,Current) |
|  13 |         150006 |        1 |       3261 |              14 |           32 |          ExplicitValues |     7.812500e-03, 7.548735e-03 |

Lookup table uses 146.49 Kilobytes

In this case, the lookup table is large.

Use Function Symmetries to Reduce Size of Lookup Table

Optimizing a lookup table over a smaller range of inputs results in a smaller lookup table, as fewer
function values are stored in the table. For this example, only the range for x between 0 and 1/2
needs be stored in the lookup table approximation. Adjusting the input upper and lower bounds and
re-solving demonstrates the memory saved.

problem.InputLowerBounds = 0;
problem.InputUpperBounds = 0.25;
s2 = problem.solve();
sprintf("Lookup table uses %1.2f Kilobytes", s2.totalMemoryUsage ./ 2^10)

|  ID |  Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification |             Error(Max,Current) | 
|   0 |             48 |        0 |          2 |               8 |           16 |             EvenSpacing |     7.812500e-03, 1.262720e+01 |
|   1 |             32 |        0 |          2 |               8 |            8 |             EvenSpacing |     7.812500e-03, 1.262720e+01 |
|   2 |           2080 |        1 |        129 |               8 |           16 |             EvenSpacing |     7.812500e-03, 5.183465e-03 |
|   3 |           1056 |        0 |         65 |               8 |           16 |             EvenSpacing |     7.812500e-03, 2.062116e-02 |
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|   4 |             80 |        0 |          2 |               8 |           32 |             EvenSpacing |     7.812500e-03, 1.262720e+01 |
|   5 |             48 |        0 |          2 |               8 |           16 |         EvenPow2Spacing |     7.812500e-03, 1.262720e+01 |
|   6 |             32 |        0 |          2 |               8 |            8 |         EvenPow2Spacing |     7.812500e-03, 1.262720e+01 |
|   7 |           1056 |        0 |         65 |               8 |           16 |         EvenPow2Spacing |     7.812500e-03, 2.062116e-02 |
|   8 |             80 |        0 |          2 |               8 |           32 |         EvenPow2Spacing |     7.812500e-03, 1.262720e+01 |
|   9 |           2544 |        1 |        106 |               8 |           16 |          ExplicitValues |     7.812500e-03, 5.960266e-03 |
|  10 |           2448 |        0 |        102 |               8 |           16 |          ExplicitValues |     7.812500e-03, 1.194193e-02 |
|  11 |           2448 |        0 |        102 |               8 |           16 |          ExplicitValues |     7.812500e-03, 1.106188e-02 |
|  12 |           2712 |        1 |        113 |               8 |           16 |          ExplicitValues |     7.812500e-03, 7.545040e-03 |
|  13 |            144 |        0 |          2 |               8 |           64 |             EvenSpacing |     7.812500e-03, 1.262720e+01 |
|  14 |            128 |        0 |          2 |              32 |           32 |             EvenSpacing |     7.812500e-03, 1.262720e+01 |
|  15 |            144 |        0 |          2 |               8 |           64 |         EvenPow2Spacing |     7.812500e-03, 1.262720e+01 |
|  16 |            128 |        0 |          2 |              32 |           32 |         EvenPow2Spacing |     7.812500e-03, 1.262720e+01 |

Best Solution
|  ID |  Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification |             Error(Max,Current) |
|   2 |           2080 |        1 |        129 |               8 |           16 |             EvenSpacing |     7.812500e-03, 5.183465e-03 |

ans = 
    "Lookup table uses 2.03 Kilobytes"

Create Lookup Table Block

Use the approximate method to generate a Lookup Table block from the reduced-size lookup table
in the previous example.

s2.approximate();

Use the Reduced-Size Lookup Table in a Simulink Model

This model demonstrates how to combine the symmetries of the example function with the lookup
table to obtain an accurate approximation. The block diagram illustrates how to use symmetry
operations in conjuntion with the lookup table found in the previous example. The lookup table stored
in the block named Approximation contains the function values for inputs between 0 and 0.25.

open_system('ModelWithApproximation')
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Translate to First Half Period

The subsystem named Translate to First Half Period demonstrates how to use the Modulo
by Constant block to reduce the function input to the half open interval [0, 0.25). Note that this block
uses the value 0.25 instead of 0.5, because you use both the translational and mirror symmetries of
the function for efficiency. Since this block is designed for embedded efficiency, it can reduce this
calculation to a cast, as 0.25 is a power of 2.

open_system('ModelWithApproximation/Translate to First Half Period')

Use Mirror Symmetry

To use the mirror symmetry, first check which half of a full period each input lies in. If
, reflect about the axis of symmetry in the first period. Use the Modulo by

Constant block to perform this operation.

open_system('ModelWithApproximation/Use Mirror Symmetry?')

Get the Lookup Table Index

The subsystem named Get Index converts  into a lookup table index. It takes in a
Boolean argument to indicate whether you need to reflect about the axis of symmetry. If so,
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 is subtracted from 0.5 to get the index into the lookup table. Otherwise, 
is used to get the index.

open_system('ModelWithApproximation/Get Index');

Generate a Floating-Point Baseline

Use a MATLAB function block to generate a suitable floating-point baseline which to compare the
lookup table approximation. The body of the function is shown here.

Simulate the System

Create data from 0 to 10 and simulate the model. This range will make it easy to see the repeating
interference pattern exhibited by both the lookup table approximation as well as the baseline.

SampleData.signals.values = fi((0:pow2(-10):10)', inputNt);
SampleData.signals.dims = [1,1];
SampleData.time = (0:1:length(SampleData.signals.values)-1)';
sim('ModelWithApproximation');

The scope below compares the approximation and baseline. The error plot shows that the
approximation using the compressed lookup table agrees well with the double-precision value of the
example function.
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See Also
FunctionApproximation.Problem | Modulo by Constant

Related Examples
• “Optimize Lookup Tables for Memory-Efficiency Programmatically” on page 41-19
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Automatic Data Typing

• “Choosing a Range Collection Method” on page 42-2
• “Best Practices for Fixed-Point Conversion Workflow” on page 42-5
• “Models That Might Cause Data Type Propagation Errors” on page 42-7
• “Iterative Fixed-Point Conversion Using the Fixed-Point Tool” on page 42-9
• “Set Up the Model” on page 42-13
• “Prepare System for Conversion” on page 42-14
• “Specify Behavioral Constraints” on page 42-18
• “Collect Ranges” on page 42-20
• “Convert Data Types” on page 42-22
• “Examine Results to Resolve Conflicts” on page 42-26
• “Verify New Settings” on page 42-30
• “Explore Additional Data Types” on page 42-34
• “Restore Model to Original State” on page 42-36
• “Get Proposals for Results with Inherited Types” on page 42-37
• “Rescale a Fixed-Point Model” on page 42-39
• “How the Fixed-Point Tool Proposes Data Types” on page 42-48
• “How Hardware Implementation Settings Affect Data Type Proposals” on page 42-50
• “Propose Data Types For Merged Simulation Ranges” on page 42-54
• “View Simulation Results” on page 42-57
• “Fixed-Point Instrumentation and Data Type Override” on page 42-61
• “Model Configuration Changes Made During Data Type Optimization” on page 42-63
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Choosing a Range Collection Method
The Fixed-Point Tool automates the task of specifying fixed-point data types in a Simulink model. You
can choose to use an iterative fixed-point conversion process, also known as autoscaling, or you can
optimize data types in your model using fxpopt. The Fixed-Point Tool also lets you explore the
numerical behavior of floating-point vs fixed-point data types in your model.

The tool collects range data for model objects from design minimum and maximum values that
objects explicitly specify, from logged minimum and maximum values that occur during simulation, or
from the minimum and maximum values derived using static range analysis.

Method Advantages Disadvantages
Using simulation minimum and
maximum values

• Useful if you know the inputs to
use for the model.

• You do not need to specify any
design range information.

• Not always feasible to collect the
full simulation range.

• Simulation might take a very
long time.

Using design minimum and
maximum values

You can use this method if the
model contains blocks that range
analysis does not support. However,
if possible, use simulation data to
propose data types.

• The design range is often
available only on some input and
output signals.

• You can propose data types only
for signals with specified design
minimum and maximum values.

Using derived minimum and
maximum values

You do not have to simulate multiple
times to ensure that simulation data
covers the full intended operating
range.

• Derivation might take a very
long time.

In the Fixed-Point Tool, you can choose between three range collection modes:

• Simulation ranges – Collect ranges through simulation. To collect and merge the ranges of
multiple simulation runs, you can specify simulation inputs.

• Derived ranges – Collect ranges through a static analysis that derives the ranges, also known as
range analysis.

• Simulation with Range Analysis – Collect ranges through simulation and derived range analysis
and combine the results.

Feature Simulation Ranges Derived Ranges Simulation with
Range Analysis

Range coverage Proposed data types are
based on simulation
ranges. The proposals
provided by the Fixed-
Point Tool are as good
as the test bench
provided. Data type
proposals are based on
collected minimum and
maximum values.

Static range analysis
typically delivers a more
conservative data type
proposal. Data type
proposals are based on
collected minimum and
maximum values.

Proposed data types are
based on the union of
simulation ranges and
derived ranges. Data
type proposals are
based on collected
minimum and maximum
values. This option
provides the most
comprehensive range
information.
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Feature Simulation Ranges Derived Ranges Simulation with
Range Analysis

Simulation inputs Comprehensive set of
input signals that
exercise the full range
of your design. This
allows you to collect
and merge ranges from
multiple simulation
input cases.

Ranges reported from
derivation are based
only on design ranges
specified in the model.
Simulation inputs are
not used to derive
ranges.

Ranges are based on
the combination of
merged simulation
ranges and ranges
derived from design
ranges specified in the
model.

Design ranges Simulation ranges are
verified against design
range specification and
violations are reported
in the Diagnostic
Viewer.

Design ranges must be
specified on the model.
Data type proposals are
based on collected
minimum and maximum
values.

Simulation ranges are
verified against design
range specification. To
derive ranges, design
ranges must be
specified on the model.

Supported Features All model objects are
supported for
instrumentation and
range collection.

Range analysis supports
a subset of model
objects. For more
information, see
“Unsupported Simulink
Software Features” on
page 43-25.

Range analysis supports
a subset of model
objects. For more
information, see
“Unsupported Simulink
Software Features” on
page 43-25.

Modeling constructs Ranges always
converge during
simulation.

Some modeling
constructs, such as
feedback loops, may
require more design
range information
before converging.

Simulation ranges
always converge. Some
modeling constructs,
such as feedback loops,
may require more
design range
information before
derived ranges
converge.

Tunable parameters
with known ranges

You must exercise the
full tunable range using
simulation inputs.

Design ranges of
tunable parameters are
reported.

Design ranges of
tunable parameters are
reported. You can
additionally exercise the
tunable range using
simulation inputs.
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Feature Simulation Ranges Derived Ranges Simulation with
Range Analysis

Simulation mode Instrumentation data is
only collected during
Normal mode. No
instrumentation data is
collected while a model
is running in
accelerator or rapid
accelerator mode. If you
know that simulation
will take a long time,
you may want to derive
ranges for your model.

Simulation mode has no
affect on range analysis.

Instrumentation data is
only collected during
Normal mode. No
instrumentation data is
collected while a model
is running in
accelerator or rapid
accelerator mode. If you
know that simulation
will take a long time,
you may want to derive
ranges for your model.

Based on collected range information, the tool proposes fixed-point data types that maximize
precision and cover the range. The Fixed-Point Tool allows you to review the data type proposals and
then apply them selectively to objects in your model.

See Also

More About
• “Iterative Fixed-Point Conversion Using the Fixed-Point Tool” on page 42-9
• “How Range Analysis Works” on page 43-2
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Best Practices for Fixed-Point Conversion Workflow
Using the Fixed-Point Tool, you can prepare a model or subsystem for conversion from floating-point
to an equivalent fixed-point representation. The following are modeling best practices for converting
a model to fixed point.

Enable Signal Logging
To compare the behavior before and after conversion, enable signal logging for signals of interest in
the system under design.

You can specify absolute, relative, and time tolerances for signals in your model that have signal
logging enabled. After you simulate with embedded types, the Workflow Browser displays whether
the embedded run meets the specified signal tolerances compared to the baseline run created during
range collection. You can view the comparison plots in the Simulation Data Inspector.

Back Up Your Simulink Model
Before using the Fixed-Point Tool, back up your Simulink model and associated workspace variables.
Backing up your model can provide a baseline for testing and validation.

The Fixed-Point Tool automatically creates a back up of your original model during the Prepare stage
of the conversion. To restore your model to this state, click the Restore Original Model button.

Convert Individual Subsystems
Convert individual subsystems in your model one at a time. This practice facilitates debugging by
isolating the source of fixed-point issues.

Do Not Use “Save as” on Referenced Models and MATLAB Function
blocks
During the fixed-point conversion process using the Fixed-Point Tool, do not use the “Save as” option
to save referenced models or MATLAB Function blocks with a different name. If you do, you might
lose existing results for the original model.

Use Lock Output Data Type Setting
You can prevent the Fixed-Point Tool from replacing the current data type. Use the Lock output data
type setting against changes by the fixed-point tools parameter that is available on many blocks.
The default setting allows for replacement. Use this setting when:

• You already know the fixed-point data types that you want to use for a particular block.

For example, the block is modeling a real-world component. Set up the block to allow for known
hardware limitations, such as restricting outputs to integer values.

Explicitly specify the output data type of the block and select Lock output data type setting
against changes by the fixed-point tools.
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• You are debugging a model and know that a particular block accepts only certain input signal data
types.

Explicitly specify the output data type of upstream blocks and select Lock output data type
setting against changes by the fixed-point tools.

Save Simulink Signal Objects
If your model contains Simulink signal objects and you accept proposed data types, the Fixed-Point
Tool automatically applies the changes to the signal objects. However, the Fixed-Point Tool does not
automatically save changes that it makes to Simulink signal objects. To preserve changes, before
closing your model, save the Simulink signal objects in your workspace and model.

Do Not Use clear all
clear all is not supported by fixed-point conversion workflows. Do not use clear all in
initialization functions (InitFcn), or at the MATLAB Command Window when using the Fixed-Point
Tool.

See Also

Related Examples
• “Convert Floating-Point Model to Fixed Point” on page 40-2

More About
• “Iterative Fixed-Point Conversion Using the Fixed-Point Tool” on page 42-9
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Models That Might Cause Data Type Propagation Errors
When the Fixed-Point Tool proposes changes to the data types in your model in the Iterative
Fixed-Point Conversion workflow, it alerts you to potential issues. If the Fixed-Point Tool alerts
you to data type errors, you must diagnose the errors and fix the problems. For more information, see
“Examine Results to Resolve Conflicts” on page 42-26.

The Fixed-Point Tool does not detect all potential data type issues. If the tool does not report any
issues for your model, it is still possible to experience subsequent data type propagation errors.
Before you use the Fixed-Point Tool, back up your model to ensure that you can recover your original
data type settings. For more information, see “Best Practices for Fixed-Point Conversion Workflow”
on page 42-5.

The following model components are likely to cause data type propagation issues.

Model Uses... Fixed-Point Tool Behavior Data Type Propagation Issue
Simulink parameter
objects

The Fixed-Point Tool is not able
to detect when a parameter
object must be integer only,
such as when using a
parameter object as a variable
for dimensions, variant control,
or a Boolean value.

Fixed-Point Tool might propose data
types that are inconsistent with the
data types for the parameter object or
generate proposals that cause
overflows.

User-defined S-functions Cannot detect the operation of
user-defined S-functions.

• The user-defined S-function accepts
only certain input data types. The
Fixed-Point Tool cannot detect this
requirement and proposes a
different data type upstream of the
S-function. Update diagram fails
on the model due to data type
mismatch errors.

• The user-defined S-function
specifies certain output data types.
The Fixed-Point Tool is not aware of
this requirement and does not use it
for automatic data typing.
Therefore, the tool might propose
data types that are inconsistent with
the data types for the S-function or
generate proposals that cause
overflows.

User-defined masked
subsystems

Has no knowledge of the
masked subsystem workspace
and cannot take this subsystem
into account when proposing
data types.

Fixed-Point Tool might propose data
types that are inconsistent with the
requirements of the masked subsystem,
particularly if the subsystem uses mask
initialization. The proposed data types
might cause data type mismatch errors
or overflows.
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Model Uses... Fixed-Point Tool Behavior Data Type Propagation Issue
Linked subsystems Does not include linked

subsystems when proposing
data types.

Data type mismatch errors might occur
at the linked subsystem boundaries.

See Also

More About
• “Data Type Propagation Errors After Applying Proposed Data Types” on page 49-25
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Iterative Fixed-Point Conversion Using the Fixed-Point Tool
The Fixed-Point Tool is a user interface that automates the task of specifying fixed-point data types in
a Simulink model. The tool collects range data for model objects. The range data comes from:

• Design minimum and maximum values that objects specify explicitly on the block
• Logged minimum and maximum values that occur during simulation
• Minimum and maximum values derived using range analysis

Based on these values, the tool in the Iterative Fixed-Point Conversion workflow proposes
fixed-point data types that maximize precision and cover the range. You can then review the data type
proposals and apply them selectively to objects in your model. This process is also known as
autoscaling. Using the iterative fixed-point conversion workflow in the Fixed-Point Tool you can:

• Derive range information based on specified design ranges. See “How Range Analysis Works” on
page 43-2.

• Propose and apply data types based on simulation data.
• Propose and apply data types based on derived ranges.
• Propose and apply data types based on simulation data from multiple runs. See “Propose Data

Types For Merged Simulation Ranges” on page 42-54.
• Propose and apply data types based on simulation data and derived ranges.
• Debug fixed-point models.
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Workflow for Automatic Data Typing

The iterative fixed-point conversion workflow for automatic data typing consists of four main stages.

1 “Prepare System for Conversion” on page 42-14

Before you begin conversion, set up the model in Simulink. Then select the system to convert to
fixed point. The Fixed-Point Tool will propose data types for the objects in the specified system.

Select whether to collect ranges through simulation, derived range analysis, or simulation with
range analysis. You can specify multiple simulation scenarios using a
Simulink.SimulationInput object. Specify signal tolerances to use to verify the behavior of
the converted system.
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Automatically prepare the system under design for conversion by clicking the Prepare button in
the Fixed-Point Tool toolstrip. The Fixed-Point Tool analyzes your model and makes configuration
recommendations for autoscaling.

2 “Collect Ranges” on page 42-20

Run the simulation or the derivation. When the simulation or derivation is complete, you can
examine the ranges of objects in your model using the histograms in the Visualization of
Simulation Data pane.

3 “Convert Data Types” on page 42-22

The Fixed-Point Tool proposes data types based on the ranges collected in stage two. You can edit
the default word length and other proposal settings in the Settings menu. To generate
proposals, click Propose Data Types. If you are satisfied with the proposals, click Apply Data
Types.

4 “Verify New Settings” on page 42-30

Simulate your model using the newly applied fixed-point data types to examine the behavior of
the fixed-point model. You can compare the floating point and fixed-point behavior using the
Simulation Data Inspector.

5 “Explore Additional Data Types” on page 42-34

After verification, if you determine that the behavior of the system is not acceptable, you can
iterate through the conversion and verification steps until you settle on a design that satisfies
your system requirements.
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See Also

Related Examples
• “Rescale a Fixed-Point Model” on page 42-39
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Set Up the Model
Before using the Fixed-Point Tool to generate data type proposals for your model, set up your model
in Simulink.

1 If you are using design minimum and maximum range information, add this information to the
blocks. To autoscale using derived data, you must specify design minimum and maximum values
on at least the model inputs. The range analysis tries to narrow the derived range by using all the
specified design ranges in the model. The more design range information you specify, the more
likely the range analysis is to succeed. As the analysis is performed, it derives new range
information for the model and then attempts to use this new information together with the
specified ranges to derive ranges for the remaining objects in the model. For this reason, the
analysis results might depend on block priorities because these priorities determine the order in
which the software analyzes the blocks.

You specify a design range for model objects using parameters such as Output minimum and
Output maximum. For a list of blocks in which you can specify these values, see “Blocks That
Allow Signal Range Specification”.

2 Enable signal logging.

To view simulation results using the Simulation Data Inspector, you must enable signal logging
for the system you want to convert to fixed point. You can choose to plot results using the
Simulation Data Inspector only for signals that have signal logging enabled.

a In the Simulink Editor, select one or more signals.
b In the Signal tab of the Simulink Editor, click Log Signals.

3 You can choose to lock some blocks against automatic data typing by selecting the block's Lock
output data type setting against changes by the fixed-point tools parameter. If you select
this parameter, the tool does not propose data types for the block.

4 Update the diagram to perform parameter range checking for all blocks in the model.

If updating the diagram fails, use the error messages to fix the errors in your model. After fixing
the errors, update the diagram again. If you cannot fix the errors, restore your backup model.

To learn about the next step in the conversion process, see “Prepare System for Conversion” on page
42-14.

See Also

More About
• “Iterative Fixed-Point Conversion Using the Fixed-Point Tool” on page 42-9
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Prepare System for Conversion
Before using the Fixed-Point Tool to generate data type proposals for your model, set up your model
in Simulink and prepare the system for conversion.

Set Up the Model
Specify Design Ranges

If you are using design minimum and maximum range information, add this information to the blocks.
To autoscale using derived data, you must specify design minimum and maximum values on at least
the model inputs. The range analysis tries to narrow the derived range by using all the specified
design ranges in the model. The more design range information you specify, the more likely the range
analysis is to succeed. As the analysis is performed, it derives new range information for the model
and then attempts to use this new information together with the specified ranges to derive ranges for
the remaining objects in the model. For this reason, the analysis results might depend on block
priorities because these priorities determine the order in which the software analyzes the blocks.

You specify a design range for model objects using parameters such as Output minimum and
Output maximum. For a list of blocks in which you can specify these values, see “Blocks That Allow
Signal Range Specification”.

Enable Signal Logging

To view simulation results using the Simulation Data Inspector, you must enable signal logging for the
system you want to convert to fixed point. You can choose to plot results using the Simulation Data
Inspector only for signals that have signal logging enabled.

1 In the Simulink Editor, select one or more signals.
2 In the Signal tab of the Simulink Editor, click Log Signals.

Use Lock Output Data Type Setting

You can choose to lock some blocks against automatic data typing by selecting the block's Lock
output data type setting against changes by the fixed-point tools parameter. If you select this
parameter, the tool does not propose data types for the block.

Update the Diagram

Update the diagram to perform parameter range checking for all blocks in the model.

If updating the diagram fails, use the error messages to fix the errors in your model. After fixing the
errors, update the diagram again. If you cannot fix the errors, restore your backup model.

Select the System Under Design
To open the Fixed-Point Tool, in your model, in the Apps gallery, select Fixed-Point Tool.
Alternatively, use the fxptdlg function.

In the Fixed-Point Tool, click New and select Iterative Fixed-Point Conversion.
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Select the system or subsystem you want to convert to fixed point. Convert individual subsystems in
your model one at a time. This practice facilitates debugging by isolating the source of numerical
issues.

In the main working area, under System Under Design (SUD), use the drop-down menu to select
the system or subsystem you want to convert.

Set Range Collection Method

You can collect ranges through simulation, derived range analysis, or by using simulation combined
with derived range analysis. Using simulation-based range collection, the Fixed-Point Tool can be
configured to perform a global override of the fixed-point data types with double-precision or single-
precision data types, thereby avoiding quantization effects. This setting provides a floating-point
benchmark that represents the ideal output. You can also collect benchmark range data using the
current data type override set on the model.

If you collect ranges through simulation, you can choose to specify additional simulation inputs.
During the range collection simulation, the Fixed-Point Tool captures the minimum and maximum
values from each specified simulation scenario. For more information, see “Specify Simulation Input”
on page 42-16.

Using derived range analysis, the Fixed-Point Tool uses design ranges specified on blocks to analyze
and derive static ranges for other objects in your model. The tool uses all design range information
specified on the model to derive ranges for objects in the system under design. If you choose to
collect ranges for objects in your model through derived range analysis, you do not need to simulate
the model. However, to compare floating-point and fixed-point behavior using the Simulation Data
Inspector, simulation is required.

Using simulation with range analysis, the Fixed-Point Tool uses the union of the ranges collected
through simulation and derived range analysis.

Under Range Collection Mode, select the method that you want to use to collect ranges. The Fixed-
Point Tool uses these collected ranges to later generate data type proposals.

 Prepare System for Conversion

42-15



For more information on deciding which method of range collection is right for your application, see
“Choosing a Range Collection Method” on page 42-2.

Specify Simulation Input

If you choose to collect ranges through simulation, you must specify the simulation input for your
system. Under Simulation Inputs, select whether to use the default model inputs to simulate the
model for range collection, or select a Simulink.SimulationInput object from the base
workspace to specify one or more simulation scenarios.

If the SimulationInput object that you select contains more than one simulation scenario, the
Fixed-Point Tool proposes data types based on the merged ranges from all simulation scenarios.
Because the proposals provided by the Fixed-Point Tool are as good as the test bench provided, a
comprehensive set of input signals that exercise the full range of your design will result in more
accurate data type proposals for your system. For an example, see “Propose Data Types For Merged
Simulation Ranges” on page 42-54.

Edit Signal Tolerances

You can specify absolute, relative, and time tolerances for signals in your model that have signal
logging enabled. After converting your system, when you simulate the embedded run, the Workflow
Browser displays whether the embedded run meets the specified signal tolerances compared to the
baseline run established during range collection. You can view the comparison plots in the Simulation
Data Inspector.

Specify signal tolerances in the table under Signal Tolerances. The table contains all signals in the
model with signal logging enabled. In the boxes to the right of the signal for which you want to
register a tolerance, enter the tolerances for the signal. You can specify any of the following types of
tolerances.

• Abs Tol – Absolute value of the maximum acceptable difference between the original signal, and
the signal in the converted design.
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• Rel Tol – Maximum relative difference, specified as a percentage, between the original output,
and the output of the new design. For example, a value of 1e-2 indicates a maximum difference of
one percent between the original signal values, and the signal values of the converted design.

• Time Tol (seconds) – Time interval, in which the maximum and minimum values define the upper
and lower values to compare against.

For more information, see “Specify Behavioral Constraints” on page 42-18.

Prepare the System for Conversion

Click the Prepare button. The Fixed-Point Tool creates a backup version of the model and checks the
system under design and the model containing the system under design for compatibility with the
conversion process.

When possible, the Fixed-Point Tool automatically changes settings that are not compatible. In cases
where the tool is not able to automatically change the settings, it notifies you of the changes you must
make manually to help the conversion process be successful. For more information about preparation
checks, see “Use the Fixed-Point Tool to Prepare a System for Conversion” on page 38-2.

To learn about the next step in the conversion process, see “Collect Ranges” on page 42-20.

See Also

More About
• “Iterative Fixed-Point Conversion Using the Fixed-Point Tool” on page 42-9
• “Best Practices for Fixed-Point Conversion Workflow” on page 42-5
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Specify Behavioral Constraints
To determine if the numerical behavior of a new fixed-point implementation is acceptable, define
constraints by setting signal tolerances, by using one or more model verification blocks, or both.

In the Optimized Fixed-Point Conversion workflow of the Fixed-Point Tool, or when using
fxpopt at the command line, you must specify at least one behavioral constraint. Data types are
optimized to meet all specified constraints.

In the Iterative Fixed-Point Conversion workflow of the Fixed-Point Tool, or when using
DataTypeWorkflow.Converter at the command line, you can specify behavioral constraints to
verify the numerical behavior of the model with embedded types. After simulating with embedded
types, the Workflow Browser indicates whether the embedded run meets the specified signal
tolerances compared to the range collection run. For more information, see “Verify New Settings” on
page 42-30.

Specify Signal Tolerances
You can specify tolerances for signals in your model that have signal logging enabled. To enable
signal logging:

• In the Simulink Editor, select one or more signals.
• In the Signal tab of the Simulink Editor, click Log Signals.

In the Fixed-Point Tool, specify individual signal tolerances in the table under Signal Tolerances.
The table contains all signals in the model with signal logging enabled. If you log additional signals
after opening the Fixed-Point Tool, click Refresh Signals to update the Signal Tolerances table. At
the command line, specify tolerances using the addTolerance method.

You can specify any of the following types of tolerances:

• Abs Tol — Absolute value of the maximum acceptable difference between the original signal and
the signal in the converted design.

• Rel Tol — Maximum relative difference, specified as a percentage, between the original signal
and the signal in the converted design. For example, a value of 1e-2 indicates a maximum relative
difference of one percent.

• Time Tol (seconds) — Time interval, in which the maximum and minimum values define the
upper and lower values to compare against.

You can define a tolerance band using any combination of absolute, relative, and time tolerance
values. When you specify the tolerance for your signal using multiple types of tolerances, the overall
tolerance band is computed by selecting the most lenient tolerance result for each data point. For
more information about how tolerances are computed, see “Tolerance Computation”.

Use Model Verification Blocks
You can use enabled “Model Verification” blocks to specify constraints on the behavior of your
system. For examples of data type optimization using model verification blocks, see “Optimize Data
Types Using Multiple Simulation Scenarios” on page 40-20 and “Image Denoising Using Fixed-Point
Quantized Restricted Boltzmann Machine Algorithm” on page 40-33.
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See Also
“Optimize Fixed-Point Data Types for a System” on page 40-14

More About
• “Iterative Fixed-Point Conversion Using the Fixed-Point Tool” on page 42-9
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Collect Ranges
After preparing the system under design for conversion as described in “Prepare System for
Conversion” on page 42-14, collect ranges for the objects in your model.

Collect Ranges

To collect ranges, click the Collect Ranges button.

If you selected to collect ranges via simulation, the Fixed-Point Tool simulates the model with
instrumentation to collect minimum and maximum values for each object in your model. By default,
the Fixed-Point Tool uses the current data type override set on the model. You can also choose to
override data types in your model with doubles or singles during the range collection simulation. The
tool displays the results of the simulation in the spreadsheet and highlights any simulation results
that have issues, such as overflows due to wrap or saturations.

Note Data type override does not apply to Boolean or enumerated data types.

If you defined a Simulink.SimulationInput object with multiple simulation scenarios, the
Workflow Browser shows the results of each simulation, as well as the results of all simulation
scenarios merged.

If you opted to collect ranges via range analysis, the Fixed-Point Tool uses the specified design ranges
to derive ranges for the remaining objects in the system under design.

If you chose to collect ranges via simulation with range analysis, the Fixed-Point Tool uses the union
of ranges collected via simulation and derivation.

If the analysis successfully derives range data for the model, the Fixed-Point Tool displays the derived
minimum and maximum values for the blocks in the selected system. Before proposing data types,
review the results.

If the analysis fails, examine the error messages and resolve the issues. See “Resolve Range Analysis
Issues” on page 49-27.
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Explore Collected Ranges

Using the Visualization of Simulation Data pane, you can view a summary of histograms of the bits
used by each object in your model. Each column in the data type visualization represents a histogram
for one object in your model. Each bin in a histogram corresponds to a bit in the binary word.

Selecting a column highlights the corresponding model object in the spreadsheet of the Fixed-Point
Tool, and populates the Result Details pane with more detailed information about the selected
result.

You can use the data type visualization to see a summary of the ranges of objects in your model and
to spot sources of overflows, underflows, and inefficient data types. Using the Explore tab of the
Fixed-Point Tool, you can sort and filter results in the tool based on additional criteria.

To learn about the next step in the conversion process, see “Convert Data Types” on page 42-22.

See Also

More About
• “Iterative Fixed-Point Conversion Using the Fixed-Point Tool” on page 42-9
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Convert Data Types
After collecting ranges as described in “Collect Ranges” on page 42-20, propose and apply data types
for objects in your model based on the collected ideal ranges stored in the baseline run. The Fixed-
Point Tool proposes a data type for all objects in the system under design whose Lock output data
type setting against changes by the fixed-point tools parameter is cleared.

Edit Proposal Settings

In the Convert section of the toolstrip, under the Settings menu, configure the settings that the
Fixed-Point Tool uses to generate data type proposals for objects in your system under design.

Setting Description
Propose Propose Select whether to propose

fraction lengths or word lengths
for objects in the system under
design.

• When you select Word
Length, the Fixed-Point Tool
uses range information and
the specified Default
fraction length value to
propose word lengths for the
objects in your model.

• When you select Fraction
Length, the Fixed-Point Tool
uses the range information
and the specified Default
word length value to
propose best-precision
fraction lengths for the
objects in your model.

Propose signedness Select whether to use the
collected range information to
propose signedness.
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Setting Description
Safety margin for simulation
min/max (%)

Specify a safety margin to apply
to collected simulation ranges.
The Fixed-Point Tool will add the
specified amount to the
collected ranges and base
proposals on this larger range.
The default value for this setting
is two percent.

Convert to Fixed Point Convert double/single types Select whether to generate
proposals for results that
currently specify a double or
single data type.

Convert inherited types Select whether to generate data
type proposals for results that
currently specify an inherited
data type.

Default word length Select the default word length
to use for proposals. This setting
is enabled only when the
Propose setting is set to
Fraction Length. The default
value for this setting is 16.

Default fraction length Select the default fraction
length to use for proposals. This
setting is enabled only when the
Propose setting is set to Word
Length. The default value for
this setting is 4.

Propose Data Types

When proposing data types, the Fixed-Point Tool uses the following types of range data:

• Design minimum or maximum values — You specify a design range for model objects using
parameters such as Output minimum and Output maximum. For a list of blocks for which you
can specify these values, see “Blocks That Allow Signal Range Specification”.

• Simulation minimum or maximum values — When simulating a system with instrumentation
enabled, the Fixed-Point Tool logs the minimum and maximum values generated by model objects.
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For more information about instrumentation settings, see “Fixed-Point Instrumentation and Data
Type Override” on page 42-61.

If you specified multiple simulation scenarios through a Simulink.SimulationInput object,
the Fixed-Point Tool proposes data types based on the merged ranges of all simulations.

• Derived minimum or maximum values — When deriving minimum and maximum values for a
selected system, the Fixed-Point Tool uses the design minimum and maximum values that you
specify on the blocks to derive range information for signals in your model. For more information,
see “How Range Analysis Works” on page 43-2.

The Fixed-Point Tool uses all available range data to calculate data type proposals.

To generate proposals, click the Propose data types button .

Apply Proposed Data Types
After reviewing the data type proposals, apply the proposed data types to your model.

The Fixed-Point Tool allows you to apply data type proposals selectively to objects in your model. In
the spreadsheet, use the Accept check box to specify the proposals that you want to assign to model
objects.

The Fixed-Point Tool applies the proposed data type to this object. By default, the tool selects
the Accept check box when a proposal differs from the current data type of the object.
The Fixed-Point Tool ignores the proposed data type and leaves the current data type intact
for this object.

 No proposal exists for this object, for example, the object is locked against automatic data
typing.

1 Examine each result. For more information about a particular result, select the result and
examine the Result Details pane.

This pane also describes potential issues or errors and suggests methods for resolving them.
Results for which the data type proposal may cause issues, are marked with a warning ( ) or an
error ( ) icon. For more detail on the information contained in the Result Details pane, see
“Examine Results to Resolve Conflicts” on page 42-26.

2 If you do not want to accept the proposal for a result, on the spreadsheet, clear the Accept check
box for that result.

Before applying proposals to your model, you can customize them. In the spreadsheet, click a
ProposedDT cell and edit the data type expression. Some results belong to a data type group in
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which they must all share the same data type. In these cases, the Fixed-Point Tool will report an
error unless all results in the data type group share the same data type.

3
To write the proposed data types to the model, click the Apply Data Types button .

To complete the next step in the conversion process, see “Verify New Settings” on page 42-30.

See Also

More About
• “Iterative Fixed-Point Conversion Using the Fixed-Point Tool” on page 42-9
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Examine Results to Resolve Conflicts
After proposing data types with the Fixed-Point Tool as described in “Convert Data Types” on page
42-22, you can examine each proposal using the Result Details pane. This pane displays the
rationale for the proposed data types and a histogram plot of the signal. This tab also describes
potential issues or errors and suggests methods for resolving them. To view the details, in the
Results spreadsheet, select an object that has a proposed data type. The Result Details pane will
update with information related to the selected result.
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Proposed Data Type Summary
The Proposed Data Type Summary section describes how the proposal differs from the currently
specified data type of the object. For cases when the Fixed-Point Tool does not propose data types,
this section provides a rationale. For example, the data type might be locked against changes by the
fixed-point tools.

This section of the Result Details pane also informs you if the selected object must use the same
data type as other objects in the model because of data type propagation rules. For example, the
inputs to a Merge block must have the same data type. Therefore, the outputs of blocks that connect
to these inputs must use the same data type. Similarly, blocks that are connected by the same
element of a virtual bus must use the same data type.

Click Highlight Elements Sharing Same Data Type to highlight the objects that share data types
in the model. To clear this highlighting, right-click in the model and select Remove Highlighting.

The Fixed-Point Tool allocates a tag to objects that must use the same data type. The tool displays this
tag in the DTGroup column for the object. To view the DTGroup column, click the add column
button  and select DTGroup.

Some Simulink blocks accept only certain data types on some ports. This section of the Result
Details pane also informs you when a block that connects to the selected object has data type
constraints that affect the proposed data type of the selected object.

The Proposed Data Type Summary section also provides a table with the proposed data type
information:

Item Description
Proposed Data Type The data type that the Fixed-Point Tool proposes

for this object and the minimum and maximum
values that the proposed data type can represent

Specified Data Type The data type that an object specifies

Needs Attention
This section lists potential issues and errors associated with the data type proposals, describes the
issues, and suggests methods for resolving them.

Indicates a warning message

Indicates an error message

Range Information
This section provides a table with model object attributes that influence the data type proposal.

Item Description
Design Design maximum and minimum values that an object specifies, such as

its Output maximum and Output minimum parameters
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Item Description
Simulation The maximum and minimum values that occur during simulation

Shared Values

When proposing data types, the Fixed-Point Tool attempts to satisfy data type requirements that
model objects impose on one another. For example, the Sum block has an option that requires all its
inputs to have the same data type. As a result, the table might also list attributes of other model
objects that affect the proposal for the selected object. In such cases, the table displays these types of
shared values:

• Initial Values — Some model objects have parameters that allow you to specify the initial values
of their signals. For example, the Constant block has a Constant value parameter that initializes
the block output signal. The Fixed-Point Tool uses initial values to propose data types for model
objects whose design and simulation ranges are unavailable. With data type dependencies, the
tool determines how initial values impact the proposals for neighboring objects.

• Model-Required Parameters — Some model objects require you to specify numeric parameters
to compute the value of their outputs. For example, the Table data parameter of an n-D Lookup
Table block specifies values that the block requires to perform a lookup operation and generate
output. When proposing data types, the Fixed-Point Tool considers how this parameter value
required by the model impacts the proposals for neighboring objects.

Examine the Results and Resolve Conflicts
1 In the Results spreadsheet, click the column header of the column containing the block icons.

This action sorts the results so any results that contain conflicts with proposed data types appear
at the top of the list.

Potential issues for each object appear coded by color in the list.

The proposed data type poses no issues for this object.

The proposed data type poses potential issues for this object.

The proposed data type will introduce data type errors if applied to this object.

2 Review and fix each error. Select the result with the error, then double-click the block icon in the
spreadsheet to highlight the result in the Simulink editor. Use the information in the Needs
Attention section of the Result Details pane to resolve the conflict.

3 Review the Result Details pane for the warnings and correct the problem, if necessary.
4 If you have changed the Simulink model, the baseline data, restore point, and preparation checks

are not up to date. Start a new analysis of the updated data by clicking the New button and
selecting Iterative Fixed-Point Conversion. Review the Setup pane, click Prepare to
create a new restore point, then click the Collect Ranges button to rerun the simulation, or to
derive new ranges. To generate new data type proposals, click Propose Data Types.

5
To generate a proposal, click Propose Data Types .

You are now ready to apply the proposed data types to the model. For more information, see “Apply
Proposed Data Types” on page 42-24.
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Verify New Settings
After applying proposed data types to your model as described in “Convert Data Types” on page 42-
22, simulate the model using the applied fixed-point data types, and compare the fixed-point behavior
of the system with the floating-point behavior.

Simulate Using Embedded Types

In the Verify section of the toolstrip, click the Simulate with Embedded Types button. The Fixed-
Point Tool simulates the model using the new fixed-point data types. It logs minimum and maximum
values, overflow data for all objects in the system under design. The tool stores the run information in
a new run named EmbeddedRun. To edit the default name for the embedded run, under the Simulate
with Embedded Types menu, type a new name in the Run name field.

If you specified multiple simulation scenarios using a Simulink.SimulationInput object, the tool
simulates the model using the fixed-point data types for each simulation scenario.

Examine Visualization
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After simulating with embedded types, the Visualization of Simulation Data pane displays the new
run data. Examine the histogram visualization to view the dynamic range of the objects in your model
using the newly applied fixed-point data types.

Using the Explore tab of the Fixed-Point Tool, you can also sort and filter the results according to
different criteria.

Compare Results
The Workflow Browser indicates whether the embedded run meets the specified signal tolerances
compared to the range collection run. If there were multiple simulation scenarios, the tool indicates
whether each scenario met the required tolerances.

The Workflow Browser displays one of the following.

Icon Status Description
Pass All signals with a specified

tolerance are within the
specified tolerances in all
embedded runs.

Warn One of the following conditions
occurred:

• No signals logged or no
tolerances set in the model.

• Unable to compare the
signals because the signals
don't exist in both the range
collection and the
verification runs.

• The range collection run is
no longer available.

• The range collection run
used for data type proposals
is two merged simulations.

Fail One or more signals with a
specified tolerance are not
within the specified tolerances
in any of the embedded runs.

To compare the ideal results stored in BaselineRun with the fixed-point results, select the
embedded run from the Run to compare in SDI drop down menu. Then click Compare Results to
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open the Simulation Data Inspector. Alternatively, you can right-click the embedded run name in the
Workflow Browser and select Open SDI.

The Simulation Data Inspector displays the comparison plots for the logged signals.
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Note This step requires that you run a simulation during the “Collect Ranges” on page 42-20 phase
of the conversion. If you use range analysis to collect ideal ranges for your system under design and
do not run a simulation, you will not have a baseline run to compare to at this step.

If the behavior of the converted system does not meet your requirements, you can propose new data
types after applying new proposal settings. For more information, see “Explore Additional Data
Types” on page 42-34.

See Also

More About
• “Iterative Fixed-Point Conversion Using the Fixed-Point Tool” on page 42-9
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Explore Additional Data Types
After you simulate your model using embedded types and compare the floating-point and fixed-point
behavior of your system, determine if the new fixed-point behavior is satisfactory. If the behavior of
the system using the newly applied fixed-point data types is not acceptable, you can iterate through
the process until you find settings that work for your system.

Edit Proposal Settings
In the Convert section of the toolstrip, under the Settings menu, alter the proposal settings that the
Fixed-Point Tool uses to generate data type proposals for objects in your system under design.

Propose, Apply, Simulate, Compare
Click the Propose Data Types button to generate data type proposals using the new settings. After
examining the new proposals in the spreadsheet, click the Apply Data Types button.

Iterate
Simulate the model using the newly applied data types and compare the behavior as described in
“Verify New Settings” on page 42-30. Continue to iterate through this process (edit proposal settings,
propose data types, apply data types, verify system behavior) until you find settings for which your
system's fixed-point behavior is acceptable.

Restore Model to Original State
During the “Prepare System for Conversion” on page 42-14 step, the Fixed-Point Tool creates a
restore point for your model. After the conversion process, if you want to restore your model to its
state at the start of the conversion process, in the Fixed-Point Tool, click Restore Original Model.
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The Fixed-Point Tool closes your model and reopens the model in its original state. Any changes made
to your model after the preparation stage of the conversion are removed.

See Also

More About
• “Iterative Fixed-Point Conversion Using the Fixed-Point Tool” on page 42-9
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Restore Model to Original State
During the “Prepare System for Conversion” on page 42-14 step, the Fixed-Point Tool creates a
restore point for your model. After the conversion process, if you want to restore your model to its
state at the start of the conversion process, in the Fixed-Point Tool, click Restore Original Model.
The Fixed-Point Tool closes your model and reopens the model in its original state. Any changes made
to your model after the preparation stage of the conversion are removed.

See Also

More About
• “Iterative Fixed-Point Conversion Using the Fixed-Point Tool” on page 42-9
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Get Proposals for Results with Inherited Types
Blocks can inherit data types from a variety of sources, including signals to which they are connected
and particular block parameters. The following table lists the types of inheritance rules that a block
might specify.

Inheritance Rule Description
Inherit: Inherit via back propagation Simulink automatically determines the output

data type of the block during data type
propagation. In this case, the block uses the data
type of a downstream block or signal object.

Inherit: Same as input The block uses the data type of its sole input
signal for its output signal.

Inherit: Same as first input The block uses the data type of its first input
signal for its output signal.

Inherit: Same as second input The block uses the data type of its second input
signal for its output signal.

Inherit: Inherit via internal rule The block uses an internal rule to determine its
output data type. The internal rule chooses a data
type that optimizes numerical accuracy,
performance, and generated code size, while
taking into account the properties of the
embedded target hardware. It is not always
possible for the software to optimize efficiency
and numerical accuracy at the same time.

How to Get Proposals for Objects That Use an Inherited Output Data
Type
To enable proposals for results that specify an inherited output data type, in the Fixed-Point Tool, in
the Convert section of the toolstrip, under Settings, set the Convert inherited types setting to
Yes.

For objects that specify an inherited output data type, the Fixed-Point Tool proposes a new data type
based on collected ranges and the specified proposal settings.

When the Fixed-Point Tool Will Not Propose for Inherited Data Types
The Fixed-Point Tool proposes data types only for the Output data type parameter of a block or
model object. It will not propose for other block data types, such as the Accumulator data type of a
Sum block, or the Gain parameter in a Gain block.

The Fixed-Point Tool will also not propose for the following model objects if they use an inherited
output data type.

• Signal objects
• Stateflow charts
• Bus objects
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• MATLAB variables

See Also

More About
• “Data Type Propagation Errors After Applying Proposed Data Types” on page 49-25
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Rescale a Fixed-Point Model
In this section...
“About the Feedback Controller Example Model” on page 42-39
“Explore the Numerical Behavior of the Model” on page 42-43
“Propose Fraction Lengths Using Simulation Range Data” on page 42-45

This example shows you how to use the Fixed-Point Tool to refine the scaling of fixed-point data types
associated with the feedback controller model. Although the tool enables multiple workflows for
converting a digital controller described in ideal double-precision numbers to one realized in fixed-
point numbers, this example uses the following approach:

• Range Collection — Use the range collection workflow to explore the numerical behavior of the
model.

Perform a global override of the fixed-point data types using double-precision numbers. The
Simulink software logs the simulation results and the Fixed-Point Tool displays them.

Run an initial simulation using a reasonable guess at the fixed-point word size and scaling, then
compare the simulation results to the double-precision run. This task illustrates how difficult it is
to guess the best scaling.

• Propose Fraction Lengths Using Simulation Range Data — Use the iterative fixed-point conversion
workflow to autoscale the model.

The Fixed-Point Tool uses double-precision simulation results to propose fixed-point scaling for
appropriately configured blocks. The Fixed-Point Tool allows you to accept and apply the scaling
proposals selectively. Afterward, you determine the quality of the results by examining the input
and output of the model's analog plant.

About the Feedback Controller Example Model
To open the Simulink feedback design model for this tutorial, at the MATLAB command line, type
fxpdemo_feedback.

The model consists of the following blocks and subsystems:
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• Reference

This Signal Generator block generates a continuous-time reference signal. It is configured to
output a square wave.

• Sum

This Add block subtracts the plant output from the reference signal.
• ZOH

The Zero-Order Hold block samples and holds the continuous signal. This block is configured so
that it quantizes the signal in time by 0.01 seconds.

• Analog to Digital Interface

The analog to digital (A/D) interface consists of a Data Type Conversion block that converts a
double to a fixed-point data type. It represents any hardware that digitizes the amplitude of the
analog input signal. In the real world; its characteristics are fixed.

• Controller

The digital controller is a subsystem that represents the software running on the hardware target.
Refer to “Digital Controller Realization” on page 42-41.

• Digital to Analog Interface

The digital to analog (D/A) interface consists of a Data Type Conversion block that converts a
fixed-point data type into a double. It represents any hardware that converts a digitized signal
into an analog signal. In the real world, its characteristics are fixed.

• Analog Plant

The analog plant is described by a transfer function, and is controlled by the digital controller. In
the real world, its characteristics are fixed.

• Scope

The model includes a Scope block that displays the plant output signal.

Simulation Setup

To set up this kind of fixed-point feedback controller simulation:

1 Identify all design components.

In the real world, there are design components with fixed characteristics (the hardware) and
design components with characteristics that you can change (the software). In this feedback
design, the main hardware components are the A/D hardware, the D/A hardware, and the analog
plant. The main software component is the digital controller.

2 Develop a theoretical model of the plant and controller.

For the feedback design in this tutorial, the plant is characterized by a transfer function.

The digital controller model in this tutorial is described by a z-domain transfer function and is
implemented using a direct-form realization.

3 Evaluate the behavior of the plant and controller.
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You evaluate the behavior of the plant and the controller with a Bode plot. This evaluation is
idealized, because all numbers, operations, and states are double-precision.

4 Simulate the system.

You simulate the feedback controller design using Simulink and Fixed-Point Designer software. In
a simulation environment, you can treat all components (software and hardware) as though their
characteristics are not fixed.

Idealized Feedback Design

Open loop (controller and plant) and plant-only Bode plots for the “Scaling a Fixed-Point Control
Design” model are shown in the following figure. The open loop Bode plot results from a digital
controller described in the idealized world of continuous time, double-precision coefficients, storage
of states, and math operations.

The Bode plots were created using workspace variables produced by a script named
preload_feedback.m.

Digital Controller Realization

In this simulation, the digital controller is implemented using the fixed-point direct form realization
shown in the following diagram. The hardware target is a 16-bit processor. Variables and coefficients
are generally represented using 16 bits, especially if these quantities are stored in ROM or global
RAM. Use of 32-bit numbers is limited to temporary variables that exist briefly in CPU registers or in
a stack.
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The digital controller realization consists of these blocks:

• Up Cast

Up Cast is a Data Type Conversion block that connects the A/D hardware with the digital
controller. It pads the output word size of the A/D hardware with trailing zeros to a 16-bit number
(the base data type).

• Numerator Terms and Denominator Terms

Each of these Discrete FIR Filter blocks represents a weighted sum carried out in the CPU target.
The word size and precision in the calculations reflect those of the accumulator. Numerator Terms
multiplies and accumulates the most recent inputs with the FIR numerator coefficients.
Denominator Terms multiples and accumulates the most recent delayed outputs with the FIR
denominator coefficients. The coefficients are stored in ROM using the base data type. The most
recent inputs are stored in global RAM using the base data type.

• Combine Terms

Combine Terms is a Add block that represents the accumulator in the CPU. Its word size and
precision are twice that of the RAM (double bits).

• Down Cast

Down Cast is a Data Type Conversion block that represents taking the number from the CPU and
storing it in RAM. The word size and precision are reduced to half that of the accumulator when
converted back to the base data type.

• Prev Out
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Prev Out is a Unit Delay block that delays the feedback signal in memory by one sample period.
The signals are stored in global RAM using the base data type.

Direct Form Realization

The controller directly implements this equation:

y k = ∑
i = 0

N
biu k− 1 − ∑

i = 1

N
aiy k− 1 ,

where:

• u(k – 1) represents the input from the previous time step.
• y(k) represents the current output, and y(k – 1) represents the output from the previous time step.
• bi represents the FIR numerator coefficients.
• ai represents the FIR denominator coefficients.

The first summation in y(k) represents the multiplication and accumulation of the most recent inputs
and numerator coefficients in the accumulator. The second summation in y(k) represents the
multiplication and accumulation of the most recent outputs and denominator coefficients in the
accumulator. Because the FIR coefficients, inputs, and outputs are all represented by 16-bit numbers
(the base data type), any multiplication involving these numbers produces a 32-bit output (the
accumulator data type).

Explore the Numerical Behavior of the Model
Initial guesses for the scaling of each block are already specified in each block mask in the model.
This task illustrates the difficulty of guessing the best fixed-point scaling. In this example, you
compare the behavior of the model with an idealized floating-point version using the range collection
workflow in the Fixed-Point Tool.

1 Open the fxpdemo_feedback model.
2 Open the Fixed-Point Tool. In the Apps gallery, select Fixed-Point Tool.
3 In the Fixed-Point Tool, click New, and select Range Collection.

You can use the range collection workflow to explore the numerical behavior of your model, and
compare it to an idealized, floating-point version.

4 Under System Under Design (SUD), select the subsystem you want to analyze. In this example,
select Controller.

5 Under Range Collection Mode, select Simulation Ranges as the range collection method.
6 Under Simulation Inputs, use the default model inputs for simulation.
7 Click the Collect Ranges button arrow and select Double precision. Click the Collect

Ranges button to start the simulation.

The Simulink software simulates the fxpdemo_feedback model in data type override mode and
stores the results in BaselineRun. Data type override enables you to perform a global override
of the fixed-point data types with double-precision data types, thereby avoiding quantization
effects. In the Results spreadsheet, the Fixed-Point Tool displays the run results. The compiled
data type (CompiledDT) column for BaselineRun shows that the blocks in the model used a
double data type during simulation.
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8 Next, simulate the system using the fixed-point data types specified in the model. Click the
Settings button arrow and select Specified data types. Click Simulate with Embedded
Types.

The Fixed-Point Tool simulates the model using the currently specified fixed-point data types and
stores the range information in EmbeddedRun. You can view the collected ranges in the SimMin
and SimMax columns of the spreadsheet.

The Fixed-Point Tool highlights the row containing the Up Cast block to indicate that there is an
issue with this result. The Result Details pane shows that the block saturated 23 times, which
indicates a poor guess for its scaling.

Tip You can use the Explore tab to explore and filter results.
9 Click Compare Results to open the Simulation Data Inspector.
10 In the Simulation Data Inspector, select PlantOutput as the signal to compare.

Simulation Data Inspector plots the signal associated with the plant output for the BaselineRun
and the EmbeddedRun.

The plot of the plant output signal for EmbeddedRun reflects the initial guess at scaling. The
Bode plot design sought to produce a well-behaved linear response for the closed-loop system,
represented by the ideal BaselineRun. However, the response of the EmbeddedRun is nonlinear.
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Significant quantization effects cause the nonlinear features. An important part of fixed-point
design is finding a scaling that reduces quantization effects to acceptable levels.

Propose Fraction Lengths Using Simulation Range Data
Using automatic data typing, you can maximize the precision of the output data type while spanning
the full simulation range. The iterative fixed-point conversion workflow in the Fixed-Point Tool lets
you maximize the precision of the output data types while spanning the full simulation range. This
process is known as autoscaling.

Because no design range information is supplied in this example, the Fixed-Point Tool uses simulation
range data for proposing data types. The Safety margin for simulation min/max (%) parameter
value multiplies the “raw” simulation values. Setting this parameter to a value greater than 1
decreases the likelihood that an overflow will occur when fixed-point data types are being used. For
more information about how the Fixed-Point Tool calculates data type proposals, see “How the Fixed-
Point Tool Proposes Data Types” on page 42-48.

Because of the nonlinear effects of quantization, a fixed-point simulation produces results that are
different from an idealized, doubles-based simulation. Signals in a fixed-point simulation can cover a
larger or smaller range than in a doubles-based simulation. If the range increases enough, overflows
or saturations could occur. A safety margin decreases this likelihood, but it might also decrease the
precision of the simulation.

Note When the maximum and minimum simulation values cover the full, intended operating range of
your design, the Fixed-Point Tool yields meaningful automatic data typing results.

Autoscale the Controller subsystem. This subsystem represents software running on the target,
and requires optimization.

1 In the Fixed-Point Tool, click New, and select Iterative Fixed-Point Conversion.

Tip Switching workflows in the Fixed-Point tool clears the settings and any data collected during
the active workflow. The model remains in its current state.

2 Under System Under Design (SUD), select the Controller subsystem as the system to
analyze and convert.

3 Under Range Collection Mode, select Simulation ranges.
4 Under Simulation Inputs, use the default model inputs for simulation.
5 Click Prepare to create a restore point and automatically prepare the system under design for

conversion.
6 Click the Collect Ranges button arrow and select Double precision. Click Collect Ranges

to start the simulation.

The Simulink software simulates the fxpdemo_feedback model in data type override mode and
stores the results in BaselineRun_2.

7 In the Convert section, click the Settings button. Set the Safety margin for simulation
min/max (%) parameter to 20. Use the default settings for all other parameters.

8 Click Propose Data Types.
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The Fixed-Point Tool analyzes the scaling of all fixed-point blocks whose Lock output data type
setting against changes by the fixed-point tools parameter is cleared.

The Fixed-Point Tool uses the minimum and maximum values stored in BaselineRun_2 to
propose each block's data types such that the precision is maximized while the full range of
simulation values is spanned. The tool displays the proposed data types in the Results
spreadsheet.

9 Review the scaling that the Fixed-Point Tool proposes. You can choose to accept the scaling
proposal for each block. In the Results spreadsheet, select the corresponding Accept check box.
By default, the Fixed-Point Tool accepts all scaling proposals that differ from the current scaling.
For this example, ensure that the Accept check box is selected for each of the Controller
subsystem's blocks.

10 Click the Apply Data Types button.

The Fixed-Point Tool applies the scaling proposals that you accepted in the previous step to the
blocks in the Controller subsystem.

11 In the Verify section, click the Simulate with Embedded Types button.

Simulink simulates the fxpdemo_feedback model using the new scaling that you applied.
Information about this simulation is stored in a run named EmbeddedRun_2. Afterward, the
Fixed-Point Tool displays information about blocks that logged fixed-point data. The compiled
data type (CompiledDT) column for EmbeddedRun_2 shows that the Controller subsystem's
blocks used fixed-point data types with the new scaling.

12 Click Compare Results to open the Simulation Data Inspector.
13 In the Simulation Data Inspector, select PlantOutput as the signal to compare.

Simulation Data Inspector plots the signal associated with the plant output for BaselineRun_2
and EmbeddedRun_2, as well as their difference.
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The plant output signal represented by the fixed-point run achieves a steady state, but a small
limit cycle is present because of non-optimal A/D design.

See Also

Related Examples
• “How Hardware Implementation Settings Affect Data Type Proposals” on page 42-50

More About
• “Iterative Fixed-Point Conversion Using the Fixed-Point Tool” on page 42-9
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How the Fixed-Point Tool Proposes Data Types
To use the Fixed-Point Tool to propose word lengths, you must specify the fraction length
requirements for data types in the model. Select the fraction lengths based on the precision required
for the system that you are modeling. If you do not specify fraction lengths, the Fixed-Point Tool sets
the Default fraction length to 4. The Fixed-Point Tool uses these specified fraction lengths to
recommend the minimum word length for objects in the selected model or subsystem to avoid
overflow for the collected range information.

The proposed word length is based on:

• Design range information and range information that the Fixed-Point Tool collects. This collected
range information can be either simulation range data, derived range data, or simulation with
derived range data.

• The signedness and fraction lengths of data types that you specify on blocks, signal objects.
• The production hardware implementation settings specified in the Configuration Parameters.

How the Fixed-Point Tool Uses Range Information
The Fixed-Point Tool determines whether to use different types of range information based on its
availability and on the Fixed-Point Tool setting.

Design range information always takes precedence over both simulation and derived range data.
When there is no design range information, the Fixed-Point Tool uses either simulation or derived
range data. If you specify a safety margin, the Fixed-Point Tool takes the safety margin into account.

For example, if a signal has a design range of [-10,10], the Fixed-Point Tool uses this range for the
proposal and ignores all simulation and derived range information.

If the signal has no specified design information, but does have a simulation range of [-8,8] and a
derived range of [-2,2], the proposal uses the union of the ranges, [-8,8]. If you specify a safety
margin of 50%, the proposal uses a range of [-12, 12].

How the Fixed-Point Tool Uses Target Hardware Information
The Fixed-Point Tool calculates the ideal word length and then checks this length against the
production hardware implementation settings for the target hardware.

• If the target hardware is an FPGA/ASIC, then the Fixed-Point Tool proposes the ideal word length.
If the ideal word length is greater than 128, then the Fixed-Point Tool proposes 128.

• If the target hardware is an embedded processor, then the Fixed-Point Tool rounds the ideal word
length up and proposes the nearest supported data type of your processor.

How to Get Proposals for Objects That Use an Inherited Output Data
Type
Blocks can inherit data types from a variety of sources, including signals to which they are connected
and particular block parameters. The following table lists the types of inheritance rules that a block
might specify.
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Inheritance Rule Description
Inherit: Inherit via back propagation Simulink automatically determines the output

data type of the block during data type
propagation. In this case, the block uses the data
type of a downstream block or signal object.

Inherit: Same as input The block uses the data type of its sole input
signal for its output signal.

Inherit: Same as first input The block uses the data type of its first input
signal for its output signal.

Inherit: Same as second input The block uses the data type of its second input
signal for its output signal.

Inherit: Inherit via internal rule The block uses an internal rule to determine its
output data type. The internal rule chooses a data
type that optimizes numerical accuracy,
performance, and generated code size, while
taking into account the properties of the
embedded target hardware. It is not always
possible for the software to optimize efficiency
and numerical accuracy at the same time.

To enable proposals for results that specify an inherited output data type, in the Fixed-Point Tool, in
the Convert section of the toolstrip, under Settings, set the Convert inherited types setting to
Yes.

For objects that specify an inherited output data type, the Fixed-Point Tool proposes a new data type
based on collected ranges and the specified proposal settings.

When the Fixed-Point Tool Will Not Propose for Inherited Data Types
The Fixed-Point Tool proposes data types only for the Output data type parameter of a block or
model object. It will not propose for other block data types, such as the Accumulator data type of a
Sum block, or the Gain parameter in a Gain block.

The Fixed-Point Tool will also not propose for the following model objects if they use an inherited
output data type.

• Signal objects
• Stateflow charts
• Bus objects
• MATLAB variables

See Also

Related Examples
• “How Hardware Implementation Settings Affect Data Type Proposals” on page 42-50
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How Hardware Implementation Settings Affect Data Type
Proposals

In this section...
“Open the Model and Specify Hardware Implementation Settings” on page 42-50
“Propose Word Lengths Based on Simulation Data” on page 42-51

This example shows how to use the Fixed-Point Tool to propose word lengths for a model that
implements a simple moving average algorithm. The model already uses fixed-point data types, but
they are not optimal. Simulate the model and propose data types based on simulation data. To see
how the target hardware affects the word length proposals, first set the target hardware to an
embedded processor and propose word lengths. Then, set the target hardware to an FPGA and
propose word lengths.

Open the Model and Specify Hardware Implementation Settings
In the Configuration Parameters dialog box, on the Hardware Implementation pane, you can
specify the Device vendor and Device type of your target hardware. The Fixed-Point Tool uses this
information when it proposes fixed-point data types for objects in your model. For example, if you
specify the target hardware to be an embedded processor, the tool will propose standard word
lengths appropriate for the target.

Open the ex_moving_average example.

open_system('ex_moving_average')
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Verify that the target hardware is an embedded processor. In the Configuration Parameters dialog
box, on the Hardware Implementation pane, set the Device vendor to Custom Processor. Close
the Configuration Parameters dialog box.

Propose Word Lengths Based on Simulation Data
Some blocks in the model already have specified fixed-point data types.

Block Data Type Specified on Block
Dbl2Fixpt fixdt(1,16,10)
Gain1 fixdt(1,32,17)
Gain2 fixdt(1,32,17)
Gain3 fixdt(1,32,17)
Gain4 fixdt(1,16,1)
Add1 fixdt(1,32,17)
Add2 fixdt(1,32,17)
Add3 fixdt(1,32,17)

Use the iterative fixed-point conversion workflow in the Fixed-Point Tool to see how the target
hardware affects word length proposals.

1 In the model, in the Apps gallery, select Fixed-Point Tool.
2 In the Fixed-Point Tool, click New, and select Iterative Fixed-Point Conversion.
3 In the Fixed-Point Tool, under System Under Design (SUD), select ex_moving_average as

the system to convert.
4 Under Range Collection Mode, select Simulation ranges as the method of range collection.

This configures the model to collect ranges using idealized floating-point data types.
5 In the toolstrip, click Prepare to prepare the system for conversion.
6 Expand the Collect Ranges button arrow and select Double precision. Click Collect

Ranges to start the simulation.

The Fixed-Point Tool stores the simulation data in a run titled BaselineRun. You can examine
the range information of the blocks in the model in the spreadsheet.

7 In the Convert section of the toolstrip you can configure the data type proposal settings for the
blocks. Click the Settings button arrow. In the Settings dialog, next to Propose, select Word
Length.

8 Click Propose Data Types.

The Fixed-Point Tool uses available range data to calculate data type proposals according to the
following rules:

• Design minimum and maximum values take precedence over the simulation range.
• The tool observes the simulation range because you selected Simulation ranges as the

range collection method.

The Safety margin for simulation min/max (%) parameter specifies a range that differs
from that defined by the simulation range. In this example, the default safety margin is used.
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The Fixed-Point Tool analyzes the data types of all fixed-point blocks whose Lock output data
type setting against changes by the fixed-point tools parameter is cleared.

For each object in the model, the Fixed-Point Tool proposes the minimum word length that avoids
overflow for the collected range information. Because the target hardware is a 16-bit embedded
processor, the Fixed-Point tool proposes word lengths based on the number of bits used by the
processor for each data type. For more information, see “How the Fixed-Point Tool Uses Target
Hardware Information” on page 42-48.

The tool proposes smaller word lengths for Gain4 and Gain4:Gain. The tool calculated that
their ideal word length is less than or equal to the character bit length for the embedded
processor (8), so the tool rounds up the word length to 8.

9 To see how the target hardware affects the word length proposal, change the target hardware to
FPGA/ASIC.

a In the Configuration Parameters dialog box, on the Hardware Implementation pane, set
Device vendor to ASIC/FPGA.

b Click Apply and close the Configuration Parameters dialog box.
10 In the Fixed-Point Tool, click Propose data types again.

Because the target hardware is an FPGA, there are no constraints on the word lengths that the
Fixed-Point Tool proposes. The word length for Gain4:Gain is now 2.
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See Also

Related Examples
• “Rescale a Fixed-Point Model” on page 42-39

More About
• “How the Fixed-Point Tool Proposes Data Types” on page 42-48
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Propose Data Types For Merged Simulation Ranges
In this section...
“Set up the Model” on page 42-54
“Open the Fixed-Point Tool and Prepare the System for Conversion” on page 42-55
“Collect Ranges and Convert to Fixed-Point” on page 42-55
“Verify Fixed-Point Behavior” on page 42-56

This example shows how to use the Fixed-Point Tool to propose fraction lengths for a model based on
the minimum and maximum values captured over multiple simulations. In this example, you define a
Simulink.SimulationInput object in the base or model workspace to specify the simulation
scenarios to use for range collection. The Fixed-Point Tool merges the results from two simulation
runs and proposes a data type based on the merged ranges. Merging results allows you to autoscale
your model over the complete simulation range.

When converting a system based on multiple simulation scenarios, structurally altering the contents
of the system under design during the conversion process could lead to errors. When defining the
simulation scenarios avoid making any of the following changes to the system under design:

• Add or delete a block in the system under design
• Add another input to the system under design
• Change a block type in the system under design

Set up the Model
This example uses the ex_fpt_merge model. The model contains a sine wave input and two
alternate noise sources, band-limited white noise and random uniform noise. In this example, define a
Simulink.SimulationInput object and collect ranges using the Band-Limited White Noise source
and the Random Number 1 source. Propose data types for the model based on the merged simulation
ranges.

Open the model.

model = 'ex_merge_ranges';
open_system(model);
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Define the Simulink.SimulationInput object. The first object sets the Manual Switch block to the
Band-Limited White Noise source, the second SimulationInput object sets the Manual Switch
block to the Random Number source.

simIn(1) = Simulink.SimulationInput(model);
simIn(2) = Simulink.SimulationInput(model);

simIn(1) = simIn(1).setBlockParameter('ex_merge_ranges/Manual Switch', 'sw', '0');
simIn(2) = simIn(2).setBlockParameter('ex_merge_ranges/Manual Switch', 'sw', '1');

Open the Fixed-Point Tool and Prepare the System for Conversion
1 In the Apps gallery of the ex_merge_ranges model, select Fixed-Point Tool.
2 In the Fixed-Point Tool, click New, and select Iterative Fixed-Point Conversion.
3 Under System Under Design, select Subsystem.
4 Under Range Collection Mode, select Simulation Ranges as the range collection method.
5 Under Simulation Inputs, select the Simulink.SimulationInput object, simIn that you

defined in the base workspace.
6 Set the absolute tolerance of the Subsystem: 1 signal to 0.1, or 10%.
7 In the toolstrip, click the Prepare button.

Collect Ranges and Convert to Fixed-Point
1 Expand the Collect Ranges button arrow and select Double precision. Click Collect

Ranges.

Simulink simulates the ex_merge_ranges model twice, once using the Band-Limited White
Noise source block and once using the Random Number source block.

You can view the ranges of each simulation individually by selecting the simulation in the
Workflow Browser. In this example the BaselineRun_Scenario_1 simulation had a SimMin
value of -3.5821 and a SimMax value of 2.7598. The BaselineRun_Scenario_2 simulation
had a SimMin value of -2.5317 and a SimMax value of 3.1542.

Selecting the BaselineRun node in the Workflow Browser shows the merged ranges from the
two simulation scenarios.

2
In the Convert section of the toolstrip, click the Propose Data Types button .

The Fixed-Point Tool uses the merged minimum and maximum values to propose fraction lengths
for each block. These values ensure maximum precision while spanning the full range of
simulation values. The tool displays the proposed data types in the spreadsheet.

3
Click the Apply Data Types button  to write the proposed data types to the model.
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Verify Fixed-Point Behavior
1

In the Verify section of the toolstrip, click the Simulate with Embedded Types button .
The Fixed-Point Tool simulates the model using the same Simulink.SimulationInput
scenarios that were used to collect ranges and verifies whether each scenario met the specified
tolerances.

The Workflow Browser indicates whether the verification runs met the tolerances. In this
example, both simulation scenarios met the specified tolerances.

2 To view the simulation data for an individual run, right-click on the run in the Workflow
Browser.

See Also

More About
• “Iterative Fixed-Point Conversion Using the Fixed-Point Tool” on page 42-9
• How to Convert Models to Fixed Point Using Multiple Simulation Scenarios
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View Simulation Results
In this section...
“Compare Runs” on page 42-57
“Histogram Plot of Signal” on page 42-58

The Fixed-Point Tool uses the Simulation Data Inspector tool plotting capabilities that enable you to
plot logged signals for graphical analysis. Using the Simulation Data Inspector to inspect and
compare data after converting your floating-point model to fixed point facilitates tracking numerical
error propagation.

Use the Simulation Data Inspector to:

• Plot multiple signals in one or more axes
• Compare a signal in different runs
• Compare all logged signal data from different runs
• Export signal logging results to a MAT-file
• Specify tolerances for signal comparison
• Create a report of the current view and data in the Simulation Data Inspector

Compare Runs
To compare runs, in the Fixed-Point Tool, right-click on the embedded run and select Open SDI.

On the upper axes, the Simulation Data Inspector plots the signal for the selected runs and the
tolerance, if specified. On the lower axes, the Simulation Data Inspector plots the difference between
those runs.
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Histogram Plot of Signal
To view the histogram plot of a signal, select the signal in the Results spreadsheet. The Result
Details pane includes a histogram plot that helps you visualize the dynamic range of a signal. It
provides information about the:

• Total number of samples (N).
• Maximum number of bits to prevent overflow.
• Number of times each bit has represented the data (as a percentage of the total number of

samples).
• Number of times that exact zero occurred (without the effect of quantization). This number does

not include the number of zeroes that occurred due to rounding.

You can use this information to estimate the word size required to represent the signal.
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See Also

Related Examples
• “Propose Fraction Lengths Using Simulation Range Data” on page 42-45
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Fixed-Point Instrumentation and Data Type Override
The conversion of a model from floating point to fixed point requires configuring fixed-point
instrumentation and data type overrides. However, leaving these settings on after the conversion can
lead to unexpected results.

The Fixed-Point Tool automatically enables fixed-point instrumentation when you click the Collect
Ranges button in the tool. By default, the Fixed-Point Tool uses the current data type override set on
the model. You can also choose to override data types with doubles, singles, or scaled doubles. When
the simulation or derivation is complete, the tool automatically disables the instrumentation and
removes the data type override, if data type override was selected in the tool. When you click the
Simulate with Embedded Types button, the tool enables instrumentation during the simulation.
Data type override settings on the model are not affected.

Control Instrumentation Settings
The fixed-point instrumentation mode controls which objects log minimum, maximum, and overflow
data during simulation. Instrumentation is required to collect simulation ranges using the Fixed-Point
Tool. These ranges are used to propose data types for the model. When you are not actively
converting your model to fixed point, disable the fixed-point instrumentation to restore the maximum
simulation speed to your model.

To enable instrumentation outside of the Fixed-Point Tool, at the command line set the
MinMaxOverflowLogging parameter to MinMaxAndOverflow or OverflowOnly.

set_param('MyModel','MinMaxOverflowLogging','MinMaxAndOverflow')

Instrumentation requires a Fixed-Point Designer license. To disable instrumentation on a model, set
the parameter to ForceOff or UseLocalSettings.

set_param('MyModel','MinMaxOverflowLogging','UseLocalSettings')

Control Data Type Override
Use data type override to simulate your model using double, single, or scaled double data types. If
you do not have Fixed-Point Designer software, you can still configure data type override settings to
simulate a model that specifies fixed-point data types. Using this setting, the software temporarily
overrides data types with floating-point data types during simulation.

set_param('MyModel','DataTypeOverride','Double')

To observe the true behavior of your model, set the data type override parameter to
UseLocalSettings or Off.

set_param('MyModel','DataTypeOverride','Off')

Instrumentation Settings and Data Type Override for a Model
Reference Hierarchy
When you simulate a model that contains referenced models, the data type override and fixed-point
instrumentation settings for the top-level model do not control the settings for the referenced models.
You must specify these settings separately for the referenced model. If the settings are inconsistent,
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for example, if you set the top-level model data type override setting to double and the referenced
model to use local settings and the referenced model uses fixed-point data types, data type
propagation issues might occur.

When you change the fixed-point instrumentation and data type override settings for any instance of
a referenced model, the settings change on all instances of the model and on the referenced model
itself.

See Also

More About
• “Iterative Fixed-Point Conversion Using the Fixed-Point Tool” on page 42-9
• “Use Custom Data Type Override Settings for Range Collection” on page 44-9
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Model Configuration Changes Made During Data Type
Optimization

Data type optimization seeks to minimize an objective function while maintaining the original system
behavior within a specified tolerance. You can optimize data types by using fxpopt at the command
line, or by using the Optimized Fixed-Point Conversion workflow in the Fixed-Point Tool.

During the optimization process, the software changes the settings and model configuration
parameters described below. You can restore these parameter settings after the optimization is
complete in the Configuration Parameters dialog box or by using the set_param function. You can
also use the KeepOriginalModelParameters option of explore to maintain the original values of
model parameters.

Reason for Parameter
Change

Parameter Default Value Optimization Changes
Value to

Suppress Diagnostics ParameterDowncastM
sg on page 42-64

'error' 'none'

ParameterUnderflow
Msg on page 42-65

'none' 'none'

FixptConstUnderflo
wMsg on page 42-65

'none' 'none'

ParameterPrecision
LossMsg on page 42-
65

'none' 'none'

FixptConstPrecisio
nLossMsg on page 42-
65

'none' 'none'

ParameterOverflowM
sg on page 42-65

'error' 'none'

FixptConstOverflow
Msg on page 42-65

'none' 'none'

IntegerOverflowMsg
on page 42-65

'warning' 'none'

IntegerSaturationM
sg on page 42-66

'warning' 'none'

Logging with the
Simulation Data
Inspector

SignalLogging on
page 42-66

'on' 'on'

ReturnWorkspaceOut
puts on page 42-66

'on' 'on'

SaveFormat on page
42-66

'Dataset' 'Dataset'

Reduce memory
consumption of result

SaveTime on page 42-
66

'on' 'off'

SaveOutput on page
42-66

'on' 'off'
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Reason for Parameter
Change

Parameter Default Value Optimization Changes
Value to

Model validity SignalRangeCheckin
g on page 42-67

'none' 'error'

Understand result ShowPortDataTypes
on page 42-67

'off' 'on'

Accelerate optimization SimulationMode on
page 42-67

'normal' 'accelerator'

Data type override DataTypeOverride on
page 42-67

'UseLocalSettings' 'Off'

You can use the showContents method of the OptimizationSolution object to print a summary
of the changes made during data type optimization to the MATLAB Command Window. For example,
after optimizing data types according to the example “Optimize Fixed-Point Data Types” use
showContents to view the model parameter changes that were made during data type optimization:

solution = result.Solutions(1);
showContents(solution)

ModelName: 'ex_auto_gain_controller'

    ModelParameters: 
    Index               Name                   Value    
    _____    __________________________    _____________

      1      SignalLogging                 'on'         
      2      ReturnWorkspaceOutputs        'on'         
      3      SaveFormat                    'Dataset'    
      4      ShowPortDataTypes             'on'         
      5      SignalRangeChecking           'error'      
      6      ParameterDowncastMsg          'none'       
      7      ParameterUnderflowMsg         'none'       
      8      ParameterPrecisionLossMsg     'none'       
      9      ParameterOverflowMsg          'none'       
     10      FixptConstPrecisionLossMsg    'none'       
     11      FixptConstOverflowMsg         'none'       
     12      FixptConstUnderflowMsg        'none'       
     13      IntegerOverflowMsg            'none'       
     14      IntegerSaturationMsg          'none'       
     15      SaveTime                      'off'        
     16      SaveOutput                    'off'        
     17      SimulationMode                'accelerator'
     18      DataTypeOverride              'off' 
...

Detect downcast
Take no action when a parameter downcast occurs during simulation. Quantization effects, including
downcasts, are expected during optimization. Optimized data types will meet all specified behavioral
constraints. For more information, see “Detect downcast” .
Parameter: ParameterDowncastMsg
Value: 'none'
Default: 'error'
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Detect underflow
Take no action when parameter quantization causes a non-zero value to underflow to zero during
simulation. Take no action when a fixed-point constant underflow occurs during simulation.
Quantization effects, including underflow, are expected during optimization. Optimized data types will
meet all specified behavioral constraints. For more information, see “Detect underflow” and “Detect
underflow”.
Parameter: ParameterUnderflowMsg
Value: 'none'
Default: 'none'
Parameter: FixptConstUnderflowMsg
Value: 'none'
Default: 'none'

Detect precision loss
Take no action when parameter precision loss or fixed-point constant precision loss occurs during
simulation. Quantization effects, including precision loss, are expected during optimization.
Optimized data types will meet all specified behavioral constraints. For more information, see “Detect
precision loss” and “Detect precision loss”.
Parameter: ParameterPrecisionLossMsg
Value: 'none'
Default: 'warning'
Parameter: FixptConstPrecisionLossMsg
Value: 'none'
Default: 'none'

Detect overflow
Take no action if a parameter overflow or fixed-point constant overflow occurs during simulation.
Quantization effects, including overflow, are expected during optimization. Optimized data types will
meet all specified behavioral constraints. For more information, see “Detect overflow” and “Detect
overflow”.
Parameter: ParameterOverflowMsg
Value: 'none'
Default: 'error'
Parameter: FixptConstOverflowMsg
Value: 'none'
Default: 'none'

Wrap on overflow
Take no action if the value of a signal overflows the signal data type and wraps around. Quantization
effects, including overflow, are expected during optimization. Optimized data types will meet all
specified behavioral constraints. For more information, see “Wrap on overflow”.
Parameter: IntegerOverflowMsg
Value: 'none'
Default: 'warning'
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Saturate on overflow
Take no action if the value of a signal is too large to be represented by the signal data type, resulting
in saturation. Quantization effects, including overflow, are expected during optimization. Optimized
data types will meet all specified behavioral constraints. For more information, see “Saturate on
overflow”.
Parameter: IntegerSaturationMsg
Value: 'none'
Default: 'warning'

Signal logging
Globally enable signal logging to the workspace for this model. Optimization requires this setting to
log specified signals to the Simulation Data Inspector. For more information, see “Signal logging”.
Parameter: SignalLogging
Value: 'on'
Default: 'on'

Single simulation output
Enable the single-output format of the sim command to return the simulation result as a
Simulink.SimulationOutput object. Optimization requires this setting to log signals with the
Simulation Data Inspector. For more information, see “Single simulation output”.
Parameter: ReturnWorkspaceOutputs
Value: 'on'
Default: 'on'

Format
Store each logged state and output in a Simulink.SimulationData.Dataset object. Optimization
requires this setting for signal logging with the Simulation Data Inspector. For more information, see
“Log Data to Persistent Storage”.
Parameter: SaveFormat
Value: 'Dataset'
Default: 'Dataset'

Time
Do not export time data to the MATLAB workspace during simulation. Optimization requires this
setting to avoid unnecessary memory consumption. For more information, see “Time”.
Parameter: SaveTime
Value: 'off'
Default: 'on'

Output
Do not export root outport signal data to a specified MATLAB variable during simulation.
Optimization requires this setting for signal logging with the Simulation Data Inspector. For more
information, see “Output”.
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Parameter: SaveOutput
Value: 'off'
Default: 'on'

Simulation range checking
Terminate the simulation when signals exceed specified minimum or maximum values. Optimization
requires this setting to ensure that the simulation ranges of the model with optimized data types
applied honors the specified design ranges. For more information, see “Simulation range checking”.
Parameter: SignalRangeChecking
Value: 'error'
Default: 'none'

Show port data types
Show data types of ports on the model block diagram. Optimization requires this setting to allow you
to easily inspect the optimized data types applied to your model. For more information, see
“Programmatic Model Editor Appearance Parameters”.
Parameter: ShowPortDataTypes
Value: 'on'
Default: 'off'

Simulation mode
Simulate the model in accelerator mode. Optimization uses accelerator mode to reduce the amount of
time required to optimize data types on your model. For more information, see “What Is
Acceleration?”.
Parameter: SimulationMode
Value: 'accelerator'
Default: 'normal'

Data type override
By default, optimization turns off any data type override set on your model so that the effect of
optimized data types on model behavior is accurately represented during simulation. You can
customize this behavior by using the advanced options of fxpOptimizationOptions. For more
information, see “Fixed-Point Instrumentation and Data Type Override” on page 42-61.
Parameter: DataTypeOverride
Value: 'Off'
Default: 'UseLocalSettings'

See Also
fxpopt | “Specify Behavioral Constraints” on page 42-18

Related Examples
• “Optimize Fixed-Point Data Types for a System” on page 40-14
• “Optimize the Fixed-Point Data Types of a System Using the Fixed-Point Tool” on page 40-40
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Range Analysis

• “How Range Analysis Works” on page 43-2
• “Derive Ranges at the Subsystem Level” on page 43-6
• “Derive Ranges Using Design Ranges” on page 43-8
• “Derive Ranges Using Block Initial Conditions” on page 43-10
• “Derive Ranges for Simulink.Parameter Objects” on page 43-12
• “Insufficient Design Range Information” on page 43-14
• “Troubleshoot Range Analysis of System Objects” on page 43-16
• “Providing More Design Range Information” on page 43-18
• “Fixing Design Range Conflicts” on page 43-20
• “Intermediate Range Results” on page 43-22
• “Unsupported Simulink Software Features” on page 43-25
• “Simulink Blocks Supported for Range Analysis” on page 43-26
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How Range Analysis Works
In this section...
“Analyzing a Model with Range Analysis” on page 43-2
“Automatic Stubbing” on page 43-4
“Model Compatibility with Range Analysis” on page 43-4
“How to Derive Ranges” on page 43-4

Analyzing a Model with Range Analysis
The model that you want to analyze must be compatible with range analysis. If your model is not
compatible, either replace unsupported blocks or divide the model so that you can analyze the parts
of the model that are compatible. For more information, see “Model Compatibility with Range
Analysis” on page 43-4.

When you specify Derived ranges as the range collection mode, the Fixed-Point Designer software
performs a static range analysis of your model to derive minimum and maximum range values for
signals in the model. The software analyzes the model behavior and computes the values that can
occur during simulation for each block Outport. The range of these values is called a derived range.

The software statically analyzes the ranges of the individual computations in the model based on:

• Specified design ranges, known as design minimum and maximum values, for example, minimum
and maximum values specified for:

• Inport and Outport blocks
• Block outputs
• Input, output, and local data used in MATLAB Function and Stateflow Chart blocks
• Simulink data objects (Simulink.Signal and Simulink.Parameter objects)

• Inputs
• The semantics of each calculation in the blocks

If the model contains objects that the analysis cannot support, where possible, the software uses
automatic stubbing on page 43-4. For more information, see “Automatic Stubbing” on page 43-4.

The range analysis tries to narrow the derived range by using all the specified design ranges in the
model. The more design range information you specify, the more likely the range analysis is to
succeed. As the software performs the analysis, it derives new range information for the model. The
software then attempts to use this new information, together with the specified ranges, to derive
ranges for the remaining objects in the model.

For models that contain floating-point operations, range analysis might report a range that is slightly
larger than expected. This difference is due to rounding errors. The software approximates floating-
point numbers with infinite-precision rational numbers for analysis and then converts to floating point
for reporting.

The following table summarizes how the analysis derives range information and provides links to
examples.
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When... How the Analysis Works Examples
You specify design minimum and
maximum data for a block
output.

The derived range at the block
output is based on these
specified values and on the
following values for blocks
connected to its inputs and
outputs:

• Specified minimum and
maximum values

• Derived minimum and
maximum values

Only block output signals
participate in derived range
analysis. If a block has
additional data type controls,
such as for the accumulator or
intermediate results, ranges are
not derived for these elements.

“Derive Ranges Using Design
Ranges” on page 43-8

A parameter on a block has
initial conditions and a design
range.

The analysis takes both factors
into account by taking the union
of the design range and the
initial conditions.

“Derive Ranges Using Block
Initial Conditions” on page 43-
10

The model contains a parameter
with a specified range and the
parameter storage class is set to
Auto.

The analysis does not take into
account the range specified for
the parameter. Instead, it uses
the parameter value.

“Derive Ranges for
Simulink.Parameter Objects” on
page 43-12

The model contains a parameter
with a specified range and the
parameter storage class is not
set to Auto.

The analysis takes into account
the range specified for the
parameter and ignores the
value.

“Derive Ranges for
Simulink.Parameter Objects” on
page 43-12

The model contains insufficient
design range information.

The analysis cannot determine
derived ranges. Specify more
design range information and
rerun the analysis.

“Troubleshoot Range Analysis of
System Objects” on page 43-16

The range analysis results might
depend on the block sorted
order, which determines the
order in which the software
analyzes the blocks. For more
information, see “Control and
Display Execution Order”.
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When... How the Analysis Works Examples
The model contains conflicting
design range information.

The analysis cannot determine
the derived minimum or derived
maximum value for an object.
The Fixed-Point Tool generates
an error. To fix this error,
examine the design ranges
specified in the model to
identify inconsistent design
specifications. Modify them to
make them consistent.

“Fixing Design Range Conflicts”
on page 43-20

Automatic Stubbing
What is Automatic Stubbing?

Automatic stubbing is when the software considers only the interface of the unsupported objects in a
model, not their actual behavior. Automatic stubbing lets you analyze a model that contains objects
that the Fixed-Point Designer software does not support. However, if any unsupported model element
affects the derivation results, the analysis might achieve only partial results.

How Automatic Stubbing Works

With automatic stubbing, when the range analysis comes to an unsupported block, the software
ignores ("stubs") that block. The analysis ignores the behavior of the block. As a result, the block
output can take any value.

The software cannot “stub” all Simulink blocks, such as the Integrator block. See the blocks marked
“not stubbable” in “Simulink Blocks Supported for Range Analysis” on page 43-26.

Model Compatibility with Range Analysis
To verify that your model is compatible with range analysis, see:

• “Unsupported Simulink Software Features” on page 43-25
• “Simulink Blocks Supported for Range Analysis” on page 43-26
• “Limitations of Support for Model Blocks” on page 43-33

How to Derive Ranges
1 Verify that your model is compatible with range analysis.
2 In Simulink, open your model and set it up for use with the Fixed-Point Tool. For more

information, see Set Up the Model on page 42-13.
3 From the Simulink Apps tab, select Fixed-Point Tool.
4 In the Fixed-Point Tool, under New, select the Iterative Fixed-Point Conversion

workflow.
5 Under System Under Design (SUD), select the system or subsystem of interest.
6 Under Range Collection Mode, select Derived ranges as the method of range collection. This

configures the model to collect ranges using idealized floating-point data types.
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By default, the tool collects ranges using design information from the system under design. For
more information, see “Derive Ranges at the Subsystem Level” on page 43-6.

7 Click Prepare to have the Fixed-Point Tool check the system under design for compatibility with
the conversion process and report any issues found in the model.

The Fixed-Point Tool:

• Checks the model against fixed-point guidelines.
• Identifies unsupported blocks.
• Identifies blocks that need design range information.

8 Click the Collect Ranges button to run the analysis.

The analysis tries to derive range information for objects in the selected system under design.
Your next steps depend on the analysis results.

Analysis Results Fixed-Point Tool
Behavior

Next Steps For More Information

Successfully derives
range data for the model.

Displays the derived
minimum and maximum
values for the blocks in
the selected system.

Review the derived
ranges to determine if the
results are suitable for
proposing data types. If
not, you must specify
additional design
information and rerun the
analysis.

“Derive Ranges Using
Design Ranges” on page
43-8

Fails because the model
contains blocks that the
software does not
support.

Generates an error and
provides information
about the unsupported
blocks.

To fix the error, review
the error message
information and replace
the unsupported blocks.

“Model Compatibility
with Range Analysis” on
page 43-4

Cannot derive range data
because the model
contains conflicting
design range information.

Generates an error. To fix this error, examine
the design ranges
specified in the model to
identify inconsistent
design specifications.
Modify the design ranges
to make them consistent.

“Fixing Design Range
Conflicts” on page 43-20

Cannot derive range data
for an object because
there is insufficient
design range information
specified on the model.

Highlights the results for
the object.

Examine the model to
determine which design
range information is
missing.

“Troubleshoot Range
Analysis of System
Objects” on page 43-16
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Derive Ranges at the Subsystem Level

In this section...
“When to Derive Ranges at the Subsystem Level” on page 43-6
“Derive Ranges at the Subsystem Level” on page 43-6

You can derive range information for individual atomic subsystems and atomic charts. When you
derive ranges at the model level, the software takes into account all information in the scope of the
model. When you derive ranges at the subsystem level only, the software treats the subsystem as a
standalone unit and the derived ranges are based on only the local design range information specified
in the subsystem or chart. Therefore, when you derive ranges at the subsystem level, the analysis
results might differ from the results of the analysis at the model level.

For example, consider a subsystem that has an input with a design minimum of -10 and a design
maximum of 10 that is connected to an input signal with a constant value of 1. When you derive
ranges at the model level, the range analysis software uses the constant value 1 as the input. When
you derive ranges at the subsystem level, the range analysis software does not take the constant
value into account and instead uses [-10..10] as the range.

When to Derive Ranges at the Subsystem Level
Derive ranges at the subsystem level to facilitate:

• System validation

It is a best practice to analyze individual subsystems in your model one at a time. This practice
makes it easier to understand the atomic behavior of the subsystem. It also makes debugging
easier by isolating the source of any issues.

• Calibration

The results from the analysis at subsystem level are based only on the settings specified within the
subsystem. The proposed data types cover the full intended design range of the subsystem. Based
on these results, you can determine whether you can reuse the subsystem in other parts of your
model.

Derive Ranges at the Subsystem Level
The complete procedure for deriving ranges is described in “How to Derive Ranges” on page 43-4.

To derive ranges at the subsystem level, the key points to remember are:

• The subsystem or subchart must be atomic.

An atomic subsystem executes as a unit relative to the parent model. Atomic subsystem block
execution does not interleave with parent block execution. You can extract atomic subsystems for
use as standalone models.

• In the Fixed-Point Tool, under System Under Design (SUD), select the subsystem of interest.
• Under Range Collection Mode, select Derived ranges as the method of range collection.
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See Also

More About
• “How Range Analysis Works” on page 43-2

 Derive Ranges at the Subsystem Level

43-7



Derive Ranges Using Design Ranges
This example shows how the range analysis narrows the derived range for the Outport block. This
range is based on the range derived for the Add block using the design ranges specified on the two
Inport blocks and the design range specified for the Add block.

Open the Model and View Design Ranges
Open the model. At the MATLAB command line, enter:

open_system('ex_derived_min_max_1')

Update the diagram to display the specified design minimum and maximum values for each block.

• In1 design range is [-50..100].
• In2 design range is [-50..35].
• Add block design range is [-125..55].

Derive Ranges
1 From the Simulink Apps tab, select Fixed-Point Tool.
2 In the Fixed-Point Tool, under New workflow, select Iterative Fixed-Point Conversion.
3 Under System Under Design (SUD), select ex_derived_min_max_1 as the system you want

to convert.
4 Under Range Collection Mode, select Derived ranges.
5 Click the Collect Ranges button.

To calculate the derived range at the Add block input, the software uses the design minimum and
maximum values specified for the Inport blocks, [-50..100] and [-50..35]. The derived
range at the Add block input is [-85..150].

When the analysis is complete, the Fixed-Point Tool displays the derived and design minimum and
maximum values for the blocks in the selected system in the spreadsheet.
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• The derived range for the Add block output signal is narrowed to [-85..55]. This derived
range is the intersection of the range derived from the block inputs, [-85..150], and the
design minimum and maximum values specified for the block output, [-125..55].

Note The accumulator in the Add block does not participate in derived range analysis.
Ranges are derived only for block output signals.

• The derived range for the Outport block Out1 is [-85..55], the same as the Add block
output.

Tip To display design ranges in your model, in the Debug tab, select Information Overlays >
Signal Data Ranges.

See Also

Related Examples
• “Insufficient Design Range Information” on page 43-14
• “Troubleshoot Range Analysis of System Objects” on page 43-16
• “How Range Analysis Works” on page 43-2
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Derive Ranges Using Block Initial Conditions
This example shows how range analysis takes into account block initial conditions.

Open the Model
Open the model. At the MATLAB command line, enter:

open_system('ex_derived_min_max_2')

The model uses information overlays to display the specified design minimum and maximum values
for the Inport block, and block annotations to display the initial conditions for the Unit Delay block.

• In1 design range is [5..10].
• Unit Delay block initial condition is 0.

Derive Ranges
1 From the Simulink Apps tab, select Fixed-Point Tool.
2 In the Fixed-Point Tool, under New workflow, select Iterative Fixed-Point Conversion.
3 Under System Under Design (SUD), select ex_derived_min_max_2 as the system you want

to convert.
4 Under Range Collection Mode, select Derived ranges.
5 Click the Collect Ranges button.

In the spreadsheet, the Fixed-Point Tool displays the derived minimum and maximum values for
the blocks in the model.

The derived minimum and maximum range for the Outport block, Out1, is [0..10]. The range
analysis derives this range by taking the union of the initial value, 0, on the Unit Delay block and
the design range on the block, [5..10].

6 Change the initial condition of the Unit Delay block to 7.

a In the model, double-click the Unit Delay block.
b In the Block Parameters dialog box, set Initial condition to 7, then click OK.
c In the Fixed-Point Tool, click the Collect Ranges button.

Because the analysis takes the union of the initial conditions, 7, and the design range,
[5..10], on the Unit Delay block, the derived range for the Outport block is now [5..10].

Tip To display design ranges in your model, in the Debug tab, select Information Overlays >
Signal Data Ranges.
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See Also

More About
• “How Range Analysis Works” on page 43-2
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Derive Ranges for Simulink.Parameter Objects
This example shows how the range analysis takes into account design range information for
Simulink.Parameter objects unless the parameter storage class is set to Auto. If the parameter
storage class is set to Auto, the analysis uses the value of the parameter.

1 Open the ex_derived_min_max_3 model. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))
ex_derived_min_max_3

The model displays the specified design minimum and maximum values for the Inport blocks. The
design range for both Inport blocks is [1..2].

Tip To display design ranges in your model, in the Debug tab, select Information Overlays >
Signal Data Ranges.

2 Examine the gain parameters for the Gain blocks.

a Double-click each Gain block and note the name of the Gain parameter on the Main tab.

Gain Block Gain Parameter
Gain1 paramObjOne
Gain2 paramObjTwo

b In the Modeling tab, expand the Design gallery and select Model Explorer.
c In Model Explorer window, select the base workspace and view information for each of the

gain parameters used in the model.
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Gain Parameter Type Information Value Storage Class
paramObjOne Simulink.Parameter

object
2 Auto

paramObjTwo Simulink.Parameter
object

2 Model default

3 From the Simulink Apps tab, select Fixed-Point Tool.
4 In the Fixed-Point Tool, under New workflow, select Iterative Fixed-Point Conversion.
5 In the Fixed-Point Tool, under System Under Design (SUD), select ex_derived_min_max_3

as the system you want to convert.
6 Under Range Collection Mode, select Derived ranges.
7 Click the Collect Ranges button.

When the analysis is finished, the Fixed-Point Tool displays the derived minimum and maximum
values for the blocks in the model in the spreadsheet.

Block Derived
Range

Reason

Gain1 [2..4] The gain parameter, paramObjOne, specified on Gain
block Gain1 is a Simulink.Parameter object that has
its storage class specified as Auto. The range analysis
uses the Value property of the Simulink.Parameter
object, whose value is 2, and ignores the design range
specified for these parameters.

Gain2 [1..20] The gain parameter, paramObjTwo, specified on Gain
block Gain2 is a Simulink.Parameter object that has
its storage class specified as Model default. The range
analysis takes into account the design range, [1..10],
specified for this parameter.

See Also

More About
• “How Range Analysis Works” on page 43-2
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Insufficient Design Range Information
This example shows that if the analysis cannot derive range information because there is insufficient
design range information, you can fix the issue by providing additional input design minimum and
maximum values.

1 Open the ex_derived_min_max_4 model. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))
ex_derived_min_max_4

The model displays the specified design minimum and maximum values for the blocks in the
model.

• The Inport block In1 has a design minimum but no specified maximum value, as shown by the
annotation, [-1..].

• The Gain block has a design range of [-1.5..1.5].
• The Outport block Out1 has no design range specified.

Tip To display design ranges in your model, in the Debug tab, select Information Overlays >
Signal Data Ranges.

2 From the Simulink Apps tab, select Fixed-Point Tool.
3 In the Fixed-Point Tool, under New workflow, select Iterative Fixed-Point Conversion.
4 In the Fixed-Point Tool, under System Under Design (SUD), select ex_derived_min_max_4

as the system you want to convert.
5 Under Range Collection Mode, select Derived ranges.
6 Click the Collect Ranges button.

The Fixed-Point Tool displays the derived minimum and maximum values for the blocks in the
model. The range analysis is unable to derive a maximum value for the Inport block, In1. The
tool highlights this result.

7 To fix the issue, specify a design maximum value for In1:

a In the model, double-click the Inport block, In1.
b In the block parameters dialog box, select the Signal Attributes tab.
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c In this tab, set Maximum to 1 and click OK. To update the diagram, press (Ctrl + D).

The model displays the updated maximum value in the block annotation for In1, [-1..1].
8 Clear previously collected ranges and rerun the range analysis.

a In the Fixed-Point Tool, under New workflow, select Range Collection.

Changing workflows clears range data collected during the active workflow.
b Switch back to the Iterative Fixed-Point Conversion workflow.
c Select Derived ranges as the range collection mode.
d Click the Collect Ranges button again to rerun the range analysis.

The range analysis can now derive ranges for the Inport and Gain blocks.

Block Derived
Range

Reason

Inport In1 [-1..1] Uses specified design range on the block.
Gain [-1.5..1.5] The design range specified on the Gain block is

[-1.5..1.5]. The derived range at the block input is
[-1..1] (the derived range at the output of In1).
Therefore, because the gain is 2, the derived range at the
Gain block output is the intersection of the propagated
range, [-2..2], and the design range, [-1.5..1.5].

Outport Out1 [-1.5..1.5] Same as Gain block output because there is no locally
specified design range on Outport block.

See Also

Related Examples
• “Troubleshoot Range Analysis of System Objects” on page 43-16
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Troubleshoot Range Analysis of System Objects
When deriving ranges for a model that uses a system object, the analysis fails if the model contains
variables that can refer to multiple handle objects. The following example shows how to reconfigure
the code so that the Fixed-Point Tool can derive ranges for the model.

In this example, range analysis of the first model ex_HandleVariableRefersToMultipleObjects
produces an error because there is a variable in the code that can refer to different system objects
depending on other conditions. The model, ex_HandleVariableRefersToSingleObject is a
rewrite of the first model with the same functionality, but the Fixed-Point Tool is able to derive ranges
for the model.

1 Open the first model. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))
ex_HandleVariableRefersToMultipleObjects

The code inside the MATLAB Function block refers to the custom System Object fAddConstant.

function y  = fcn(u, c)
%#codegen

persistent hSysObjAddTen
persistent hSysObjAddNegTen
persistent hSysObjForStep

if isempty(hSysObjAddTen)
    hSysObjAddTen = fAddConstant(10);
end

if isempty(hSysObjAddNegTen)
    hSysObjAddNegTen = fAddConstant(-10);
end

if c > 0
    hSysObjForStep = hSysObjAddTen;
else
    hSysObjForStep = hSysObjAddNegTen;
end

y = step(hSysObjForStep, u);
2 From the Simulink Apps tab, select Fixed-Point Tool.
3 In the Fixed-Point Tool, under New workflow, select Iterative Fixed-Point Conversion.
4 In the Fixed-Point Tool, under System Under Design (SUD), select

ex_HandleVariableRefersToMultipleObjects as the system you want to convert.
5 Under Range Collection Mode, select Derived ranges.
6 Click the Collect Ranges button.

The analysis fails because there is a handle variable in the code that can refer to different system
objects depending on the value of c.

7 You can rewrite the code inside the MATLAB Function block so that the Fixed-Point Tool is able to
derive ranges for the System Object:

function y  = fcn(u, c)
%#codegen
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persistent hSysObjAddTen
persistent hSysObjAddNegTen

if isempty(hSysObjAddTen)
    hSysObjAddTen = fAddConstant(10);
end
if isempty(hSysObjAddNegTen)
    hSysObjAddNegTen = fAddConstant(-10);
end

if c > 0
    y = step(hSysObjAddTen, u);    
else
    y = step(hSysObjAddNegTen, u);    
end

8 Close the Fixed-Point Tool and the ex_HandleVariableRefersToMultipleObjects model.
Open the ex_HandleVariableRefersToSingleObject model, which contains the rewritten
code. At the MATLAB command line, enter:

ex_HandleVariableRefersToSingleObject
9 From the Simulink Apps tab, select Fixed-Point Tool.
10 In the Fixed-Point Tool, under New workflow, select Iterative Fixed-Point Conversion.
11 Under Range Collection Mode, select Derived ranges.
12 Click the Collect Ranges button.

This time, the Fixed-Point Tool successfully derives ranges for the variables used in the model.
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Providing More Design Range Information
This example shows that if the analysis cannot derive range information because there is insufficient
design range information, you can fix the issue by providing additional design range information.

1 Open the ex_derived_min_max_5 model. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))
ex_derived_min_max_5

The model displays the specified design minimum and maximum values for the blocks in the
model.

• The Inport block In1 has a design range of [-10..20].
• The rest of the blocks in the model have no specified design range.

Tip To display design ranges in your model, in the Debug tab, select Information Overlays >
Signal Data Ranges.

2 From the Simulink Apps tab, select Fixed-Point Tool.
3 In the Fixed-Point Tool, under New workflow, select Iterative Fixed-Point Conversion.
4 In the Fixed-Point Tool, under System Under Design (SUD), select ex_derived_min_max_5

as the system you want to convert.
5 Under Range Collection Mode, select Derived ranges.
6 Click the Collect Ranges button.

When the analysis is complete, the Fixed-Point Tool displays the derived minimum and maximum
values for the blocks in the model in the spreadsheet. Because the model contains a feedback
loop, the analysis is unable to derive an output range for the Add block or for any of the blocks
connected to this output. The Fixed-Point Tool highlights these results.
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7 To fix the issue, specify design minimum and maximum values inside the feedback loop. For this
example, specify the range for the Gain2 block:

a In the model, double-click the Gain2 block.
b In the block parameters dialog box, select the Signal Attributes tab.
c In this tab, set Output minimum to -20 and Output maximum to 40 and click OK.

8 Clear previously collected ranges and rerun the range analysis.

a In the Fixed-Point Tool, under New workflow, select Range Collection.

Changing workflows clears range data collected during the active workflow.
b Switch back to the Iterative Fixed-Point Conversion workflow.
c Select Derived ranges as the range collection mode.
d Click the Collect Ranges button again to rerun the range analysis.

The range analysis uses the minimum and maximum values specified for Gain2 and In1 to
derive ranges for all objects in the model.

See Also

Related Examples
• “Insufficient Design Range Information” on page 43-14
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Fixing Design Range Conflicts
This example shows how to fix design range conflicts. If you specify conflicting design minimum and
maximum values in your model, the range analysis software reports an error. To fix this error,
examine the design ranges specified in the model to identify inconsistent design specifications.
Modify them to make them consistent. In this example, the output design range specified on the
Outport block conflicts with the input design ranges specified on the Inport blocks.

1 Open the ex_range_conflict model. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))
ex_range_conflict

The model displays the specified design minimum and maximum values for the blocks in the
model.

• The Inport blocks In1 and In2 have a design range of [-1..1].
• The Outport block Out1 has a design range of [10..20].

Tip To display design ranges in your model, in the Debug tab, select Information Overlays >
Signal Data Ranges.

2 From the Simulink Apps tab, select Fixed-Point Tool.
3 In the Fixed-Point Tool, under New workflow, select Iterative Fixed-Point Conversion.
4 In the Fixed-Point Tool, under System Under Design (SUD), select ex_range_conflict as

the system you want to convert.
5 Under Range Collection Mode, select Derived ranges.
6 Click the Collect Ranges button.

The Fixed-Point Tool reports an error because the derived range for the Sum block, [-2..2] is
outside the specified design range for the Outport block, [10..20].

7 To fix the conflict, change the design range on the Outport block to [-10..20] so that this range
includes the derived range for the Sum block.

a In the model, double-click the Outport block.
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b In the block parameters dialog box, click the Signal Attributes tab.
c In this tab, set Minimum to -10 and click OK.

8 Clear previously collected ranges and rerun the range analysis.

a In the Fixed-Point Tool, under New workflow, select Range Collection.

Changing workflows clears range data collected during the active workflow.
b Switch back to the Iterative Fixed-Point Conversion workflow.
c Select Derived ranges as the range collection mode.
d Click the Collect Ranges button again to rerun the range analysis.

The range analysis derives a minimum value of -2 and a maximum value of 2 for the Outport
block.

See Also

More About
• “How Range Analysis Works” on page 43-2
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Intermediate Range Results
This example shows how to interpret the Intermediate Maximum and Intermediate Minimum results
in the Result Details tab.

Open the model. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))
ex_intermediateRange

1 Update the diagram (Ctrl+D). Notice the design range information for each of the input ports.

Tip To display design ranges in your model, in the Debug tab, select Information Overlays >
Signal Data Ranges.

2 Open the Fixed-Point Tool. From the Simulink Apps tab, select Fixed-Point Tool.
3 In the Fixed-Point Tool, under New workflow, select Iterative Fixed-Point Conversion.
4 In the Fixed-Point Tool, under System Under Design (SUD), select ex_intermediateRange

as the system you want to convert.
5 Under Range Collection Mode, select Derived ranges.
6 Click the Collect Ranges button.

The Fixed-Point Tool displays the derived minimum and maximum values for each object in the
ex_intermediateRange model.

7 In the Convert section of the toolstrip, open the Settings menu.

In the Default word length field, enter 32
8

Click the Propose Data Types button .
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The tool displays the proposed data types appear in the spreadsheet.
9 Look at the proposed data type of the Product block. The Fixed-Point Tool proposed a data type

with 32-bit word length and 12-bit fraction length. The derived maximum value of the Product
block is 1, but the maximum representable value for the proposed data type is approximately
1,048,575.

To learn more about the data type proposal, select the product block in the spreadsheet. The
Result Details pane populates with information about the result.

10 In the Result Details pane, in the Ranges used for proposal table, notice the row labeled
Intermediate. After the first two inputs to the Product block are multiplied, the block has a
maximum value of 1000000 before being multiplied by the next two inputs for a final maximum
value of 1. The data type proposal for the Product block in this model is based on the
intermediate minimum and maximum values. It is not based on the derived minimum and
maximum values to prevent overflows at the intermediate stages of the block.

 Intermediate Range Results

43-23



See Also

More About
• “How Range Analysis Works” on page 43-2
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Unsupported Simulink Software Features
Range analysis does not support the following Simulink software features. Avoid using these
unsupported features.

Not Supported Description
Variable-step solvers The software supports only fixed-step solvers.

For more information, see “Fixed Step Solvers in Simulink”.
Callback functions The software does not execute model callback functions during the

analysis. The results that the analysis generates may behave
inconsistently with the expected behavior.

• If a model or any referenced model calls a callback function that
changes any block parameters, model parameters, or workspace
variables, the analysis does not reflect those changes.

• Changing the storage class of base workspace variables on model
callback functions or mask initializations is not supported.

• Callback functions called prior to analysis, such as the
PreLoadFcn or PostLoadFcn model callbacks, are fully
supported.

Model callback functions The software only supports model callback functions if the InitFcn
callback of the model is empty.

Algebraic loops The software does not support models that contain algebraic loops.

For more information, see “Algebraic Loop Concepts”.
Masked subsystem
initialization functions

The software does not support models whose masked subsystem
initialization modifies any attribute of any workspace parameter.

Variable-size signals The software does not support variable-size signals. A variable-size
signal is a signal whose size (number of elements in a dimension), in
addition to its values, can change during model execution.

Arrays of buses The software does not support arrays of buses.

For more information, see “Group Nonvirtual Buses in Arrays of
Buses”.

Multiword fixed-point data
types

The software does not support multiword fixed-point data types.

Nonfinite data The software does not support nonfinite data (for example, NaN and
Inf) and related operations.

Signals with nonzero sample
time offset

The software does not support models with signals that have nonzero
sample time offsets.

Models with no output ports The software only supports models that have one or more output
ports.

Note The software does not report initial or intermediate values for Stateflow variables. Range
analysis will only report the ranges at the output of the block.
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Simulink Blocks Supported for Range Analysis

Overview of Simulink Block Support
The following tables summarize range analysis support for Simulink blocks. Each table lists all the
blocks in each Simulink library and describes support information for that particular block. If the
software does not support a given block, where possible, automatic stubbing considers the interface
of the unsupported blocks, but not their behavior, during the analysis. However, if any of the
unsupported blocks affect the simulation outcome, the analysis may achieve only partial results. If the
analysis cannot use automatic stubbing for a block, the block is marked as “not stubbable”. For more
information, see “Automatic Stubbing” on page 43-4.

Not all blocks that are supported for range analysis are supported for fixed-point conversion. To
check if a block supports fixed-point data types, see “Blocks That Do Not Support Fixed-Point Data
Types” on page 49-19.

Additional Math and Discrete Library

The software supports all blocks in the Additional Math and Discrete library.

Commonly Used Blocks Library

The Commonly Used Blocks library includes blocks from other libraries. Those blocks are listed under
their respective libraries.

Continuous Library

Block Support Notes
Derivative Not supported
Integrator Not supported
Integrator Limited Not supported
PID Controller Not supported
PID Controller (2DOF) Not supported
Second-Order Integrator Not supported
Second-Order Integrator Limited Not supported
State-Space Not supported
Transfer Fcn Not supported
Transport Delay Not supported
Variable Time Delay Not supported
Variable Transport Delay Not supported
Zero-Pole Not supported

Discontinuities Library

The software supports all blocks in the Discontinuities library.
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Discrete Library

Block Support Notes
Delay Supported
Difference Supported
Discrete Derivative Supported
Discrete Filter The software analyzes through the filter. It does not derive any

range information for the filter.
Discrete FIR Filter Supported
Discrete PID Controller Supported
Discrete PID Controller (2 DOF) Supported
Discrete State-Space Not supported
Discrete-Time Integrator Supported
Discrete Transfer Fcn Supported
Discrete Zero-Pole Not supported
Memory Supported
Tapped Delay Supported
Transfer Fcn First Order Supported
Transfer Fcn Lead or Lag Supported
Transfer Fcn Real Zero Supported
Unit Delay Supported
Zero-Order Hold Supported

Logic and Bit Operations Library

The software supports all blocks in the Logic and Bit Operations library.

Lookup Tables Library

Block Support Notes
Cosine Supported
Direct Lookup Table (n-D) Supported
Interpolation Using Prelookup Partially supported when:

• The Interpolation method parameter is Linear and the
Number of table dimensions parameter is greater than 4.

or

• The Interpolation method parameter is Linear and the
Number of sub-table selection dimensions parameter is not
0.

1-D Lookup Table Partially supported when the Interpolation method or the
Extrapolation method parameter is Cubic Spline.
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Block Support Notes
2-D Lookup Table Not supported when the Interpolation method or the

Extrapolation method parameter is Akima Spline.
n-D Lookup Table Partially supported when:

• The Interpolation method or the Extrapolation method
parameter is Cubic Spline.

or

• The Interpolation method parameter is Linear and the
Number of table dimensions parameter is greater than 5.

Not supported when the Interpolation method or the
Extrapolation method parameter is Akima Spline.

Lookup Table Dynamic Supported
Prelookup Supported
Sine Supported

Math Operations Library

Block Support Notes
Abs Supported
Add Supported
Algebraic Constraint Supported
Assignment Supported
Bias Supported
Complex to Magnitude-Angle Supported
Complex to Real-Imag Supported
Divide Supported
Dot Product Supported
Find Nonzero Elements Not supported
Gain Supported
Magnitude-Angle to Complex Supported
Math Function Supported. Support for pow function is limited to integer

exponents only.
Matrix Concatenate Supported
MinMax Supported
MinMax Running Resettable Supported
Permute Dimensions Supported
Polynomial Supported
Product Supported
Product of Elements Supported
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Block Support Notes
Real-Imag to Complex Supported
Reciprocal Sqrt Partially supported
Reshape Supported
Rounding Function Supported
Sign Supported
Signed Sqrt Partially supported
Sine Wave Function Partially supported
Slider Gain Supported
Sqrt Partially supported
Squeeze Supported
Subtract Supported
Sum Supported
Sum of Elements Supported
Trigonometric Function Supported if Function is sin, cos, or sincos, and

Approximation method is CORDIC. Partially supported
otherwise.

Unary Minus Supported
Vector Concatenate Supported
Weighted Sample Time Math Supported

Model Verification Library

The software supports all blocks in the Model Verification library.

Model-Wide Utilities Library

Block Support Notes
Block Support Table Supported
DocBlock Supported
Model Info Supported
Timed-Based Linearization Not supported
Trigger-Based Linearization Not supported

Ports & Subsystems Library

Block Support Notes
Subsystem, Atomic Subsystem, CodeReuse
Subsystem

Supported

Configurable Subsystem Supported
Enable Supported
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Block Support Notes
Enabled Subsystem Range analysis does not consider the design minimum and

maximum values specified for blocks connected to the outport of
the subsystem.

Enabled and Triggered Subsystem Not supported when the trigger control signal specifies a fixed-
point data type.

Range analysis does not consider the design minimum and
maximum values specified for blocks connected to the outport of
the subsystem.

For Each Supported with the following limitations:

• When For Each Subsystem contains another For Each
Subsystem, not supported.

• When For Each Subsystem contains one or more Simulink
Design Verifier™ Test Condition, Test Objective, Proof
Assumption, or Proof Objective blocks, not supported.

For Each Subsystem Supported with the following limitations:

• When For Each Subsystem contains another For Each
Subsystem, not supported.

• When For Each Subsystem contains one or more Simulink
Design Verifier Test Condition, Test Objective, Proof
Assumption, or Proof Objective blocks, not supported.

For Iterator Subsystem Supported
Function-Call Feedback Latch Supported
Function-Call Generator Supported
Function-Call Split Supported
Function-Call Subsystem Range analysis does not consider the design minimum and

maximum values specified for blocks connected to the outport of
the subsystem.

If Supported
If Action Subsystem Supported
Inport —
Model Supported except for the limitations described in “Limitations of

Support for Model Blocks” on page 43-33.
Outport Supported
Switch Case Supported
Switch Case Action Subsystem Supported
Trigger Supported
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Block Support Notes
Triggered Subsystem Not supported when the trigger control signal specifies a fixed-

point data type.

Range analysis does not consider the design minimum and
maximum values specified for blocks connected to the outport of
the subsystem.

Variant Subsystem, Variant Model Supported
While Iterator Subsystem Supported

Signal Attributes Library

The software supports all blocks in the Signal Attributes library.

Signal Routing Library

Block Support Notes
Bus Assignment Supported
Bus Creator Supported
Bus Selector Supported
Data Store Memory • When the Data Store Memory variable is tunable, range

analysis considers the design ranges specified on the block,
and ignores local model writes.

• When the Data Store Memory variable is not tunable, or
Auto, the analysis considers only local model writes. The
derived range is the range of the last write to the variable.

• When the Data Store Memory variable is defined outside of
the analyzed system, range analysis uses design ranges.

Data Store Read Supported
Data Store Write Supported
Demux Supported
Environment Controller Supported
From Supported
Goto Supported
Goto Tag Visibility Supported
Index Vector Supported
Manual Switch The Manual Switch block is compatible with the software, but

the analysis ignores this block in a model.
Merge Supported
Multiport Switch Supported
Mux Supported
Selector Supported
Switch Supported
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Block Support Notes
Vector Concatenate Supported

Sinks Library

Block Support Notes
Display Supported
Floating Scope Supported
Outport (Out1) Supported
Out Bus Element Supported
Scope Supported
Stop Simulation Not supported
Terminator Supported
To File Supported
To Workspace Supported

Sources Library

Block Support Notes
Band-Limited White Noise Not supported
Chirp Signal Partially supported
Clock Supported
Constant Supported unless Constant value is inf or nan (in which case,

it is not supported).
Counter Free-Running Supported
Counter Limited Supported
Digital Clock Supported
Enumerated Constant Supported
From File Partially supported. When MAT-file data is stored in MATLAB

timeseries format, not supported.
From Workspace Partially supported
Ground Supported
Inport (In1) Supported
In Bus Element Supported if Simulink.Bus type is defined for the In Bus

Element.
Pulse Generator Supported
Ramp Supported
Random Number Not supported
Repeating Sequence Partially supported
Repeating Sequence Interpolated Partially supported
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Block Support Notes
Repeating Sequence Stair Supported
Signal Builder Not supported
Signal Editor Not supported
Signal Generator Partially supported if wave form is sine. Supported if wave form

is square. Not supported if wave form is random.
Sine Wave Partially supported
Step Supported
Uniform Random Number Not supported

User-Defined Functions Library

Block Support Notes
Interpreted MATLAB Function Not supported
MATLAB Function The software uses the specified design minimum and maximum

values and returned derived minimum and maximum values for
instances of variables that correspond to input and output ports.
It does not consider intermediate instances of these variables.
For example, consider a MATLAB Function block that contains
the following code:

function y = fcn(u,v)
%#codegen
y = 2*u;
y = y + v;

Range analysis considers the design ranges specified for u and v
for the instance of y in y = y + v; because this is the instance
of y associated with the outport of the block.

The analysis does not consider design ranges for the instance of
y in y = 2*u; because it is an intermediate instance.

Level-2 MATLAB S-Function Not supported
S-Function Not supported
S-Function Builder Not supported
Simulink Function Simulink Functions with output arguments that are of complex

type are not supported.

Limitations of Support for Model Blocks
Range analysis supports the Model block with the following limitations. The software cannot analyze
a model containing one or more Model blocks if:

• The referenced model is protected. Protected referenced models are encoded to obscure their
contents. This allows third parties to use the referenced model without being able to view the
intellectual property that makes up the model.

For more information, see “Reference Protected Models from Third Parties”.
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• The parent model or any of the referenced models returns an error when you set the
Configuration Parameters > Diagnostics > Connectivity > Element name mismatch
parameter to error.

You can use the Element name mismatch diagnostic along with bus objects so that your model
meets the bus element naming requirements imposed by some blocks.

• The Model block uses asynchronous function-call inputs.
• Any of the Model blocks in the model reference hierarchy creates an artificial algebraic loop. If

this occurs, take the following steps:

1 On the Diagnostics pane of the Configuration Parameters dialog box, set the Minimize
algebraic loop parameter to error so that Simulink reports an algebraic loop error.

2 On the Model Referencing Pane of the Configuration Parameters dialog box, select the
Minimize algebraic loop occurrences parameter.

Simulink tries to eliminate the artificial algebraic loop during simulation.
3 Simulate the model.
4 Simulink will remove the algebraic loop if possible. If Simulink cannot eliminate the artificial

algebraic loop, highlight the location of the algebraic loop by opening the Modeling tab and,
in the Compile section, clicking Update Model.

5 Eliminate the artificial algebraic loop so that the software can analyze the model. Break the
loop with Unit Delay blocks so that the execution order is predictable.

Note For more information, see “Algebraic Loop Concepts”.
• The parent model and the referenced model have mismatched data type override settings. The

data type override setting of the parent model and its referenced models must be the same, unless
the data type override setting of the parent model is Use local settings. You can configure
data type override settings to simulate a model that specifies fixed-point data types. Using this
setting, the software temporarily overrides data types with floating-point data types during
simulation.

set_param('MyModel','DataTypeOverride','Double')

For more information, see set_param.

To observe the true behavior of your model, set the data type override parameter to
UseLocalSettings or Off.

set_param('MyModel','DataTypeOverride','Off')
• The referenced model is a Model block with virtual buses at input ports, and the signals in the bus

do not all have the same sample time at compilation. To make the model compatible with Simulink
Design Verifier analysis, convert the virtual bus to a nonvirtual bus, or specify an explicit sample
time for the port.

• When you run the analysis on Model block, then the code generated as a top model is not
supported.
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Range Collection Workflows

• “Use the Fixed-Point Tool to Explore Numerical Behavior” on page 44-2
• “Use Custom Data Type Override Settings for Range Collection” on page 44-9
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Use the Fixed-Point Tool to Explore Numerical Behavior
In this section...
“Set Up the Model” on page 44-2
“Open the Fixed-Point Tool and Collect Ranges” on page 44-3
“Explore Fixed-Point Behavior of the Model” on page 44-6

This example shows how to use the Fixed-Point Tool to compare floating-point and fixed-point data
types in your model. You can use the range collection functionality to explore and troubleshoot the
numerical behavior of your model for different inputs.

Set Up the Model
This tutorial uses a fixed-point direct form filter implemented using fundamental building blocks such
as Gain, Delay, and Sum. The model contains a Signal Generator block that supplies a square wave
input to the filter. In this tutorial, you explore the behavior of the filter for a range of signal inputs.

1 To open the fxpdemo_direct_form2 example, at the MATLAB command line, enter:

fxpdemo_direct_form2

2 To specify multiple simulation scenarios for range collection, define a
Simulink.SimulationInput object in the base or model workspace. Define a
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Simulink.SimulationInput object, simIn, that specifies the amplitude of the square wave
input for a range of values.

simIn(1:6) = Simulink.SimulationInput('fxpdemo_direct_form2'); 

simIn(1) = simIn(1).setBlockParameter('fxpdemo_direct_form2/Input','Amplitude','0.001');
simIn(2) = simIn(2).setBlockParameter('fxpdemo_direct_form2/Input','Amplitude','0.01');
simIn(3) = simIn(3).setBlockParameter('fxpdemo_direct_form2/Input','Amplitude','0.1');
simIn(4) = simIn(4).setBlockParameter('fxpdemo_direct_form2/Input','Amplitude','1');
simIn(5) = simIn(5).setBlockParameter('fxpdemo_direct_form2/Input','Amplitude','10');
simIn(6) = simIn(6).setBlockParameter('fxpdemo_direct_form2/Input','Amplitude','100');

The Fixed-Point Tool collects ranges for each specified scenario and merges the results from all
simulation runs. Merging allows you to explore the numerical behavior of your model over the
complete simulation range.

3 To specify signal tolerances, enable signal logging at the output of the Sum1 block.

Simulink.sdi.markSignalForStreaming('fxpdemo_direct_form2/Sum1',1,'on');

Open the Fixed-Point Tool and Collect Ranges
1 In the Apps tab of the fxpdemo_direct_form2 model, select Fixed-Point Tool.
2 In the Fixed-Point Tool, click New > Range Collection.
3 Under System Under Design (SUD), select fxpdemo_direct_form2.
4 Under Range Collection Mode, select Simulation Ranges as the range collection method.
5 Under Simulation Inputs, select the Simulink.SimulationInput object, simIn, that you

defined in the base workspace.
6 To specify tolerances for the system, under Signal Tolerances, specify tolerances for any signal

in the model with signal logging enabled.

Set the relative tolerance (Rel Tol) of the signal that you logged to 15%.

7 Under Collect Ranges, select Double precision.
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When you collect ranges via simulation, the Fixed-Point Tool will override the data types in your
model with doubles and simulate the model with instrumentation to collect minimum and
maximum values for each object in your model. You can also choose to override data types with
singles or scaled doubles, or use the current data type override set on the model.

8 Click the Collect Ranges button.

Simulink simulates the fxpdemo_direct_form2 model six times, once for each amplitude of the
input square wave specified in the Simulink.SimulationInput object. The Fixed-Point Tool
automatically enables fixed-point instrumentation and overrides the data types in your model
with doubles to collect a floating-point baseline.

You can view the ranges of each simulation individually by selecting the simulation scenario in
the Workflow Browser.

Selecting the BaselineRun node in the Workflow Browser shows the merged ranges from the
six simulation scenarios.
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9 Click Settings, then select Specified data types.
10 Click Simulate with Embedded Types.

The Fixed-Point Tool simulates the model once for each simulation scenario, using the fixed-point
data types specified in the model. Selecting the EmbeddedRun node in the Workflow Browser
shows the merged results from the six simulation scenarios.

 Use the Fixed-Point Tool to Explore Numerical Behavior

44-5



The Workflow Browser indicates that of the six simulation scenarios, only
EmbeddedRun_Scenario_4 met the tolerances specified. Results with overflows are highlighted
in red.

Explore Fixed-Point Behavior of the Model
1 Select the Explore tab of the Fixed-Point Tool to investigate further. Under Numerical Issues,

select Overflow, then click Execution Order.
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The Fixed-Point Tool displays only the EmbeddedRun results with overflows and sorts the list
based on block execution order. In this example, the first overflow occurs in the Gain4 block.

You can double-click on any row in the Results spreadsheet to highlight the block in the model.
2 You can compare the fixed-point and floating-point behavior of the model for a specific simulation

scenario using the Simulation Data Inspector. For example, the Fixed-Point Tool indicates that
EmbeddedRun_Scenario_3 did not meet the specified tolerance. To compare this embedded run
to the floating-point behavior for this simulation scenario, right-click on
EmbeddedRun_Scenario_3 and select Open SDI to compare with
BaselineRun_Scenario_3.
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The Simulation Data Inspector plots the logged signal associated with the output of the Sum1
block for BaselineRun_Scenario_3 and EmbeddedRun_Scenario_3, as well as their
difference and the tolerance specified for this signal.

See Also
“Propose Data Types For Merged Simulation Ranges” on page 42-54 | “Control Views in the Fixed-
Point Tool” on page 39-12 | “Iterative Fixed-Point Conversion Using the Fixed-Point Tool” on page 42-
9
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Use Custom Data Type Override Settings for Range Collection
This example shows how to specify custom data type override settings to use during the range
collection step in the Fixed-Point Tool.

By default, the Fixed-Point Tool honors the data types and any data type override specified on the
model. You can use the Fixed-Point Tool to override data types in your model with doubles, singles, or
scaled doubles. To specify custom data type overrides for elements within your model, use the
set_param function.

Load a Simple Model

Open the fxp_custom_dto model. The model consists of three subsystems. Update the diagram
(Ctrl+D) to display the data types currently set on the model.

open_system('fxp_custom_dto')

The original model uses the double-precision data type for each of the three subsystems within the
model.

Override Data Types for a Subsystem

To override the data types in Subsystem A and Subsystem C with singles, use the set_param
function:

set_param('fxp_custom_dto/Subsystem A','DataTypeOverride','Single');
set_param('fxp_custom_dto/Subsystem C','DataTypeOverride','Single');

Update the diagram and inspect the model to confirm that the data type override has been applied.
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Collect Ranges Using the Fixed-Point Tool

In the Apps tab of the fxp_custom_dto model, select Fixed-Point Tool.

In the Fixed-Point Tool, select New > Range Collection. Under System Under Design (SUD),
select fxp_custom_dto. Under Range Collection Mode, select Simulation Ranges.

Under Collect Ranges, select Use current settings. Click Collect Ranges.

The Fixed-Point Tool collects ranges via simulation using the current data type override applied to
your model. In this example, the data types of Subsystem A and Subsystem C are overrode with
singles, and Subsystem B remains in double precision.

Verify Data Type Override Settings

To verify that the custom data type override settings specified using the set_param function were
applied to the model during the range collection run, inspect the Results spreadsheet in the Fixed-
Point Tool.

The compiled data type (CompiledDT) column for BaselineRun shows that Subsystem A and
Subsystem C used the single data type, while the rest of the model was simulation using the
double data type.
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Data Type Override for a Model Reference Hierarchy

When you simulate a model that contains referenced models, the data type override settings for the
top-level model do not control the settings for the referenced models. You must specify these settings
separately for referenced models, and if the settings must be consistent. For example, if you set the
top-level model data type override setting to double and the referenced model to use local settings,
and the referenced model uses fixed-point data types, then data type propagation issues might occur.

When you change the data type override settings for any instance of a referenced model, the settings
change on all instances of the model and on the referenced model itself.

See Also
“Fixed-Point Instrumentation and Data Type Override” on page 42-61 | “Convert a Referenced Model
to Fixed Point” on page 39-7

 Use Custom Data Type Override Settings for Range Collection

44-11





Working with the MATLAB Function
Block

• “Convert MATLAB Function Block to Fixed Point” on page 45-2
• “Replace Functions in a MATLAB Function Block with a Lookup Table” on page 45-9
• “Best Practices for Working with the MATLAB Function Block in Automated Fixed-Point

Conversion Workflows” on page 45-12
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Convert MATLAB Function Block to Fixed Point
This example shows how to use the Fixed-Point Tool to convert a model containing a MATLAB
Function block to fixed point.

Best Practices for Working with the MATLAB Function Block in the
Fixed-Point Tool
• Do not edit the fixed-point variant of your MATLAB Function block algorithm. Use the code view to

edit the floating-point variant of your MATLAB code and re-propose and apply data types.
• For a successful conversion, only use modeling constructs supported for automated fixed-point

conversion. For a list of the supported modeling constructs, see “MATLAB Language Features
Supported for Automated Fixed-Point Conversion” on page 7-35.

• While collecting range information, do not edit the MATLAB code in the MATLAB Function block.
Editing the code will cause problems if you try to merge results.

• During the fixed-point conversion process using the Fixed-Point Tool, do not use the “Save as”
option to save the MATLAB Function block with a different name. If you do, you might lose
existing results for the original block.

Open the Model
Change directories to the folder where the model is located. At the MATLAB command line, enter:

cd(fullfile(docroot,'toolbox','fixpoint','examples'))

Copy the ex_symmetric_fir.slx file to a local writable folder and open the model.
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The ex_symmetric_fir model uses a symmetric FIR filter. Simulate the model and inspect the
model output. Inspect the symmetric FIR filter algorithm by double-clicking the MATLAB Function
block.

1 To open the Fixed-Point Tool, in the Apps tab, expand the Apps gallery and select Fixed-Point
Tool.

2 In the Fixed-Point Tool, expand the New button arrow and select Iterative Fixed-Point
Conversion.

3 Under System Under Design (SUD), select the symmetric_fir subsystem, which contains the
MATLAB Function block, as the system to convert.

4 Under Range Collection Mode, select Simulation ranges as the method of range collection.
This configures the model to collect ranges using idealized floating-point data types.

5 In the Prepare section of the toolstrip, click Prepare.

Collect Range Information
Collect idealized ranges to use for data type proposal. Expand the Collect Ranges button arrow and
select Double precision. Click Collect Ranges to start the simulation.

The Fixed-Point Tool stores the simulation data in a run titled BaselineRun. Examine the range
information of the MATLAB variables in the spreadsheet.

Propose Data Types
Configure the proposal settings and propose fixed-point data types for the model.

1 In the Convert section of the toolstrip you can configure the data type proposal settings for the
MATLAB Function block variables.

In this example, use the default proposal settings.
2 Click Propose Data Types.

The data type proposals appear in the ProposedDT column of the spreadsheet.

Note The SpecifiedDT column is always blank for MATLAB Function block variables.
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Inspect Code Using the Code View
To launch the code view, click the MATLAB Functions button.

Using the code view you can:

• View detailed variable and expression information.
• Adjust proposal settings, such as fimath settings.
• Edit proposed data types.
• Manage function replacements.

For examples showing how to replace MATLAB functions with a lookup table, see “Replace
Functions in a MATLAB Function Block with a Lookup Table” on page 45-9.

• Edit your code.
• Propose fixed-point data types.
• Apply proposed data types to your code.

To view the current proposal settings, click Settings. Here you can edit the fimath properties for
the function. For this example, the default fimath properties are sufficient.
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Apply Proposed Data Types
When you have finished examining the proposed types, editing proposal settings, and implementing
any function replacements, apply the proposed data types to the model. You can apply the data types
either from the code view, or from the Fixed-Point Tool.

In the code view window, click Apply. The left pane displays both the original floating-point MATLAB
Function block, as well as a newly generated fixed-point variant MATLAB Function block.

Right-click on the MATLAB Function block node in the left pane. Select Go to Block to navigate to
the MATLAB Function block in the model.
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A variant subsystem is now in the place of the MATLAB Function block. The variant subsystem
contains both floating-point and fixed-point versions of the MATLAB Function block. The active
version is automatically controlled by the Fixed-Point Tool based on the data type override settings of
the model. Data Type Override is not currently active on the model, so the fixed-point version is
active.
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Verify Results
Return to the Fixed-Point Tool to verify the results of the conversion.

In the Verify section of the toolstrip, click the Simulate with Embedded Types button to simulate
the model using the newly applied fixed-point data types. The model simulates with the fixed-point
variant as the active variant.
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See Also

Related Examples
• “Replace Functions in a MATLAB Function Block with a Lookup Table” on page 45-9
• “Best Practices for Working with the MATLAB Function Block in Automated Fixed-Point

Conversion Workflows” on page 45-12
• “MATLAB Language Features Supported for Automated Fixed-Point Conversion” on page 7-35
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Replace Functions in a MATLAB Function Block with a Lookup
Table

This example shows how to replace a function that is used inside a MATLAB Function block with a
more efficient implementation. The following model contains a MATLAB Function block which
computes the sine of the input. Use the Code View to replace the built-in sin function with a lookup
table.

Change directories to the folder where the model is located. At the MATLAB command line, enter:

cd(fullfile(docroot,'toolbox','fixpoint','examples'))

Copy and save the ex_mySin.slx file to a local writable folder and open the model.

function y = my_sin(u)
%#codegen
y = sin(u);

1 To open the Fixed-Point Tool, in the Apps tab, expand the Apps gallery and select Fixed-Point
Tool

2 In the Fixed-Point Tool, expand the New button arrow and select Iterative Fixed-Point
Conversion.

3 Under System Under Design (SUD), select the model ex_mySin as the system to convert.
4 Under Range Collection Mode, select Simulation ranges as the method of range collection.

This configures the model to collect ranges using idealized floating-point data types.
5 In the Prepare section of the toolstrip, click Prepare.
6 Expand the Collect Ranges button arrow and select Double precision. Click Collect

Ranges to start the simulation.

The Fixed-Point Tool stores the simulation data in a run titled BaselineRun. Examine the range
information of the MATLAB variables in the spreadsheet.

 Replace Functions in a MATLAB Function Block with a Lookup Table

45-9



7 To launch the code view, in the Convert section of the toolstrip, click MATLAB Functions.
8 Select the Function Replacements tab.
9 Enter the name of the function you want to replace. For this example, enter sin. Select Lookup

Table, and then click .

The fixed-point conversion process infers the ranges for the function and then uses an
interpolated lookup table to replace the function. By default, the lookup table uses linear
interpolation, 1000 points, and the minimum and maximum values detected by running the test
file.

10 Click Propose to get data type proposals for the variables.
11 Click Apply to apply the data type proposals and generate a fixed-point lookup table.

If the behavior of the generated fixed-point code does not match the behavior of the original code
closely enough, modify the interpolation method or number of points used in the lookup table and
then regenerate the fixed-point code.

12 Return to the Fixed-Point Tool. In the Verify section of the toolstrip, click the Simulate with
Embedded Types button to simulate the model using the newly applied fixed-point data types.
The model simulates with the fixed-point variant as the active variant.
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See Also

Related Examples
• “Convert MATLAB Function Block to Fixed Point” on page 45-2
• “Best Practices for Working with the MATLAB Function Block in the Fixed-Point Tool” on page

45-2
• “MATLAB Language Features Supported for Automated Fixed-Point Conversion” on page 7-35
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Best Practices for Working with the MATLAB Function Block in
Automated Fixed-Point Conversion Workflows

Follow these best practices when using MATLAB Function blocks with automated fixed-point
conversion workflows, including the Fixed-Point Tool and fxpopt.

• Do not edit the fixed-point variant of your MATLAB Function block algorithm. Use the code view to
edit the floating-point variant of your MATLAB code and reconvert to fixed-point data types.

• For a successful conversion, only use modeling constructs supported for automated fixed-point
conversion. For a list of the supported modeling constructs, see “MATLAB Language Features
Supported for Automated Fixed-Point Conversion” on page 7-35.

• While collecting range information, do not edit the MATLAB code in the MATLAB Function block.
Editing the code will cause problems if you try to merge results.

• During the fixed-point conversion process using the Fixed-Point Tool, do not use the "Save As"
option to save the MATLAB Function block with a different name. If you do, you might lose
existing results for the original block.

Unsupported MATLAB Function Block Features
These MATLAB Function block features are not supported for automated fixed-point conversion
workflows.

• Some MATLAB language features are not supported for automated fixed-point conversion. See
“MATLAB Language Features Supported for Automated Fixed-Point Conversion” on page 7-35.

• Variable and struct names must be less than 63 characters long.

See Also
“MATLAB Language Features Supported for Automated Fixed-Point Conversion” on page 7-35

Related Examples
• “Convert MATLAB Function Block to Fixed Point” on page 45-2
• “Replace Functions in a MATLAB Function Block with a Lookup Table” on page 45-9
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Working with Data Objects in the Fixed-
Point Workflow

• “Bus Objects in the Fixed-Point Workflow” on page 46-2
• “Autoscaling Data Objects Using the Fixed-Point Tool” on page 46-5
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Bus Objects in the Fixed-Point Workflow
In this section...
“How Data Type Proposals Are Determined for Bus Objects” on page 46-2
“Bus Naming Conventions with Data Type Override” on page 46-3
“Limitations of Bus Objects in the Fixed-Point Workflow” on page 46-3

How Data Type Proposals Are Determined for Bus Objects
The data type proposal for a bus object is found by taking the union of the ranges of all sources
driving the same bus element, and then proposing a data type for this range. The Fixed-Point Tool
does not log minimum and maximum ranges for elements of a bus signal.

The ex_bus_range example shows how the software determines the data types for elements of bus
objects. To open the ex_bus_range model, at the MATLAB command line, enter:
addpath(fullfile(docroot,'toolbox','fixpoint','examples'));
ex_bus_range

Each of the four input ports in this model have specified design ranges. The In2 and In4 input ports
must share the same data type because they drive the same element of the mybus bus object.

The Fixed-Point Tool proposes a data type based on the union of these two ranges. After proposing
data types for the model, select the Data Objects node in the Model Hierarchy pane. In the Result
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Details pane for the mybus : b element of the bus object, notice the row labeled Shared Design in
the Ranges used for proposal table. The proposed data type is based on this range, which is the
union of the design ranges of the In2 and In4 blocks.

Bus Naming Conventions with Data Type Override
When you use data type override on a model that contains buses, the Fixed-Point Tool generates a
new bus which uses the overridden data type. To indicate that a model is using an overridden bus, the
tool adds a prefix to the name of the original bus object. While a model is in an overridden state, a
bus object named myBus is renamed based on the following pattern.

DTO Mode DTO Applies To
All Numeric Types Floating Point Fixed Point

Scaled Double dtoScl_myBus dtoSclFlt_myBus dtoSclFxp_myBus
Double dtoDbl_myBus dtoDblFlt_myBus dtoDblFxp_myBus
Single dtoSgl_myBus dtoSglFlt_myBus dtoSglFxp_myBus

Note You cannot see bus objects with an overridden data type within the Bus Editor because they are
not stored in the base workspace.

Limitations of Bus Objects in the Fixed-Point Workflow
An update diagram error can occur if any of the following conditions occur.

• Your model is in accelerator mode and has a bus object with an overridden data type at the output
port.
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To perform data type override, run the model in normal mode.
• The data types in your model are overridden and the model contains Stateflow charts that use

MATLAB as the action language.
• Your model contains tunable MATLAB structures assigned to a bus signal (such as Unit Delay

blocks with a structure as the initial condition, Stateflow data, and MATLAB structures from the
workspace).

To use the Fixed-Point Tool, change the structure to a non tunable structure. To avoid unnecessary
quantization effects, specify the structure fields as doubles. For more information on using a
structure as an initial condition with bus objects, see “Data Type Mismatch and Structure Initial
Conditions” on page 49-28.

• Your model contains a structure parameter specified through the mask of an atomic subsystem.

To use the Fixed-Point Tool, make the system non-atomic.
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Autoscaling Data Objects Using the Fixed-Point Tool
The Fixed-Point Tool generates a data type proposal for data objects based on ranges collected
through simulation, derived range analysis, and design ranges specified on model objects. The Fixed-
Point Tool also takes into consideration any data type constraints imposed by the model objects.

These types of data objects are supported for conversion using the Fixed-Point Tool.

• Simulink.Parameter
• Simulink.Bus
• Simulink.NumericType
• Simulink.AliasType
• Simulink.Signal
• Simulink.LookupTable
• Simulink.Breakpoint

The following sections describe how the tool collects the ranges and analyzes constraints.

Collecting Ranges for Data Objects
The objects in your model that use the same data object to specify its type must all share the same
data type. The Fixed-Point Tool collects the ranges for all objects in your model. Objects that must
share the same data type are placed in a data type group. The Fixed-Point Tool generates a data type
proposal for the group based on the union of the ranges of all model objects in the group.

Collecting Ranges for Parameter Objects

Whenever possible, it is a best practice to specify design range information on the parameter object.
When the data type of the parameter object is set to auto, the Fixed-Point Tool follows the same rules
as when proposing for inherited data types. The Fixed-Point Tool determines the ranges to use for the
data type proposal for a parameter object by taking the union of the parameter value, the parameter
design ranges, and the design ranges of client blocks.

Data Type Constraints in Data Objects
Some objects in a shared data type group may contain constraints on the data types they can accept.
For example, some blocks can accept only signed data types.

Autoscaling Parameter Objects

The Fixed-Point Tool is not able to detect when a parameter object must be integer only, such as when
using a parameter object as a variable for dimensions, variant control, or a Boolean value. In these
cases, you must clear the Accept box in the Fixed-Point Tool proposal stage before applying data
types to your model.

Autoscaling Breakpoint Objects

Breakpoint data must always be strictly monotonically increasing. Although a breakpoint data set
may be strictly monotonic in double format, due to saturation and quantization, it might not be after
conversion to a fixed-point data type. The Fixed-Point Tool accounts for this behavior and proposes a
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data type large enough to satisfy the monotonicity constraint after conversion. In some cases, the
data type is very large in order to satisfy the constraint. In this case, consider editing your breakpoint
data such that it can be represented efficiently in fixed point.

Autoscale a Model Using Data Objects for Data Type Definitions
The following model uses several different types of data objects, including Simulink.Bus,
Simulink.NumericType, Simulink.LookupTable, and Simulink.Breakpoint objects for data
type definition. Use the Fixed-Point Tool to convert the floating-point model, including the data
objects used in the model, to fixed point.

1 Open the ex_data_objects model. At the MATLAB command line, enter:
addpath(fullfile(docroot,'toolbox','fixpoint','examples'));
ex_data_objects

2 From the Simulink Apps tab, select Fixed-Point Tool.
3 In the Fixed-Point Tool, under New workflow, select Iterative Fixed-Point Conversion.
4 In the Fixed-Point Tool, under System Under Design (SUD), select Target Embedded

System as the system you want to convert.
5 Under Range Collection Mode, select Simulation ranges.
6 Click the Prepare button. The Fixed-Point Tool checks the system under design for compatibility

with the conversion process and reports any issues found in the model.

When model objects within the system under design share a data type with objects outside of the
system under design, data type propagation issues can occur after conversion to fixed point. For
this reason, during the preparation stage of the conversion, the Fixed-Point Tool inserts Data
Type Conversion blocks at the outputs of the system under design.

In this example, the tool is not able to automatically insert a Data Type Conversion block at the
ex_data_objects/Throttle port because the port uses a bus signal. You can ignore this
warning in this case because there are already Data Type Conversion blocks isolating this port
inside the Throttle subsystem.

7 Expand the Collect Ranges button arrow and select Double Precision. Click the Collect

Ranges button  to start the simulation. The Fixed-Point Tool stores collected range
information in a run titled BaselineRun.
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8
In the Convert section, click the Propose Data Types button .

The Fixed-Point Tool detects data objects in the model and proposes a data type that satisfies the
constraints of the data object. You can view all data objects used in a model by selecting Data
Objects in the Model Hierarchy pane.

9 To learn more about a particular result, select the data object in the Results spreadsheet. The
Result Details pane provides more details about the proposal, and gives a link to highlight all
blocks in your model using a particular data object.

The tool displays the proposed data types for all results in the ProposedDT column of the
Results spreadsheet.

10 To view the data type group that a result belongs to, add the DTGroup column to the
spreadsheet. Click the add column button . Select DTGroup in the menu.
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To sort by the DTGroup column, click the column header. You can now see results that must
share the same data type next to each other.

11
Click the Apply Data Types button  to write the proposed data types to the model.

The Fixed-Point Tool applies the data type proposals to the data objects at their definition. In this
example, the data objects are defined in the base workspace. View the details of a particular data
object by entering the name of the data object at the MATLAB command line.

errorDT

  NumericType with properties:

      DataTypeMode: 'Fixed-point: binary point scaling'
        Signedness: 'Signed'
        WordLength: 16
    FractionLength: 11
           IsAlias: 1
         DataScope: 'Auto'
        HeaderFile: ''
       Description: ''

See Also

More About
• “Iterative Fixed-Point Conversion Using the Fixed-Point Tool” on page 42-9
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Command Line Interface for the Fixed-
Point Tool

• “The Command-Line Interface for the Fixed-Point Tool” on page 47-2
• “Convert a Model to Fixed Point Using the Command Line” on page 47-4
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The Command-Line Interface for the Fixed-Point Tool
The methods of the DataTypeWorkflow.Converter class allow you to collect simulation and
derived data, propose and apply data types to the model, and analyze results. The class performs the
same fixed-point conversion tasks as the Fixed-Point Tool. The following table summarizes the steps
in the workflow and lists the appropriate classes and methods to use at each step.

Step in Workflow Primary Objects and Object Functions for Step in Workflow
Set up model • DataTypeWorkflow.Converter
Prepare the model for fixed-point
conversion

• applySettingsFromShortcut
• applySettingsFromRun

Gather range information • deriveMinMax
• simulateSystem

Propose data types • DataTypeWorkflow.ProposalSettings
• addTolerance
• clearTolerances
• showTolerances
• proposeDataTypes
• proposalIssues

Apply proposed data types • applyDataTypes
Verify new fixed-point settings
and analyze results

• DataTypeWorkflow.Result
• DataTypeWorkflow.VerificationResult
• results
• saturationOverflows
• wrapOverflows
• verify
• explore

Note You should not use the Fixed-Point Tool and the command-line interface in the same conversion
session.

To decide which workflow is right for you, consult the following table:

Capability Fixed-Point Tool Command-Line Interface
Populate runs to dataset

Delete result from dataset

Edit proposed data types  

Selectively apply data type
proposals

 

Run multiple simulations
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Capability Fixed-Point Tool Command-Line Interface
Script workflow  

See Also

Related Examples
• “Convert a Model to Fixed Point Using the Command Line” on page 47-4
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Convert a Model to Fixed Point Using the Command Line
This example shows how to refine the data types of a model using the command line.

Open the fxpdemo_feedback model.

model = 'fxpdemo_feedback';
open_system(model);

The Controller subsystem uses fixed-point data types.

sud = 'fxpdemo_feedback/Controller';
open_system(sud)
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Create a DataTypeWorkflow.Converter object to refine the data types of the Controller
subsystem of the fxpdemo_feedback model.

converter = DataTypeWorkflow.Converter(sud);

Simulate the model and store the results in a run titled InitialRun.

converter.CurrentRunName = 'InitialRun';
converter.simulateSystem();

Determine any overflows occurred during the run.

saturations = converter.saturationOverflows('InitialRun')

saturations = 

  Result with properties:

           ResultName: 'fxpdemo_feedback/Controller/Up Cast'
    SpecifiedDataType: 'fixdt(1,16,14)'
     CompiledDataType: 'fixdt(1,16,14)'
     ProposedDataType: ''
                Wraps: []
          Saturations: 23
          WholeNumber: 0
               SimMin: -2
               SimMax: 1.9999
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           DerivedMin: []
           DerivedMax: []
              RunName: 'InitialRun'
             Comments: {'An output data type cannot be specified on this result. The output type is the same as the input type.'}
            DesignMin: []
            DesignMax: []

wraps = converter.wrapOverflows('InitialRun')

wraps =

     []

A saturation occurs in the Up Cast block of the Controller subsystem during the simulation. There are
no wrapping overflows. Refine the data types of the model so that there are no saturations.

Configure the model for conversion using a shortcut. Find the shortcuts that are available for the
system by accessing the ShortcutsForSelectedSystem property of the converter object.

shortcuts = converter.ShortcutsForSelectedSystem

shortcuts =

  6x1 cell array

    {'Range collection using double override'       }
    {'Range collection with specified data types'   }
    {'Range collection using single override'       }
    {'Disable range collection'                     }
    {'Remove overrides and disable range collection'}
    {'Range collection using scaled double override'}

To collect idealized ranges for the system, using the 'Range collection using double
override' shortcut, override the system with double-precision data types and enable
instrumentation.

converter.applySettingsFromShortcut(shortcuts{1});

This shortcut also updates the current run name property of the converter object.

baselineRun = converter.CurrentRunName

baselineRun =

    'Ranges(Double)'

Simulate the model again to gather the idealized range information. These results are stored in the
run baselineRun.

converter.simulateSystem();
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Create a ProposalSettings object to control the data type proposal settings and specify tolerances
for signals in the model.

propSettings = DataTypeWorkflow.ProposalSettings;

Specify a relative tolerance of 20% for the output signal of the PlantOutput signal in the model.

addTolerance(propSettings, 'fxpdemo_feedback/Analog Plant', 1, 'RelTol', 2e-1);

You can view all tolerances specified for a system using the showTolerances method.

showTolerances(propSettings)

                  Path                   Port_Index    Tolerance_Type    Tolerance_Value
    _________________________________    __________    ______________    _______________

    {'fxpdemo_feedback/Analog Plant'}        1           {'RelTol'}            0.2      

Propose data types for the system using the proposal settings specified in propSettings, and the
ranges stored in the baselineRun run.

converter.proposeDataTypes(baselineRun, propSettings)

Warning: Non-scalar in Uniform output, at index 3, output 1.
Set 'UniformOutput' to false. 
Warning: Non-scalar in Uniform output, at index 3, output 1.
Set 'UniformOutput' to false. 
Warning: Non-scalar in Uniform output, at index 3, output 1.
Set 'UniformOutput' to false. 
Warning: Non-scalar in Uniform output, at index 3, output 1.
Set 'UniformOutput' to false. 

Apply data types proposed for the baselineRun run to the model.

converter.applyDataTypes(baselineRun)

Warning: Non-scalar in Uniform output, at index 3, output 1.
Set 'UniformOutput' to false. 
Warning: Non-scalar in Uniform output, at index 3, output 1.
Set 'UniformOutput' to false. 

Verify that the behavior of the model using the new data types meets the tolerances specified on the
proposal settings object, propSettings. The verify method removes the data type override and
simulates the model using the updated fixed-point data types. It returns a
DataTypeWorkflow.VerificationResult object.

result = verify(converter, baselineRun, 'FixedRun')

result = 

  VerificationResult with properties:

    ScenarioResults: [0x0 DataTypeWorkflow.VerificationResult]
            RunName: 'FixedRun'
    BaselineRunName: 'Ranges(Double)'
             Status: 'Pass'
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      MaxDifference: 0.0351

Using the explore method of the DataTypeWorkflow.VerificationResult object, launch the
Simulation Data Inspector and examine the signals for which you specified a tolerance.

explore(result)

See Also

More About
• “The Command-Line Interface for the Fixed-Point Tool” on page 47-2
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Fixed-Point Code Generation Support
In this section...
“Introduction” on page 48-4
“Languages” on page 48-4
“Data Types” on page 48-4
“Rounding Modes” on page 48-4
“Overflow Handling” on page 48-4
“Blocks” on page 48-4
“Scaling” on page 48-5

Introduction
All fixed-point blocks support code generation, except particular simulation features. The sections
that follow describe the code generation support that the Fixed-Point Designer software provides. You
must have a Simulink Coder license to generate C code or a HDL Coder license to generate HDL
code.

Languages
C code generation is supported with the use of Simulink Coder. HDL code generation is supported
with the use of HDL Coder.

Data Types
Fixed-point code generation supports all integer and fixed-point data types that are supported by
simulation. Word sizes of up to 128 bits are supported in simulation. See “Supported Data Types” on
page 34-13.

Rounding Modes
All rounding modes — Ceiling, Convergent, Floor, Nearest, Round, Simplest, and Zero — are
supported.

Overflow Handling
• Saturation and wrapping are supported.
• Wrapping generates the most efficient code.
• Currently, you cannot choose to exclude saturation code automatically when hardware saturation

is available. Select wrapping in order for the Simulink Coder product to exclude saturation code.

Blocks
All blocks generate code for all operations with a few exceptions. The Lookup Table Dynamic block
generates code for all lookup methods except Interpolation-Extrapolation.
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The Simulink Block Data Type Support table summarizes characteristics of blocks in the Simulink
block library, including whether they support fixed-point data types and any limitations that apply for
C code generation. To view the table, enter the following command at the MATLAB command line:

showblockdatatypetable

For information on block support for HDL code generation, see “Display Blocks for HDL Code
Generation in Library Browser” (HDL Coder). You can also use the HDL Workflow Advisor to check
your model for blocks not supported for HDL code generation.

Scaling
Any binary-point-only scaling and [Slope Bias] scaling that is supported in simulation is supported,
bit-true, in code generation.

See Also

More About
• “Optimize Generated Code with the Model Advisor” on page 48-21
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Accelerating Fixed-Point Models
If the model meets the code generation restrictions, you can use Simulink acceleration modes with
your fixed-point model. The acceleration modes can drastically increase the speed of some fixed-point
models. This is especially true for models that execute a very large number of time steps. The time
overhead to generate code for a fixed-point model is generally larger than the time overhead to set up
a model for simulation. As the number of time steps increases, the relative importance of this
overhead decreases.

Note Rapid Accelerator mode does not support models with bus objects or 33+ bit fixed-point data
types as parameters.

Every Simulink model is configured to have a start time and a stop time in the Configuration
Parameters dialog box. Simulink simulations are usually configured for non-real-time execution,
which means that the Simulink software tries to simulate the behavior from the specified start time to
the stop time as quickly as possible. The time it takes to complete a simulation consists of two parts:
overhead time and core simulation time, which is spent calculating changes from one time step to the
next. For any model, the time it takes to simulate if the stop time is the same as the start time can be
regarded as the overhead time. If the stop time is increased, the simulation takes longer. This
additional time represents the core simulation time. Using an acceleration mode to simulate a model
has an initially larger overhead time that is spent generating and compiling code. For any model, if
the simulation stop time is sufficiently close to the start time, then Normal mode simulation is faster
than an acceleration mode. But an acceleration mode can eliminate the overhead of code generation
for subsequent simulations if structural changes to the model have not occurred.

In Normal mode, the Simulink software runs general code that can handle various situations. In an
acceleration mode, code is generated that is tailored to the current usage. For fixed-point use, the
tailored code is much leaner than the simulation code and executes much faster. The tailored code
allows an acceleration mode to be much faster in the core simulation time. For any model, when the
stop time is close to the start time, overhead dominates the overall simulation time. As the stop time
is increased, there is a point at which the core simulation time dominates overall simulation time.
Normal mode has less overhead compared to an acceleration mode when fresh code generation is
necessary. Acceleration modes are faster in the core simulation portion. For any model, there is a stop
time for which Normal mode and acceleration mode with fresh code generation have the same overall
simulation time. If the stop time is decreased, then Normal mode is faster. If the stop time is
increased, then an acceleration mode has an increasing speed advantage. Eventually, the acceleration
mode speed advantage is drastic.

Normal mode generally uses more tailored code for floating-point calculations compared to fixed-
point calculations. Normal mode is therefore generally much faster for floating-point models than for
similar fixed-point models. For acceleration modes, the situation often reverses and fixed point
becomes significantly faster than floating point. As noted above, the fixed-point code goes from being
general to highly tailored and efficient. Depending on the hardware, the integer-based fixed-point
code can gain speed advantages over similar floating-point code. Many processors can do integer
calculations much faster than similar floating-point operations. In addition, if the data bus is narrow,
there can also be speed advantages to moving around 1-, 2-, or 4-byte integer signals compared to 4-
or 8-byte floating-point signals.
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Using External Mode or Rapid Simulation Target
In this section...
“Introduction” on page 48-7
“External Mode” on page 48-7
“Rapid Simulation Target” on page 48-7

Introduction
If you are using the Simulink Coder external mode or rapid simulation (RSim) target, there are
situations where you can get unexpected errors when tuning block parameters. These errors can
arise when you specify the Best precision scaling option for blocks that support constant scaling
for best precision.

The sections that follow provide further details about the errors you might encounter. To avoid these
errors, specify a scaling value instead of using the Best precision scaling option.

External Mode
If you change a parameter such that the binary point moves during an external mode simulation or
during graphical editing, and you reconnect to the target, a checksum error occurs and you must
rebuild the code. When you use Best Precision scaling, the binary point is automatically placed
based on the value of a parameter. Each power of two roughly marks the boundary where a
parameter value maps to a different binary point. For example, a parameter value of 1–2 maps to a
particular binary point position. If you change the parameter to a value of 2–4, the binary point moves
one place to the right, while if you change the parameter to a value of 0.5–1, it moves one place to the
left.

For example, suppose that a block has a parameter value of -2. You then build the code and connect
in external mode. While connected, you change the parameter to -4. If the simulation is stopped and
then restarted, this parameter change causes a binary point change. In external mode, the binary
point is kept fixed. If you keep the parameter value of -4 and disconnect from the target, then when
you reconnect, a checksum error occurs and you must rebuild the code.

Rapid Simulation Target
If a parameter change is great enough, and you are using the best precision mode for constant
scaling, then you cannot use the RSim target.

If you change a block parameter by a sufficient amount (approximately a factor of two), the best
precision mode changes the location of the binary point. Any change in the binary point location
requires the code to be rebuilt because the model checksum is changed. This means that if best
precision parameters are changed over a great enough range, you cannot use the rapid simulation
target and a checksum error message occurs when you initialize the RSim executable.
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Net Slope Computation
In this section...
“Handle Net Slope Computation” on page 48-8
“Use Division to Handle Net Slope Computation” on page 48-9
“Improve Numerical Accuracy of Simulation Results with Rational Approximations to Handle Net
Slope” on page 48-9
“Improve Efficiency of Generated Code with Rational Approximations to Handle Net Slope” on page
48-12
“Use Integer Division to Handle Net Slope Computation” on page 48-15

Handle Net Slope Computation
The Fixed-Point Designer software provides an optimization parameter, Use division for fixed-point
net slope computation, that controls how the software handles net slope computation. To learn how
to enable this optimization, see “Use Integer Division to Handle Net Slope Computation” on page 48-
15.

When a change of fixed-point slope is not a power of two, net slope computation is necessary.
Normally, net slope computation is implemented using an integer multiplication followed by shifts.
Under certain conditions, net slope computation can be implemented using integer division or a
rational approximation of the net slope. One of the conditions is that the net slope can be accurately
represented as a rational fraction or as the reciprocal of an integer. Under this condition, the division
implementation gives more accurate numerical behavior. Depending on your compiler and embedded
hardware, a division implementation might be more desirable than the multiplication and shifts
implementation. The generated code for the rational approximation and/or integer division
implementation might require less ROM or improve model execution time.

When to Use Division for Fixed-Point Net Slope Computation

This optimization works if:

• The net slope can be approximated with a fraction or is the reciprocal of an integer.
• Division is more efficient than multiplication followed by shifts on the target hardware.

Note The Fixed-Point Designer software is not aware of the target hardware. Before selecting this
option, verify that division is more efficient than multiplication followed by shifts on your target
hardware.

When Not to Use Division to Handle Net Slope Computation

This optimization does not work if:

• The software cannot perform the division using the production target long data type and
therefore must use multiword operations.

Using multiword division does not produce code suitable for embedded targets. Therefore, do not
use division to handle net slope computation in models that use multiword operations. If your
model contains blocks that use multiword operations, change the word length of these blocks to
avoid these operations.
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• Net slope is a power of 2 or a rational approximation of the net slope contains division by a power
of 2.

Binary-point-only scaling, where the net slope is a power of 2, involves moving the binary point
within the fixed-point word. This scaling mode already minimizes the number of processor
arithmetic operations.

Use Division to Handle Net Slope Computation
To enable this optimization:

1 In the Configuration Parameters dialog box, on the Math and Data Types > Data Types
pane, set Use division for fixed-point net slope computationto On, or Use division for
reciprocals of integers only

For more information, see “Use division for fixed-point net slope computation”.
2 On the Hardware Implementation > Device details pane, set the Signed integer division

rounds to configuration parameter to Floor or Zero, as appropriate for your target hardware.
The optimization does not occur if the Signed integer division rounds to parameter is
Undefined.

Note Set this parameter to a value that is appropriate for the target hardware. Failure to do so
might result in division operations that comply with the definition on the Hardware
Implementation pane, but are inappropriate for the target hardware.

3 Set the Integer rounding mode of the blocks that require net slope computation (for example,
Product, Gain, and Data Type Conversion) to Simplest or match the rounding mode of your
target hardware.

Note You can use the Model Advisor to alert you if you have not configured your model correctly for
this optimization. Open the Model Advisor and run the Identify questionable fixed-point
operations check. For more information, see“Identify blocks that will invoke net slope computation”
on page 48-23 .

Improve Numerical Accuracy of Simulation Results with Rational
Approximations to Handle Net Slope
This example illustrates how setting the Math and Data Types > Use division for fixed-point net
slope computation parameter to On improves numerical accuracy. To open the ex_net_slope1
model, at the MATLAB command line, enter:
addpath(fullfile(docroot,'toolbox','fixpoint','examples'))
ex_net_slope1
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For the Product block in this model,

These values are represented by the general [Slope Bias] encoding scheme described in “Scaling” on
page 35-5:Vi = SiQi + Bi.

Because there is no bias for the inputs or outputs:

SaQa = SbQb . ScQc

or

Qa =
SbSc
Sa

. QbQc

where the net slope is:

SbSc
Sa

The net slope for the Product block is 7/11. Because the net slope can be represented as a fractional
value consisting of small integers, you can use the On setting of the Use division for fixed-point net
slope computation optimization parameter if your model and hardware configuration are suitable.
For more information, see “When to Use Division for Fixed-Point Net Slope Computation” on page 48-
8.

To set up the model and run the simulation:

1 For the Constant block Vb, set the Output data type to fixdt(1, 8, 0.7, 0). For the
Constant block Vc, set the Output data type to fixdt(1, 8, 0).

2 For the Product block, set the Output data type to fixdt(1, 16, 1.1, 0). Set the Integer
rounding mode to Simplest.

3 In the Configuration Parameters dialog box, set the Hardware Implementation > Device
details > Signed integer division rounds to configuration parameter to Zero.

4 Set the Math and Data Types > Use division for fixed-point net slope computation to Off.
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5 In your Simulink model window, in the Simulation tab, click Run.

Because the simulation uses multiplication followed by shifts to handle the net slope
computation, net slope precision loss occurs. This precision loss results in numerical inaccuracy:
the calculated product is 306.9, not 308, as you expect.

Note You can set up the Fixed-Point Designer software to provide alerts when precision loss
occurs in fixed-point constants. For more information, see “Net Slope and Net Bias Precision” on
page 36-21.

6 Set the Math and Data Types > Use division for fixed-point net slope computation to On.

Save your model, and simulate again.

The software implements the net slope computation using a rational approximation instead of
multiplication followed by shifts. The calculated product is 308, as you expect.

The optimization works for this model because:

• The net slope is representable as a fraction with small integers in the numerator and
denominator.
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• The Hardware Implementation > Device details > Signed integer division rounds to
configuration parameter is set to Zero.

Note This setting must match your target hardware rounding mode.
• The Integer rounding mode of the Product block in the model is set to Simplest.
• The model does not use multiword operations.

Improve Efficiency of Generated Code with Rational Approximations to
Handle Net Slope
This example shows how setting the optimization parameter Math and Data Types > Use division
for fixed-point net slope computation to On improves the efficiency of generated code.

Note The generated code is more efficient only if division is more efficient than multiplication
followed by shifts on your target hardware.

To open the ex_net_slope2 model, at the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))
ex_net_slope2

For the Product block in this model,

Vm = Va × Vb
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These values are represented by the general [Slope Bias] encoding scheme described in “Scaling” on
page 35-5:Vi = SiQi + Bi.

Because there is no bias for the inputs or outputs:

SmQm = SaQa . SbQb

or

Qm =
SaSb
Sm

. QaQb

where the net slope is:

SaSb
Sm

The net slope for the Product block is 9/10.

Similarly, for the Data Type Conversion block in this model,

SaQa + Ba = SbQb + Bb

There is no bias. Therefore, the net slope is 
Sb
Sa

. The net slope for this block is also 9/10.

Because the net slope can be represented as a fraction, you can set the Math and Data Types > Use
division for fixed-point net slope computation optimization parameter to On if your model and
hardware configuration are suitable. For more information, see “When to Use Division for Fixed-Point
Net Slope Computation” on page 48-8.

To set up the model and generate code:

1 For the Inport block Va, set the Output data type to fixdt(1, 8, 9/10, 0); for the Inport
block Vb, set the Output data type to int8.

2 For the Data Type Conversion block, set the Integer rounding mode to Simplest. Set the
Output data type to int16.

3 For the Product block, set the Integer rounding mode to Simplest. Set the Output data type
to int16.

4 Set the Hardware Implementation > Device details > Signed integer division rounds to
configuration parameter to Zero.

5 Set the Math and Data Types > Use division for fixed-point net slope computation to Off.
6 From the Simulink Apps tab, select Embedded Coder. In the C Code tab, click Build.

Conceptually, the net slope computation is 9/10 or 0.9:

Vc = 0.9 * Va;
Vm = 0.9 * Va * Vb;

The generated code uses multiplication with shifts:

% For the conversion
Vc = (int16_T)(Va * 115 >> 7);
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% For the multiplication
Vm = (int16_T)((Va * Vb >> 1) * 29491 >> 14);

The ideal value of the net slope computation is 0.9. In the generated code, the approximate
value of the net slope computation is 29491 >> 15 = 29491/2^15 = 0.899993896484375.
This approximation introduces numerical inaccuracy. For example, using the same model with
constant inputs produces the following results.

7 In the original model with inputs Va and Vb, set the Math and Data Types > Use division for
fixed-point net slope computation parameter to On, update the diagram, and generate code
again.

The generated code now uses integer division instead of multiplication followed by shifts:

% For the conversion
Vc = (int16_T)(Va * 9/10);
% For the multiplication
Vm = (int16_T)(Va * Vb * 9/10);

8 In the generated code, the value of the net slope computation is now the ideal value of 0.9.
Using division, the results are numerically accurate.

In the model with constant inputs, set the Math and Data Types > Use division for fixed-
point net slope computation parameter to On and simulate the model.

48 Code Generation

48-14



The optimization works for this model because the:

• Net slope is representable as a fraction with small integers in the numerator and
denominator.

• Hardware Implementation > Device details > Signed integer division rounds to
configuration parameter is set to Zero.

Note This setting must match your target hardware rounding mode.
• For the Product and Data Type Conversion blocks in the model, the Integer rounding mode

is set to Simplest.
• Model does not use multiword operations.

Use Integer Division to Handle Net Slope Computation
Setting the Math and Data Types > Use division for fixed-point net slope computation
parameter to Use division for reciprocals of integers only triggers the optimization
only in cases where the net slope is the reciprocal of an integer. This setting results in a single
integer division to handle net slope computations.
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Control the Generation of Fixed-Point Utility Functions
In this section...
“Optimize Generated Code Using Specified Minimum and Maximum Values” on page 48-16
“Eliminate Unnecessary Utility Functions Using Specified Minimum and Maximum Values” on page
48-18

Optimize Generated Code Using Specified Minimum and Maximum
Values
The Fixed-Point Designer software uses representable minimum and maximum values and constant
values to determine if it is possible to optimize the generated code, for example, by eliminating
unnecessary utility functions and saturation code from the generated code.

This optimization results in:

• Reduced ROM and RAM consumption
• Improved execution speed

When you select the Optimize using specified minimum and maximum values configuration
parameter, the software takes into account input range information, also known as design minimum
and maximum, that you specify for signals and parameters in your model. It uses these minimum and
maximum values to derive range information for downstream signals in the model and then uses this
derived range information to simplify mathematical operations in the generated code whenever
possible.

Prerequisites

The Optimize using specified minimum and maximum values parameter appears for ERT-based
targets only and requires an Embedded Coder license when generating code.

How to Configure Your Model

To make optimization more likely:

• Provide as much design minimum and maximum information as possible. Specify minimum and
maximum values for signals and parameters in the model for:

• Inport and Outport blocks
• Block outputs
• Block inputs, for example, for the MATLAB Function and Stateflow Chart blocks
• Simulink.Signal objects

• Before generating code, test the minimum and maximum values for signals and parameters.
Otherwise, optimization might result in numerical mismatch with simulation. You can simulate
your model with simulation range checking enabled. If errors or warnings occur, fix these issues
before generating code.

How to Enable Simulation Range Checking

1 In the Modeling tab of the Simulink editor, click Model Settings to open the Configuration
Parameters dialog box.
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2 In the Configuration Parameters dialog box, select Diagnostics > Data Validity.
3 On the Data Validity pane, under Signals, set Simulation range checking to warning or

error.
• Use fixed-point data types with binary-point-only (power-of-two) scaling.
• Provide design minimum and maximum information upstream of blocks as close to the inputs of

the blocks as possible. If you specify minimum and maximum values for a block output, these
values are most likely to affect the outputs of the blocks immediately downstream. For more
information, see “Eliminate Unnecessary Utility Functions Using Specified Minimum and
Maximum Values” on page 48-18.

How to Enable Optimization

1 In the Configuration Parameters dialog box, set the Code Generation > System target file to
select an Embedded Real-Time (ERT) target (requires an Embedded Coder license).

2 Specify design minimum and maximum values for signals and parameters in your model using
the tips in “How to Configure Your Model” on page 48-16.

3 Select the Optimization > Advanced parameters > Optimize using the specified minimum
and maximum values configuration parameter.

Limitations

• This optimization does not occur for:

• Multiword operations
• Fixed-point data types with slope and bias scaling
• Addition unless the fraction length is zero

• This optimization does not take into account minimum and maximum values for:

• Merge block inputs. To work around this issue, use a Simulink.Signal object on the Merge
block output and specify the range on this object.

• Bus elements.
• Conditionally executed subsystem (such as a triggered subsystem) block outputs that are

directly connected to an Outport block.

Outport blocks in conditionally executed subsystems can have an initial value specified for use
only when the system is not triggered. In this case, the optimization cannot use the range of
the block output because the range might not cover the initial value of the block.

• There are limitations on precision because you specify the minimum and maximum values as
double-precision values. If the true value of a minimum or maximum value cannot be represented
as a double, ensure that you round the minimum and maximum values correctly so that they cover
the true design range.

• If your model contains multiple instances of a reusable subsystem and each instance uses input
signals with different specified minimum and maximum values, this optimization might result in
different generated code for each subsystem so code reuse does not occur. Without this
optimization, the Simulink Coder software generates code once for the subsystem and shares this
code among the multiple instances of the subsystem.
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Eliminate Unnecessary Utility Functions Using Specified Minimum and
Maximum Values
This example shows how the Fixed-Point Designer software uses the input range for a division
operation to determine whether it can eliminate unnecessary utility functions from the generated
code. It uses the fxpdemo_min_max_optimization model. First, you generate code without using
the specified minimum and maximum values to see that the generated code contains utility functions
to ensure that division by zero does not occur. You then turn on the optimization, and generate code
again. With the optimization, the generated code does not contain the utility function because it is not
necessary for the input range.

Generate Code Without Using Minimum and Maximum Values

First, generate code without taking into account the design minimum and maximum values for the
first input of the division operation to show the code without the optimization. In this case, the
software uses the representable ranges for the two inputs, which are both uint16. With these input
ranges, it is not possible to implement the division with the specified precision using shifts, so the
generated code includes a division utility function.

1 Run the example. At the MATLAB command line, enter:

fxpdemo_min_max_optimization
2 In the example window, double-click the View Optimization Configuration button.

The Optimization pane of the Configuration Parameters dialog box appears.

Note that the Optimize using specified minimum and maximum values parameter is not
selected.

3 Double-click the Generate Code button.

The code generation report appears.
4 In the model, right-click the Division with increased fraction length output type

block.

The context menu appears.
5 From the context menu, select C/C++ Code > Navigate To C/C++ Code.

The code generation report highlights the code generated for this block. The generated code
includes a call to the div_repeat_u32 utility function.

rtY.Out3 = div_repeat_u32((uint32_T)rtU.In5 << 16, 
  (uint32_T)rtU.In6, 1U);

6 Click the div_repeat_u32 link to view the utility function, which contains code for handling
division by zero.

Generate Code Using Minimum and Maximum Values

Next, generate code for the same division operation, this time taking into account the design
minimum and maximum values for the first input of the Product block. These minimum and maximum
values are specified on the Inport block directly upstream of the Product block. With these input
ranges, the generated code implements the division by simply using a shift. It does not need to
generate a division utility function, reducing both memory usage and execution time.
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1 Double-click the Inport block labeled 5 to open the block parameters dialog box.
2 On the block parameters dialog box, select the Signal Attributes pane and note that:

• The Minimum value for this signal is 1.
• The Maximum value for this signal is 100.

3 Click OK to close the dialog box.
4 Double-click the View Optimization Configuration button.

The Optimization pane of the Configuration Parameters dialog box appears.
5 On this pane, select the Optimize using specified minimum and maximum values parameter

and click Apply.
6 Double-click the Generate Code button.

The code generation report appears.
7 In the model, right-click the Division with increased fraction length output type

block.

The context menu appears.
8 From the context menu, select C/C++ Code > Navigate To C/C++ Code.

The code generation report highlights the code generated for this block. This time, the generated
code implements the division with a shift operation and there is no division utility function.

tmp = rtU.In6;
rtY.Out3 = (uint32_T)tmp == 
  (uint32_T)0 ? MAX_uint32_T : ((uint32_T)rtU.In5 << 17) /
    (uint32_T)tmp;

Modify the Specified Minimum and Maximum Values

Finally, modify the minimum and maximum values for the first input to the division operation so that
its input range is too large to guarantee that the value does not overflow when shifted. Here, you
cannot shift a 16-bit number 17 bits to the right without overflowing the 32-bit container. Generate
code for the division operation, again taking into account the minimum and maximum values. With
these input ranges, the generated code includes a division utility function to ensure that no overflow
occurs.

1 Double-click the Inport block labelled 5 to open the block parameters dialog box.
2 On the block parameters dialog box, select the Signal Attributes pane and set the Maximum

value to 40000, then click OK to close the dialog box.
3 Double-click the Generate Code button.

The code generation report appears.
4 In the model, right-click the Division with increased fraction length output type

block.

The context menu appears.
5 From the context menu, select C/C++ Code > Navigate To C/C++ Code.

The code generation report highlights the code generated for this block. The generated code
includes a call to the div_repeat_32 utility function.
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rtY.Out3 = div_repeat_u32((uint32_T)rtU.In5 << 16, 
  (uint32_T)rtU.In6, 1U);
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Optimize Generated Code with the Model Advisor

In this section...
“Identify Blocks that Generate Expensive Fixed-Point and Saturation Code” on page 48-21
“Identify Questionable Fixed-Point Operations” on page 48-23
“Identify Blocks that Generate Expensive Rounding Code” on page 48-25

You can use the Simulink Model Advisor to help you configure your fixed-point models to achieve a
more efficient design and optimize your generated code. To use the Model Advisor to check your
fixed-point models:

1 In the Modeling tab of the model you want to analyze, click Model Advisor.
2 In the System Selector, select the system to analyze.
3 In the Model Advisor left pane, expand the By Product node and then the Embedded Coder

node.
4 For fixed-point code generation, the most important check boxes to select are Identify blocks

that generate expensive fixed-point and saturation code, Identify questionable fixed-
point operations, Identify blocks that generate expensive rounding code, and Check the
hardware implementation.

To enable all Model Advisor checks associated with the selected node, select the check box of the
folder containing the checks. In our case, select the Embedded Coder check box.

5
Click Run checks . Any tips for improving the efficiency of your fixed-point model appear in
the Model Advisor window.

The sections that follow discuss fixed-point related checks and sub-checks found in the Model Advisor.
These sections explain the checks, discuss their importance in fixed-point code generation, and offer
suggestions for tweaking your model to optimize your generated code.

Identify Blocks that Generate Expensive Fixed-Point and Saturation
Code
Identify Sum blocks for questionable fixed-point operations

• When the input range of a Sum block exceeds the output range, a range error occurs. You can get
any addition or subtraction your application requires by inserting data type conversion blocks
before and/or after the Sum block.

• When a Sum block has an input with a slope adjustment factor that does not equal the slope
adjustment factor of the output, the mismatch requires the Sum block to perform a multiply
operation each time the input is converted to the data type and scaling of the output. The
mismatch can be removed by changing the scaling of the output or the input.

• When the net sum of the Sum block input biases does not equal the bias of the output, the
generated code includes one extra addition or subtraction instruction to correctly account for the
net bias adjustment. Changing the bias of the output scaling can make the net bias adjustment
zero and eliminate the need for the extra operation.
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Identify Min Max blocks for questionable fixed-point operations

• When the input and output of the MinMax block have different data types, a conversion operation
is required every time the block is executed. The model is more efficient with the same data types.

• When the data type and scaling of the input of the MinMax block does not match the data type and
scaling of the output, a conversion is required before performing a relational operation. This could
result in a range error when casting, or a precision loss each time a conversion is performed.
Change the scaling of either the input or output to generate more efficient code.

• When the input of the MinMax block has a different slope adjustment factor than the output, the
MinMax block requires a multiply operation each time the block is executed to convert the input
to the data type and scaling of the output. You can correct the mismatch by changing the scaling
of either the input or output.

Identify Discrete Integrator blocks for questionable fixed-point operations

• When the initial condition for the Discrete-Time Integrator blocks is used to initialize the state and
output, the output equation generates excessive code and an extra global variable is required. It is
recommended that you set the Function Block Parameters > Initial condition setting
parameter to State (most efficient).

Identify Compare to Constant blocks for questionable fixed-point operations

• If the input data type of the Compare to Zero block cannot represent zero exactly, the input signal
is compared to the closest representable value of zero, resulting in parameter overflow. To avoid
this parameter overflow, select an input data type that can represent zero.

• If the Constant value parameter of the Compare to Constant is outside the range that the input
data type can represent, the input signal is compared to the closest representable value of the
constant. This results in parameter overflow. To avoid this parameter overflow, select an input data
type that can represent the Constant value, or change the Constant value to a value that can be
accommodated by the input data type.

Identify Lookup Table blocks for questionable fixed-point operations

Efficiency trade-offs related to lookup table data are described in “Effects of Spacing on Speed, Error,
and Memory Usage” on page 41-58. Based on these trade-offs, the Model Advisor identifies blocks
where there is potential for efficiency improvements, such as:

• Lookup table input data is not evenly spaced.
• Lookup table input data is not evenly spaced when quantized, but it is very close to being evenly

spaced.
• Lookup table input data is evenly spaced, but the spacing is not a power of two.

For more information on lookup table optimization, see “Lookup Table Optimization” on page 48-27.

Check optimization and hardware implementation settings

• Integer division generated code contains protection against arithmetic exceptions such as division
by zero, INT_MIN/-1, and LONG_MIN/-1. If you construct models making it impossible for
exception triggering input combinations to reach a division operation, the protection code
generated as part of the division operation is redundant.

• The index search method Evenly-spaced points requires a division operation, which can be
computationally expensive.
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Identify blocks that will invoke net slope computation

When a change of fixed-point slope is not a power of two, net slope computation is necessary.
Normally, net slope computation is implemented using an integer multiplication followed by shifts.
Under some conditions, an alternate implementation requires just an integer division by a constant.
One of the conditions is that the net slope can be very accurately represented as the reciprocal of an
integer. When this condition is met, the division implementation produces more accurate numerical
behavior. Depending on your compiler and embedded hardware, the division implementation might
be more desirable than the multiplication and shifts implementation. The generated code might be
more efficient in either ROM size or model execution size.

The Model Advisor alerts you when:

• You set the Use division for fixed-point net slope computation optimization parameter to
‘On’, but your model configuration is not compatible with this selection.

• Your model configuration is suitable for using division to handle net slope computation, but you do
not set the Use division for fixed-point net slope computation optimization parameter to
‘On’.

For more information, see “Net Slope Computation” on page 48-8.

Identify product blocks that are less efficient

The number of multiplications and divisions that a block performs can have a significant impact on
accuracy and efficiency. The Model Advisor detects some, but not all, situations where rearranging
the operations can improve accuracy, efficiency, or both.

One such situation is when a calculation using more than one division operation is computed. A
general guideline from the field of numerical analysis is to multiply all the denominator terms
together first, then do one and only one division. This improves accuracy and often speed in floating-
point and especially fixed-point. This can be accomplished in Simulink by cascading Product blocks.
Note that multiple divisions spread over a series of blocks are not detected by the Model Advisor.

Another situation is when a single Product block is configured to do more than one multiplication or
division operation. This is supported, but if the output data type is integer or fixed-point, then better
results are likely if this operation is split across several blocks each doing one multiplication or one
division. Using several blocks allows the user to control the data type and scaling used for
intermediate calculations. The choice of data types for intermediate calculations affects precision,
range errors, and efficiency.

Check for expensive saturation code

Setting the Saturate on integer overflow parameter can produce condition checking code that your
application might not require.

Check whether your application requires setting Block Parameters > Signal Attributes >
Saturate on integer overflow. Otherwise, clear this parameter for the most efficient
implementation of the block in the generated code.

Identify Questionable Fixed-Point Operations
This check identifies blocks that generate multiword operations, cumbersome multiplication and
division operations, expensive conversion code, inefficiencies in lookup table blocks, and expensive
comparison code.
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Check for multiword operations

When an operation results in a data type larger than the largest word size of your processor, the
generated code contains multiword operations. Multiword operations can be inefficient on hardware.
To prevent multiword operations, adjust the word lengths of inputs to operations so that they do not
exceed the largest word size of your processor. For more information on controlling multiword
operations in generated code, see “Fixed-Point Multiword Operations In Generated Code” on page 53-
230.

Check for expensive multiplication code

• “Targeting an Embedded Processor” on page 37-3 discusses the capabilities and limitations of
embedded processors. “Design Rules” on page 37-4 recommends that inputs to a multiply
operation should not have word lengths larger than the base integer type of your processor.
Multiplication with larger word lengths can always be handled in software, but that approach
requires much more code and is much slower. The Model Advisor identifies blocks where
undesirable software multiplications are required. Visual inspection of the generated code,
including the generated multiplication utility function, will make the cost of these operations clear.
It is strongly recommended that you adjust the model to avoid these operations.

• “Rules for Arithmetic Operations” on page 36-42 discusses the implementation details of fixed-
point multiplication and division. Significant increase in complexity occurs when signals with
nonzero biases are involved in multiplication and division. It is strongly recommended that you
make changes to eliminate the need for these complicated operations. Extra steps are required to
implement the multiplication. Inserting a Data Type Conversion block before and after the block
doing the multiplication allows the biases to be removed and allows the user to control data type
and scaling for intermediate calculations. In many cases the Data Type Conversion blocks can be
moved to the “edges” of a (sub)system. The conversion is only done once and all blocks can benefit
from simpler bias-free math.

Check for expensive division code

The rounding behavior of signed integer division is not fully specified by C language standards.
Therefore, the generated code for division is too large to provide bit-true agreement between
simulation and code generation. To avoid integer division generated code that is too large, in the
Configuration Parameters dialog box, on the Hardware Implementation pane, set the Signed
integer division rounds to parameter to the recommended value.

Identify lookup blocks with uneven breakpoint spacing

Efficiency trade-offs related to lookup table data are described in “Effects of Spacing on Speed, Error,
and Memory Usage” on page 41-58. Based on these trade-offs, the Model Advisor identifies blocks
where there is potential for efficiency improvements, and issues a warning when:

• Lookup table input data is not evenly spaced.
• Lookup table input data is not evenly spaced when quantized, but it is very close to being evenly

spaced.
• Lookup table input data is evenly spaced, but the spacing is not a power of two.

Check for expensive pre-lookup division

For a Prelookup or n-D Lookup Table block, Index search method is Evenly spaced points.
Breakpoint data does not have power of 2 spacing.
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If breakpoint data is nontunable, it is recommended that you adjust the data to have even, power of 2
spacing. Otherwise, in the block parameter dialog box, specify a different Index search method to
avoid the computation-intensive division operation.

Check for expensive data type conversions

When a block is configured such that it would generate inefficient code for a data type conversion,
the Model Advisor generates a warning and makes suggestions on how to make your model more
efficient.

Check for fixed-point comparisons with predetermined results

When you select isInf, isNaN, or isFinite as the operation for the Relational Operator block, the
block switches to one-input mode. In this mode, if the input data type is fixed point, boolean, or a
built-in integer, the output is FALSE for isInf and isNaN, TRUE for isFinite. This might result in
dead code which will be eliminated by Simulink Coder.

Check for expensive binary comparison operations

• When the input data types of a Relational Operator block are not the same, a conversion operation
is required every time the block is executed. If one of the inputs is invariant, then changing the
data type and scaling of the invariant input to match the other input improves the efficiency of the
model.

• When the inputs of a Relational Operator block have different ranges, there will be a range error
when casting, and a precision loss each time a conversion is performed. You can insert Data Type
Conversion blocks before the Relational Operator block to convert both inputs to a common data
type that has enough range and precision to represent each input.

• When the inputs of a Relational Operator block have different slope adjustment factors, the
Relational Operator block is required to perform a multiply operation each time the input with
lesser positive range is converted to the data type and scaling of the input with greater positive
range. The extra multiplication requires extra code, slows down the speed of execution, and
usually introduces additional precision loss. By adjusting the scaling of the inputs, you can
eliminate mismatched slopes.

Check for expensive comparison code

When your model is configured such that the generated code contains expensive comparison code,
the Model Advisor generates a warning.

Check for expensive fixed-point data types in generated code

When a design contains integer or fixed-point word lengths that do not exist on your target hardware,
the generated code can contain extra saturation code, shifts, and multiword operations. By changing
the data type to one that is supported by your target hardware, you can improve the efficiency of the
generated code. The Model Advisor flags these expensive data types in your model. For example, the
Model Advisor would flag a fixed-point data type with a word length of 17 if the target hardware was
32 bits.

Identify Blocks that Generate Expensive Rounding Code
This check alerts you when rounding optimizations are available. To check for blocks that generate
expensive rounding code, the Model Advisor performs the following sub-checks:
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• Check for expensive rounding operations in multiplication and division
• Check optimization and Hardware Implementation settings (Lookup Blocks)
• Check for expensive rounding in a data type conversion
• Check for expensive rounding modes in the model

Traditional handwritten code, especially for control applications, almost always uses “no effort”
rounding. For example, for unsigned integers and two's complement signed integers, shifting right
and dropping the bits is equivalent to rounding to floor. To get results comparable to, or better than,
what you expect from traditional handwritten code, use the simplest rounding mode. In general the
simplest mode provides the minimum cost solution with no overflows. If the simplest mode is not
available, round to floor.

The primary exception to this rule is the rounding behavior of signed integer division. The C standard
leaves this rounding behavior unspecified, but for most production targets the “no effort” mode is to
round to zero. For unsigned division, everything is non-negative, so rounding to floor and rounding to
zero are identical. To improve rounding efficiency, set Model Configuration Parameters >
Hardware Implementation > Device details > Signed integer division rounds to using the
mode that your production target uses.

Use the Integer rounding mode parameter on your model's blocks to simulate the rounding
behavior of the C compiler that you use to compile code generated from the model. This setting
appears on the Signal Attributes pane of the parameter dialog boxes of blocks that can perform
signed integer arithmetic, such as the Product block. To obtain the most efficient generated code,
change the Integer rounding mode parameter of the block to the recommended setting.

For more information on properties to consider when choosing a rounding mode, see “Choosing a
Rounding Method” on page 1-7.

48 Code Generation

48-26



Lookup Table Optimization
A function lookup table is a method by which you can approximate a function using a table with a
finite number of points (X, Y). The X values of the lookup table are called the breakpoints. You
approximate the value of the ideal function at a point by interpolating between the two breakpoints
closest to the point. Because table lookups and simple estimations can be faster than mathematical
function evaluations, using lookup table blocks often result in speed gains when simulating a model.

To optimize lookup tables in your model:

• Limit uneven lookup tables.

Unevenly spaced breakpoints require a general-purpose algorithm such as a binary search to
determine where the input lies in relation to the breakpoints. This additional computation
increases ROM and execution time.

• Prevent evenly spaced lookup tables from being treated as unevenly spaced.

The position search in evenly spaced lookup tables is much faster. In addition, the interpolation
requires a simple division.

Sometimes, when a lookup table is converted to fixed-point, a quantization error results. A lookup
table that is evenly spaced in floating-point, could be unevenly spaced in the generated fixed-point
code. Use the fixpt_evenspace_cleanup function to convert the data into an evenly spaced
lookup table again.

• Use power of two spaced breakpoints in lookup tables.

In power of two spaced lookup tables, a bit shift replaces the position search, and a bit mask
replaces the interpolation making this construct the most efficient regardless of your target
language and hardware.

The following table summarizes the effects of lookup table breakpoint spacing.

Parameter Even Power of 2 Spaced
Data

Evenly Spaced Data Unevenly Spaced Data

Execution speed The execution speed is the
fastest. The position
search and interpolation
are the same as for evenly
spaced data. However, to
increase the speed more, a
bit shift replaces the
position search, and a bit
mask replaces the
interpolation.

The execution speed is
faster than that for
unevenly spaced data,
because the position
search is faster and the
interpolation requires a
simple division.

The execution speed is the
slowest of the different
spacings because the
position search is slower,
and the interpolation
requires more operations.

Error The error can be larger
than that for unevenly
spaced data because
approximating a function
with nonuniform curvature
requires more points to
achieve the same accuracy.

The error can be larger
than that for unevenly
spaced data because
approximating a function
with nonuniform curvature
requires more points to
achieve the same accuracy.

The error can be smaller
because approximating a
function with nonuniform
curvature requires fewer
points to achieve the same
accuracy.
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Parameter Even Power of 2 Spaced
Data

Evenly Spaced Data Unevenly Spaced Data

ROM usage Uses less command ROM,
but more data ROM.

Uses less command ROM,
but more data ROM.

Uses more command
ROM, but less data ROM.

RAM usage Not significant. Not significant. Not significant.

Use the Model Advisor “Identify Questionable Fixed-Point Operations” on page 48-23 check to
identify lookup table blocks where there is potential for efficiency improvements.

See Also

More About
• “Effects of Spacing on Speed, Error, and Memory Usage” on page 41-58
• “Create Lookup Tables for a Sine Function” on page 41-5
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Selecting Data Types for Basic Operations
In this section...
“Restrict Data Type Word Lengths” on page 48-29
“Avoid Fixed-Point Scalings with Bias” on page 48-29
“Wrap and Round to Floor or Simplest” on page 48-29
“Limit the Use of Custom Storage Classes” on page 48-30

Restrict Data Type Word Lengths
If possible, restrict the fixed-point data type word lengths in your model so that they are equal to or
less than the integer size of your target microcontroller. This results in fewer mathematical
instructions in the microcontroller, and reduces ROM and execution time.

This recommendation strongly applies to global variables that consume global RAM. For example,
Unit Delay blocks have discrete states that have the same word lengths as their input and output
signals. These discrete states are global variables that consume global RAM, which is a scarce
resource on many embedded systems.

For temporary variables that only occupy a CPU register or stack location briefly, the space consumed
by a long is less critical. However, depending on the operation, the use of long variables in math
operations can be expensive. Addition and subtraction of long integers generally requires the same
effort as adding and subtracting regular integers, so that operation is not a concern. In contrast,
multiplication and division with long integers can require significantly larger and slower code.

Avoid Fixed-Point Scalings with Bias
Whenever possible, avoid using fixed-point numbers with bias. In certain cases, if you choose biases
carefully, you can avoid significant increases in ROM and execution time. Refer to “Recommendations
for Arithmetic and Scaling” on page 36-31 for more information on how to choose appropriate biases
in cases where it is necessary; for example if you are interfacing with a hardware device that has a
built-in bias. In general, however, it is safer to avoid using fixed-point numbers with bias altogether.

Inputs to lookup tables are an important exception to this recommendation. If a lookup table input
and the associated input data use the same bias, then there is no penalty associated with nonzero
bias for that operation.

Wrap and Round to Floor or Simplest
For most fixed-point and integer operations, the Simulink software provides you with options on how
overflows are handled and how calculations are rounded. Traditional handwritten code, especially for
control applications, almost always uses the “no effort” rounding mode. For example, to reduce the
precision of a variable, that variable is shifted right. For unsigned integers and two's complement
signed integers, shifting right is equivalent to rounding to floor. To get results comparable to or better
than what you expect from traditional handwritten code, you should round to floor in most cases.

The primary exception to this rule is the rounding behavior of signed integer division. The C language
leaves this rounding behavior unspecified, but for most targets the “no effort” mode is round to zero.
For unsigned division, everything is non-negative, so rounding to floor and rounding to zero are
identical.
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You can improve code efficiency by setting the value of the Model Configuration Parameters >
Hardware Implementation > Device details > Signed integer division rounds to parameter to
describe how your production target handles rounding for signed division. For Product blocks that
are doing only division, setting the Integer rounding mode parameter to the rounding mode of your
production target gives the best results. You can also use the Simplest rounding mode on blocks
where it is available. For more information, refer to “Rounding Mode: Simplest” on page 36-14.

The options for overflow handling also have a big impact on the efficiency of your generated code.
Using software to detect overflow situations and saturate the results requires the code to be much
bigger and slower compared to simply ignoring the overflows. When overflows are ignored for
unsigned integers and two's complement signed integers, the results usually wrap around modulo 2N,
where N is the number of bits. Unhandled overflows that wrap around are highly undesirable for
many situations.

However, because of code size and speed needs, traditional handwritten code contains very little
software saturation. Typically, the fixed-point scaling is very carefully set so that overflow does not
occur in most calculations. The code for these calculations safely ignores overflow. To get results
comparable to or better than what you would expect from traditional handwritten code, the Saturate
on integer overflow parameter should not be selected for Simulink blocks doing those calculations.

In a design, there might be a few places where overflow can occur and saturation protection is
needed. Traditional handwritten code includes software saturation for these few places where it is
needed. To get comparable generated code, the Saturate on integer overflow parameter should
only be selected for the few Simulink blocks that correspond to these at-risk calculations.

A secondary benefit of using the most efficient options for overflow handling and rounding is that
calculations often reduce from multiple statements requiring several lines of C code to small
expressions that can be folded into downstream calculations. Expression folding is a code
optimization technique that produces benefits such as minimizing the need to store intermediate
computations in temporary buffers or variables. This can reduce stack size and make it more likely
that calculations can be efficiently handled using only CPU registers. An automatic code generator
can carefully apply expression folding across parts of a model and often see optimizations that might
not be obvious. Automatic optimizations of this type often allow generated code to exceed the
efficiency of typical examples of handwritten code.

Limit the Use of Custom Storage Classes
In addition to the tip mentioned in “Wrap and Round to Floor or Simplest” on page 48-29, to obtain
the maximum benefits of expression folding you also need to make sure that the Storage class is set
to Auto for signals in your model. When you choose a setting other than Auto, you need to name the
signal, and a separate statement is created in the generated code. Therefore, only use a setting other
than Auto when it is necessary for global variables.

For more information about setting the Storage class of signals, see “Configure Signal Data for C
Code Generation”.
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Use of Shifts by C Code Generation Products

Introduction to Shifts by Code Generation Products
MATLAB Coder, Simulink Coder, and Embedded Coder generate C code that uses the C language’s
shift left << and shift right >> operators. Modern C compilers provide consistent behavior for shift
operators. However, some behaviors of the shift operators are not fully defined by some C standards.
When you work with The MathWorks code generation products, you need to know how to manage the
use of C shifts.

Two’s Complement

Two’s complement is a way to interpret a binary number. Most modern processors represent integers
using two’s complement. MathWorks code generation products require C and C++ compilers to
represent signed integers using two's complement. MathWorks toolboxes and documentation use
two’s complement representation exclusively.

Arithmetic and Logical Shifts

The primary difference between an arithmetic shift and a logical shift is intent. Arithmetic shifts have
a mathematical meaning. The intent of logical shifts is to move bits around, making them useful only
for unsigned integers being used as collections of bit flags.

The C language does not distinguish between arithmetic and logical shifts and provides only one set
of shift operators. When MathWorks code generation products use shifts on signed integers in
generated code, the intent is always an arithmetic shift. For unsigned integers, there is no
detectable difference in behavior between logical and arithmetic shifts.

Arithmetic Left-Shifts

An arithmetic left-shift represents multiplication by a power of 2.

a << b = a*2^b

If the value produced by multiplying by 2^b is too big, then an overflow occurs. In case of an
overflow, the ideal answer wraps around modulo 2^n to fit in the data type. The C90 standard
specifies left-shift behavior. At the bit level, b of the bits are shifted off the left end and discarded. At
the right end, b bits of value 0 are shifted in. The standard does not specify a difference between
unsigned and signed. For both unsigned and two's complement signed, the bit level behavior provides
the intended arithmetic left-shift behavior.

The C99 standard describes the arithmetic interpretation. It also states that for signed types, the
behavior is undefined for any negative value or for a positive value that would overflow. A compiler
vendor might exploit the C99 standard undefined behavior clause to optimize code in a way that
changes the behavior intended by the coder. If your compiler is C99-compliant but not C90-compliant,
then turn off the option “Replace multiplications by powers of two with signed bitwise shifts”
(Embedded Coder). Older C++ standards follow the C90 standard with regard to shift left. Newer C+
+ standards are similar to the C99 standard.

Arithmetic Right-Shifts

An arithmetic right-shift represents division by a power of 2, where the ideal quotient rounds to floor.

a >> b = a/2^b
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When a is nonnegative, the C standards state that right-shift must provide this arithmetic behavior. If
a is signed and negative, then the standard states that the implementation defines the behavior. The
C standard requires that compilers document their implementation behavior. Nearly all compilers
implement signed shift right as an arithmetic shift that rounds to floor. This is the simplest and most
efficient behavior for the compiler vendor to provide. If you have a compiler that does not provide
arithmetic right-shift, or your coding standards do not allow you to use signed right-shift, then you
can select options that avoid signed shift right. For example, “Allow right shifts on signed integers”
(Embedded Coder) replaces signed right shifts with a function call.

Out-of-Range Shifts

In C, when shifting an integer of word length n, use a shift amount between 0 and n – 1, inclusive.
The C standard does not define shifting by other amounts, such as:

• Shifting by a negative constant.
• Shifting by an amount greater than word length.

When the shift amount is constant, the products do not generate out-of-range shifts. The risk of out-
of-range shifts comes from explicitly modeled shifts where the shift amount is a non constant
variable. When modeling shifts with variable shift amounts, make sure that the shift amount is always
in range.

Modeling Sources of Shifts
There are explicit and implicit sources of shifts in models and algorithms.

Explicit

• MATLAB bit-shift functions: bitsll, bitsra, bitsrl, bitshift
• Simulink Shift Arithmetic block
• Stateflow bitwise operations

Implicit

• Fixed-point operations that involve a scaling change

When converting fixed-point scaling, if the net slope change is not an exact power of two, then a
multiplication followed by a shift approximates the ideal net slope. For more information on net
slope computation, see “Handle Net Slope Computation” on page 48-8.

• Underlying higher-level algorithms (for example, FFT algorithms)

Controlling Shifts in Generated Code
Several configuration parameters have an effect on the number and style of shifts that appear in
generated code.

• “Signed integer division rounds to”

Set this parameter to Floor or Zero to avoid extra generated code.
• “Use division for fixed-point net slope computation”

When enabled, this parameter uses division in place of multiplication followed by shifts to perform
fixed-point net slope computation.
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• “Replace multiplications by powers of two with signed bitwise shifts” (Embedded Coder)

When this parameter is enabled, multiplications by powers of two are replaced with signed bitwise
shifts. Clearing this option supports MISRA C compliance.

• “Allow right shifts on signed integers” (Embedded Coder)

When this parameter is enabled, generated code can contain right bitwise shifts on signed
integers. To prevent right bitwise shifts on signed integers, clear this option.

• “Shift right on a signed integer as arithmetic shift”

Select this parameter if the C compiler implements a signed integer right shift as an arithmetic
right shift.
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Use Hardware-Efficient Algorithm to Solve Systems of
Complex-Valued Linear Equations

This example shows how to solve systems of complex-valued linear equations using hardware-efficient
MATLAB® code in Simulink® using a systolic array.

Overview

This example shows a hardware-efficient method of solving the system of simultaneous equations

where A is an m-by-n complex matrix, X is an n-by-p complex matrix, and B is an m-by-p complex
matrix.

The Simulink model used in this example is:

model = 'fi_complex_mldivide_systolic_array_model';
open(model)

The enabled subsystems that send the data contain MATLAB function blocks that keep track of which
input to send next, and send the rows of matrices A and B to block "4x4 Complex CORDIC Matrix Left
Divide" when the ready signal is high. If you send data when ready is high, you will not invalidate
any data already in the pipeline.

The algorithm overwrites matrix A with an upper-triangular matrix R. The algorithm overwrites B
with C = Q'B where Q is unitary and QR = A. The algorithm uses back-substitution on the upper-
triangular matrix equation
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To examine the algorithm, look Under the mask of block "4x4 Complex CORDIC Matrix Left Divide".

Define Parameters

Define complex matrices A and B in the base workspace. In this example, matrix A must be 4-by-4,
and matrix B must be 4-by-p, where p is the number of right-hand sides.

rng('default');
A = complex(randn(4,4),randn(4,4));
B = complex(randn(4,1),randn(4,1));

The method uses the CORDIC algorithm, so you must also specify the number of iterations of the
CORDIC kernel in the NumberOfCORDICIterations parameter, or on the block parameters of the
"4x4 Complex CORDIC Matrix Left Divide" block.

When A and B are double-precision floating-point data types, set the number of CORDIC iterations to
the number of bits in the mantissa of a double. If the inputs are fixed point, then the number of
CORDIC iterations must be less than the word length. The accuracy of the computation improves one
bit for each iteration, up to the word length of the inputs. This model will work with fixed-point,
double, and single data types.

NumberOfCORDICIterations = 52;

You must also instantiate variable BackSubstitutePrototype to specify the data-type used in
back-substitution, or enter a prototype value on the block parameters of the "4x4 Complex CORDIC
Matrix Left Divide" block. In this case, matrices A and B are double, so set
BackSubstitutePrototype value to be a double. This variable is used by the cast function to cast
the back-substitute variables using the 'like' syntax.

BackSubstitutePrototype = 0;

Run the Model

Turn off expected warnings before running the model.
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warning_state = warning('off','Coder:builtins:ConstantFoldingOverFlow');
sim(model)

After simulation, the model returns matrix X, which is the solution to the matrix equation

Verify the results by checking that AX-B is a small value.

err = norm(A*X - B)

err =

   6.6743e-15

QR Algorithm

The CORDIC algorithm is used to compute the QR decomposition as in the examples Perform QR
Factorization Using CORDIC, and Implement Hardware-Efficient QR Decomposition Using CORDIC in
a Systolic Array.

This example is of a 4-by-4 matrix A. You can tile the blocks inside this model to build up to any size
matrix.

To see the QR algorithm, look under the mask for block "Q'B, R 4x4 Complex CORDIC Systolic Array".

Complex QR

Because the data in this example is complex, an additional step is required to zero out the imaginary
parts of the pivots to make them real-valued. This is done by splitting the data into real and imaginary
parts and using CORDIC to zero out the imaginary part as if it were two rows of a real matrix. This is
equivalent to the complex multiplication

where
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and

except that the computation is done using the CORDIC algorithm without squares or square-roots.

To see the algorithm for , look under the mask for block "Rotate first element to real".

Back-Substitute

Finally, to compute X, compute the reciprocals of the diagonal elements of R and back-substitute into
the right-hand side C. The algorithm uses a CORDIC divide implementation to compute the
reciprocals.

To see the back-substitute algorithm, look under the mask for block "Back Substitute 4x4 Complex
CORDIC".
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Matrix Inverse

It is usually unnecessary to explicitly compute the inverse of a matrix [3],[5]. However, if you want to
do so, set B equal to the identity matrix I. Then, the solution of the equation

equals

A = complex(2*rand(4,4)-1,2*rand(4,4)-1);
B = complex(eye(4));
NumberOfCORDICIterations = 52;
BackSubstitutePrototype = 0;

Simulate the model

sim(model)

Verify that AX and XA are close to the identity matrix. There will be small differences due to round-off
errors.

A*X

ans =

   1.0000 + 0.0000i   0.0000 - 0.0000i   0.0000 - 0.0000i  -0.0000 - 0.0000i
   0.0000 - 0.0000i   1.0000 + 0.0000i  -0.0000 + 0.0000i  -0.0000 + 0.0000i
  -0.0000 + 0.0000i   0.0000 - 0.0000i   1.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 - 0.0000i   1.0000 - 0.0000i
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X*A

ans =

   1.0000 - 0.0000i  -0.0000 - 0.0000i  -0.0000 + 0.0000i   0.0000 - 0.0000i
   0.0000 + 0.0000i   1.0000 + 0.0000i  -0.0000 - 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   1.0000 - 0.0000i  -0.0000 + 0.0000i
   0.0000 - 0.0000i  -0.0000 + 0.0000i  -0.0000 + 0.0000i   1.0000 + 0.0000i

Fractional Scaling

Normalizing to fractional types makes the computations easier in fixed-point. You can scale the
matrices so that their data is in the range [-1, +1] and use fractional fixed-point types because the
solution to the matrix equation

is the same as the solution to

To convert to fractional scaling with no additional cost in generated code, you can use the
reinterpretcast function in MATLAB or the Data Type Conversion block in Simulink with "Input and
output to have equal Stored Integer".

Run Exhaustive Test Points

You can run many test inputs through the model by making A and B three-dimensional arrays.

m = 4;
n = 4;
p = 1;
n_test_inputs=100;

Create the inputs such that the real and imaginary parts are in the range [-1, +1]

A = complex(2*rand(m,n,n_test_inputs)-1, 2*rand(m,n,n_test_inputs)-1);
B = complex(2*rand(m,p,n_test_inputs)-1, 2*rand(m,p,n_test_inputs)-1);

In this example, matrices A and B contained real and imaginary parts already in the range [-1, +1], so
set the types to be fractional.

data_word_length = 24;
data_fraction_length = 23;

QR Data Types

The growth in the elements of R in the real QR factorization is  (see Perform QR Factorization
Using CORDIC). The elements are complex in this example, so an additional growth factor of  is
needed because

Also, the CORDIC algorithm grows intermediate values by the following gain factor  where  is
the number of CORDIC iterations before it is normalized out.
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Therefore, an upperbound for growth in the QR algorithm for m-by-n complex matrix A is the product
of all the growth factors:

It this example, A is 4-by-4, so the maximum growth factor in the QR algorithm is

Therefore, the number of additional integer bits to allow in the QR algorithm to avoid overflow when
you have m=4 rows is:

qr_growth_bits = ceil(log2(1.6468*sqrt(2*m)))

qr_growth_bits =

     3

Cast Matrices A and B to Fixed Point

The model requires that the inputs be signed and the word length of B be the same as the word
length of A.

Grow the data wordlength to accommodate the QR growth.

qr_input_word_length = data_word_length + qr_growth_bits

qr_input_word_length =

    27

Cast A to fixed point and B to A's type.

T.A = fi([], 1, qr_input_word_length, data_fraction_length);
T.B = T.A;

A = cast(A, 'like', T.A);
B = cast(B, 'like', T.B);

Back-Substitute Data Type

If  is an  -by-  invertible complex matrix, and  is the solution of matrix equation , then
using properties of vector and matrix norms (see, for example, reference [6]), it can be shown that
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where  and  is the smallest singular value of . This bound is related to the
condition number of .

In this example,  is a complex vector with the real and imaginary parts bounded by 1. Therefore,
.

Therefore, if you know the distribution of singular values for the  matrices in your problem, then
you can choose the number of additional integer bits required to avoid overflow in the back-substitute
with a given probability (see, for example, reference [1]).

In this example, we compute the singular values for all the matrices in our test bench and choose the
number of integer bits to avoid overflow based on that.

singular_values = zeros(n,n_test_inputs);
A0 = double(A);
for k = 1:n_test_inputs
    singular_values(:,k) = svd(A0(:,:,k));
end
condition_numbers = singular_values(1,:)./singular_values(end,:);
x_bound = sqrt(2*n)./singular_values(end,:);

The number of bits of growth to add is the base-2 logarithm of the maximum bound.

integer_bits_for_backsubstitute = ceil(log2(max(x_bound)))

integer_bits_for_backsubstitute =

     7

Subtract the required integer bits for back-substitute from the wordlength, and an additional bit for
the sign bit.

backsubstitute_fraction_length = T.A.WordLength - integer_bits_for_backsubstitute - 1

backsubstitute_fraction_length =

    19

Therefore, the data type for the back-substitute is:

BackSubstitutePrototype = fi(0, 1, T.A.WordLength, backsubstitute_fraction_length)

BackSubstitutePrototype = 

     0

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 27
        FractionLength: 19

Set the number of CORDIC iterations to be one less than the fixed-point word length of A.

 Use Hardware-Efficient Algorithm to Solve Systems of Complex-Valued Linear Equations

48-41



NumberOfCORDICIterations = T.A.WordLength - 1

NumberOfCORDICIterations =

    26

Run the model with fixed-point inputs.

sim(model)

Calculate and Plot the Errors

A measure of error is

norm(AX - B)

for each pair of inputs A and B.

norm_error = zeros(1,size(X,3));
B0 = double(B);
X0 = double(X);
for k = 1:size(X,3)
    norm_error(k) = norm(A0(:,:,k)*X0(:,:,k) - B0(:,:,k));
end

Plot the errors. The errors are low because of the data types chosen. The errors are typically higher
when the condition number of matrix A is high, as the theory predicts.

figure(1)
clf
h1 = subplot(2,1,1);
plot(norm_error)
grid on
title('Errors')
ylabel('norm(AX - B)')
h2 = subplot(2,1,2);
plot(condition_numbers)
grid on
title('Condition numbers')
ylabel('cond(A)')
xlabel('Test points')
linkaxes([h1,h2],'x')
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Re-enable warnings

warning(warning_state);
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Implement Hardware-Efficient QR Decomposition Using CORDIC
in a Systolic Array

This example shows how to compute the QR decomposition of matrices using hardware-efficient
MATLAB® code in Simulink®.

To solve a system of equations or compute a least-squares solution to the matrix equation AX = B
using the QR decomposition, compute R and Q'B, where QR = A, and RX = Q'B. R is an upper
triangular matrix and Q is an orthogonal matrix. If you just want Q and R, then set B to be the identity
matrix.

In this example, R is computed from matrix A by applying Givens transformations using the CORDIC
algorithm. C = Q'B is computed from matrix B by applying the same Givens transformations. The
algorithm uses only iterative shifts and additions to perform these computations.

For more information on the algorithm used in this example, see Perform QR Factorization Using
CORDIC

Overview

The Simulink model used in this example is:

fxpdemo_real_4x4_systolic_array_QR_model
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To enter your own input matrices, A and B, open the block parameters of the corresponding enabled
subsystem blocks to the left. After simulation, the model returns the computed output matrices, C =
Q'B and R to the workspace. You can specify the number of CORDIC iterations in the block
parameters of the transpose(Q)*B, R 4x4 Real CORDIC Systolic Array subsystem. If the inputs are
fixed point, then the number of CORDIC iterations must be less than the word length. The accuracy of
the computation improves one bit for each iteration, up to the word length of the inputs.

This model will work with fixed-point, double, and single data types.

To see how the algorithm performs the factorization, look under the mask of the transpose(Q)*B, R
4x4 Real CORDIC Systolic Array subsystem. The annotations indicate which rows of the matrix are
being operated on to zero-out the sub-diagonal elements. The systolic array is set up for a 4-by-4
matrix A, but can be extended to any size by following the same pattern. This implementation works
only with real input matrices.
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To see the MATLAB code in the MATLAB Function block that performs the Givens transformations
using CORDIC, continue to look under the block masks.

In this example, the number of rows and columns of A must be 4. Matrix B must have 4 rows and any
number of columns.
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Use QR to solve matrix equation Ax = B

The first step in solving the matrix equation AX = B is to compute RX = Q'B, where R is upper-
triangular, Q is orthogonal and Q*R = A.

The following inputs are double-precision floating-point types, so set the number of iterations to be
52, which is the number of bits in the mantissa of double.

format
NumberOfCORDICIterations = 52;
A = 2*rand(4,4)-1;
B = 2*rand(4,4)-1;

Simulate the model to compute R and C = Q'B.

sim fxpdemo_real_4x4_systolic_array_QR_model
R
C

R =

    1.5149   -0.0519    1.7292   -0.3224
         0    0.9593   -0.0259   -0.0879
         0         0    0.2565    1.0888
         0         0         0   -0.6429

C =

    0.5942   -0.2382    0.0676   -0.9370
   -0.8887    0.6146   -0.5758    0.3051
    0.1725    0.7339    0.5409    0.5374
    0.8540    1.1078   -0.2183   -0.5620

Verify that back-substituting with R and C = Q'B gives the same results as MATLAB.

X = R\C
X_should_be = A\B

X =

   -7.1245  -12.1131   -0.6637    1.4236
   -0.8779    0.7572   -0.5511    0.3545
    6.3113   10.1759    0.6673   -1.6155
   -1.3283   -1.7231    0.3396    0.8741

X_should_be =

   -7.1245  -12.1131   -0.6637    1.4236
   -0.8779    0.7572   -0.5511    0.3545
    6.3113   10.1759    0.6673   -1.6155
   -1.3283   -1.7231    0.3396    0.8741

The norm of the difference between built-in MATLAB and the CORDIC QR solution should be small.
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norm(X - X_should_be)

ans =

   3.6171e-14

Compute Q and R

To compute Q and R, set B equal to the identity matrix. When B equals the identity matrix, then Q =
C'.

NumberOfCORDICIterations = 52;
A = 2*rand(4,4)-1;
B = eye(size(A,1),'like',A);
sim fxpdemo_real_4x4_systolic_array_QR_model

Q = C';

The theoretical QR decomposition is QR==A, so the difference between the computed QR and A
should be small.

norm(Q*R - A)

ans =

   2.2861e-15

QR is not unique

The QR decomposition is only unique up to the signs of the rows of R and the columns of Q. You can
make a unique QR decomposition by making the diagonal elements of R all positive.

D = diag(sign(diag(R)));
Qunique = Q*D
Runique = D*R

Qunique =

   -0.3086    0.1224   -0.1033   -0.9376
   -0.6277   -0.7636   -0.0952    0.1174
   -0.5573    0.3930    0.7146    0.1559
    0.4474   -0.4975    0.6852   -0.2877

Runique =

    1.4459   -0.8090    0.1547    0.3977
         0    1.1441    0.0809   -0.2494
         0         0    0.8193    0.1894
         0         0         0    0.4836

Then you can compare the computed QR from the model to the builtin MATLAB qr function.
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[Q0,R0] = qr(A);
D0 = diag(sign(diag(R0)));
Q0 = Q0*D0
R0 = D0*R0

Q0 =

   -0.3086    0.1224   -0.1033   -0.9376
   -0.6277   -0.7636   -0.0952    0.1174
   -0.5573    0.3930    0.7146    0.1559
    0.4474   -0.4975    0.6852   -0.2877

R0 =

    1.4459   -0.8090    0.1547    0.3977
         0    1.1441    0.0809   -0.2494
         0         0    0.8193    0.1894
         0         0         0    0.4836

Use Fixed-Point for Hardware-Efficient Implementation

Use fixed-point input data types to produce efficient HDL code for ASIC and FPGA devices.

For more information on how to choose fixed-point data types that will not overflow, refer to example
Perform QR Factorization Using CORDIC.

You can run many test inputs through the model by making A and B 3-dimensional arrays.

n_test_inputs=100;

The following section defines random inputs for matrices A and B that are scaled between -1 and 1, so
set the fixed-point word length to 18 bits and fraction length to 14 bits to allow for growth in the QR
factorization and intermediate computations in the CORDIC algorithm.

word_length = 18;
fraction_length = 14;

The best-precision number of CORDIC iterations is the word length minus one. If the number of
CORDIC iterations is set to smaller than word_length - 1, then the latency and clock ticks to next
ready signal will be shorter, but it will be less accurate. The number of CORDIC iterations should not
be set any larger because the generated code does not support shifts greater than the word length of
a fixed-point type.

NumberOfCORDICIterations = word_length - 1

NumberOfCORDICIterations =

    17

The random test inputs are concatenated so that at time k, the inputs are A(:,:,k) and B(:,:,k). Each
element of A and B is a uniform random variable between -1 and +1.

A = 2*rand(4,4,n_test_inputs)-1;
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Choose B to be the identity matrix so Q=C'.

B = eye(4);
B = repmat(B,1,1,n_test_inputs);

Cast A to fixed point, and cast B like A.

A = fi(A,1,word_length,fraction_length);
B = cast(B,'like',A);

Simulate the model

sim fxpdemo_real_4x4_systolic_array_QR_model

Calculate and plot the errors

norm_error = zeros(1,size(R,3));
for k = 1:size(R,3)
    Q_times_R_minus_A = double(C(:,:,k))'*double(R(:,:,k)) - double(A(:,:,k));
    norm_error(k) = norm(Q_times_R_minus_A);
end

The errors should be on the order of 10^-3.

clf
plot(norm_error,'o-')
grid on
title('norm(QR - A)')
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Perform QR Factorization Using CORDIC
This example shows how to write MATLAB® code that works for both floating-point and fixed-point
data types. The algorithm used in this example is the QR factorization implemented via CORDIC
(Coordinate Rotation Digital Computer).

A good way to write an algorithm intended for a fixed-point target is to write it in MATLAB using
builtin floating-point types so you can verify that the algorithm works. When you refine the algorithm
to work with fixed-point types, then the best thing to do is to write it so that the same code continues
working with floating-point. That way, when you are debugging, then you can switch the inputs back
and forth between floating-point and fixed-point types to determine if a difference in behavior is
because of fixed-point effects such as overflow and quantization versus an algorithmic difference.
Even if the algorithm is not well suited for a floating-point target (as is the case of using CORDIC in
the following example), it is still advantageous to have your MATLAB code work with floating-point
for debugging purposes.

In contrast, you may have a completely different strategy if your target is floating point. For example,
the QR algorithm is often done in floating-point with Householder transformations and row or column
pivoting. But in fixed-point it is often more efficient to use CORDIC to apply Givens rotations with no
pivoting.

This example addresses the first case, where your target is fixed-point, and you want an algorithm
that is independent of data type because it is easier to develop and debug.

In this example you will learn various coding methods that can be applied across systems. The
significant design patterns used in this example are the following:

• Data Type Independence: the algorithm is written in such a way that the MATLAB code is
independent of data type, and will work equally well for fixed-point, double-precision floating-
point, and single-precision floating-point.

• Overflow Prevention: method to guarantee not to overflow. This demonstrates how to prevent
overflows in fixed-point.

• Solving Systems of Equations: method to use computational efficiency. Narrow your code scope by
isolating what you need to define.

The main part in this example is an implementation of the QR factorization in fixed-point arithmetic
using CORDIC for the Givens rotations. The algorithm is written in such a way that the MATLAB code
is independent of data type, and will work equally well for fixed-point, double-precision floating-point,
and single-precision floating-point.

The QR factorization of M-by-N matrix A produces an M-by-N upper triangular matrix R and an M-by-
M orthogonal matrix Q such that A = Q*R. A matrix is upper triangular if it has all zeros below the
diagonal. An M-by-M matrix Q is orthogonal if Q'*Q = eye (M), the identity matrix.

The QR factorization is widely used in least-squares problems, such as the recursive least squares
(RLS) algorithm used in adaptive filters.

The CORDIC algorithm is attractive for computing the QR algorithm in fixed-point because you can
apply orthogonal Givens rotations with CORDIC using only shift and add operations.

Setup

So this example does not change your preferences or settings, we store the original state here, and
restore them at the end.
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originalFormat = get(0, 'format'); format short
originalFipref = get(fipref);      reset(fipref);
originalGlobalFimath = fimath;     resetglobalfimath;

Defining the CORDIC QR Algorithm

The CORDIC QR algorithm is given in the following MATLAB function, where A is an M-by-N real
matrix, and niter is the number of CORDIC iterations. Output Q is an M-by-M orthogonal matrix,
and R is an M-by-N upper-triangular matrix such that Q*R = A.

function [Q,R] = cordicqr(A,niter)
  Kn = inverse_cordic_growth_constant(niter);
  [m,n] = size(A);
  R = A;
  Q = coder.nullcopy(repmat(A(:,1),1,m)); % Declare type and size of Q
  Q(:) = eye(m);                          % Initialize Q
  for j=1:n
    for i=j+1:m
      [R(j,j:end),R(i,j:end),Q(:,j),Q(:,i)] = ...
          cordicgivens(R(j,j:end),R(i,j:end),Q(:,j),Q(:,i),niter,Kn);
    end
  end
end

This function was written to be independent of data type. It works equally well with builtin floating-
point types (double and single) and with the fixed-point fi object.

One of the trickiest aspects of writing data-type independent code is to specify data type and size for
a new variable. In order to preserve data types without having to explicitly specify them, the output R
was set to be the same as input A, like this:

    R = A;

In addition to being data-type independent, this function was written in such a way that MATLAB
Coder™ will be able to generate efficient C code from it. In MATLAB, you most often declare and
initialize a variable in one step, like this:

    Q = eye(m)

However, Q=eye(m) would always produce Q as a double-precision floating point variable. If A is
fixed-point, then we want Q to be fixed-point; if A is single, then we want Q to be single; etc.

Hence, you need to declare the type and size of Q in one step, and then initialize it in a second step.
This gives MATLAB Coder the information it needs to create an efficient C program with the correct
types and sizes. In the finished code you initialize output Q to be an M-by-M identity matrix and the
same data type as A, like this:

    Q = coder.nullcopy(repmat(A(:,1),1,m)); % Declare type and size of Q
    Q(:) = eye(m);                        % Initialize Q

The coder.nullcopy function declares the size and type of Q without initializing it. The expansion
of the first column of A with repmat won't appear in code generated by MATLAB; it is only used to
specify the size. The repmat function was used instead of A(:,1:m) because A may have more rows
than columns, which will be the case in a least-squares problem. You have to be sure to always assign
values to every element of an array when you declare it with coder.nullcopy, because if you don't
then you will have uninitialized memory.
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You will notice this pattern of assignment again and again. This is another key enabler of data-type
independent code.

The heart of this function is applying orthogonal Givens rotations in-place to the rows of R to zero out
sub-diagonal elements, thus forming an upper-triangular matrix. The same rotations are applied in-
place to the columns of the identity matrix, thus forming orthogonal Q. The Givens rotations are
applied using the cordicgivens function, as defined in the next section. The rows of R and columns
of Q are used as both input and output to the cordicgivens function so that the computation is
done in-place, overwriting R and Q.

[R(j,j:end),R(i,j:end),Q(:,j),Q(:,i)] = ...
    cordicgivens(R(j,j:end),R(i,j:end),Q(:,j),Q(:,i),niter,Kn);

Defining the CORDIC Givens Rotation

The cordicgivens function applies a Givens rotation by performing CORDIC iterations to rows
x=R(j,j:end), y=R(i,j:end) around the angle defined by x(1)=R(j,j) and y(1)=R(i,j)
where i>j, thus zeroing out R(i,j). The same rotation is applied to columns u = Q(:,j) and v =
Q(:,i), thus forming the orthogonal matrix Q.

function [x,y,u,v] = cordicgivens(x,y,u,v,niter,Kn)
  if x(1)<0
    % Compensation for 3rd and 4th quadrants
    x(:) = -x;  u(:) = -u;
    y(:) = -y;  v(:) = -v;
  end
  for i=0:niter-1
    x0 = x;
    u0 = u;
    if y(1)<0
      % Counter-clockwise rotation
      % x and y form R,         u and v form Q
      x(:) = x - bitsra(y, i);  u(:) = u - bitsra(v, i);
      y(:) = y + bitsra(x0,i);  v(:) = v + bitsra(u0,i);
    else
      % Clockwise rotation
      % x and y form R,         u and v form Q
      x(:) = x + bitsra(y, i);  u(:) = u + bitsra(v, i);
      y(:) = y - bitsra(x0,i);  v(:) = v - bitsra(u0,i);
    end
  end
  % Set y(1) to exactly zero so R will be upper triangular without round off
  % showing up in the lower triangle.
  y(1) = 0;
  % Normalize the CORDIC gain
  x(:) = Kn * x;  u(:) = Kn * u;
  y(:) = Kn * y;  v(:) = Kn * v;
end

The advantage of using CORDIC in fixed-point over the standard Givens rotation is that CORDIC does
not use square root or divide operations. Only bit-shifts, addition, and subtraction are needed in the
main loop, and one scalar-vector multiply at the end to normalize the CORDIC gain. Also, CORDIC
rotations work well in pipelined architectures.

The bit shifts in each iteration are performed with the bit shift right arithmetic (bitsra) function
instead of bitshift, multiplication by 0.5, or division by 2, because bitsra
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• generates more efficient embedded code,
• works equally well with positive and negative numbers,
• works equally well with floating-point, fixed-point and integer types, and
• keeps this code independent of data type.

It is worthwhile to note that there is a difference between sub-scripted assignment (subsasgn) into a
variable a(:) = b versus overwriting a variable a = b. Sub-scripted assignment into a variable like
this

x(:) = x + bitsra(y, i);

always preserves the type of the left-hand-side argument x. This is the recommended programming
style in fixed-point. For example fixed-point types often grow their word length in a sum, which is
governed by the SumMode property of the fimath object, so that the right-hand-side x +
bitsra(y,i) can have a different data type than x.

If, instead, you overwrite the left-hand-side like this

x = x + bitsra(y, i);

then the left-hand-side x takes on the type of the right-hand-side sum. This programming style leads
to changing the data type of x in fixed-point code, and is discouraged.

Defining the Inverse CORDIC Growth Constant

This function returns the inverse of the CORDIC growth factor after niter iterations. It is needed
because CORDIC rotations grow the values by a factor of approximately 1.6468, depending on the
number of iterations, so the gain is normalized in the last step of cordicgivens by a multiplication
by the inverse Kn = 1/1.6468 = 0.60725.

function Kn = inverse_cordic_growth_constant(niter)
  Kn = 1/prod(sqrt(1+2.^(-2*(0:double(niter)-1))));
end

Exploring CORDIC Growth as a Function of Number of Iterations

The function for CORDIC growth is defined as

growth = prod(sqrt(1+2.^(-2*(0:double(niter)-1))))

and the inverse is

inverse_growth = 1 ./ growth

Growth is a function of the number of iterations niter, and quickly converges to approximately
1.6468, and the inverse converges to approximately 0.60725. You can see in the following table that
the difference from one iteration to the next ceases to change after 27 iterations. This is because the
calculation hit the limit of precision in double floating-point at 27 iterations.

niter       growth            diff(growth)         1./growth        diff(1./growth)
  0    1.000000000000000                   0   1.000000000000000                   0
  1    1.414213562373095   0.414213562373095   0.707106781186547  -0.292893218813453
  2    1.581138830084190   0.166925267711095   0.632455532033676  -0.074651249152872
  3    1.629800601300662   0.048661771216473   0.613571991077896  -0.018883540955780
  4    1.642484065752237   0.012683464451575   0.608833912517752  -0.004738078560144
  5    1.645688915757255   0.003204850005018   0.607648256256168  -0.001185656261584
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  6    1.646492278712479   0.000803362955224   0.607351770141296  -0.000296486114872
  7    1.646693254273644   0.000200975561165   0.607277644093526  -0.000074126047770
  8    1.646743506596901   0.000050252323257   0.607259112298893  -0.000018531794633
  9    1.646756070204878   0.000012563607978   0.607254479332562  -0.000004632966330
 10    1.646759211139822   0.000003140934944   0.607253321089875  -0.000001158242687
 11    1.646759996375617   0.000000785235795   0.607253031529134  -0.000000289560741
 12    1.646760192684695   0.000000196309077   0.607252959138945  -0.000000072390190
 13    1.646760241761972   0.000000049077277   0.607252941041397  -0.000000018097548
 14    1.646760254031292   0.000000012269320   0.607252936517010  -0.000000004524387
 15    1.646760257098622   0.000000003067330   0.607252935385914  -0.000000001131097
 16    1.646760257865455   0.000000000766833   0.607252935103139  -0.000000000282774
 17    1.646760258057163   0.000000000191708   0.607252935032446  -0.000000000070694
 18    1.646760258105090   0.000000000047927   0.607252935014772  -0.000000000017673
 19    1.646760258117072   0.000000000011982   0.607252935010354  -0.000000000004418
 20    1.646760258120067   0.000000000002995   0.607252935009249  -0.000000000001105
 21    1.646760258120816   0.000000000000749   0.607252935008973  -0.000000000000276
 22    1.646760258121003   0.000000000000187   0.607252935008904  -0.000000000000069
 23    1.646760258121050   0.000000000000047   0.607252935008887  -0.000000000000017
 24    1.646760258121062   0.000000000000012   0.607252935008883  -0.000000000000004
 25    1.646760258121065   0.000000000000003   0.607252935008882  -0.000000000000001
 26    1.646760258121065   0.000000000000001   0.607252935008881  -0.000000000000000
 27    1.646760258121065                   0   0.607252935008881                   0
 28    1.646760258121065                   0   0.607252935008881                   0
 29    1.646760258121065                   0   0.607252935008881                   0
 30    1.646760258121065                   0   0.607252935008881                   0
 31    1.646760258121065                   0   0.607252935008881                   0
 32    1.646760258121065                   0   0.607252935008881                   0

Comparing CORDIC to the Standard Givens Rotation

The cordicgivens function is numerically equivalent to the following standard Givens rotation
algorithm from Golub & Van Loan, Matrix Computations. In the cordicqr function, if you replace the
call to cordicgivens with a call to givensrotation, then you will have the standard Givens QR
algorithm.

function [x,y,u,v] = givensrotation(x,y,u,v)
  a = x(1); b = y(1);
  if b==0
    % No rotation necessary.  c = 1; s = 0;
    return;
  else
    if abs(b) > abs(a)
      t = -a/b; s = 1/sqrt(1+t^2); c = s*t;
    else
      t = -b/a; c = 1/sqrt(1+t^2); s = c*t;
    end
  end
  x0 = x;             u0 = u;
  % x and y form R,   u and v form Q
  x(:) = c*x0 - s*y;  u(:) = c*u0 - s*v;
  y(:) = s*x0 + c*y;  v(:) = s*u0 + c*v;
end

The givensrotation function uses division and square root, which are expensive in fixed-point, but
good for floating-point algorithms.
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Example of CORDIC Rotations

Here is a 3-by-3 example that follows the CORDIC rotations through each step of the algorithm. The
algorithm uses orthogonal rotations to zero out the subdiagonal elements of R using the diagonal
elements as pivots. The same rotations are applied to the identity matrix, thus producing orthogonal
Q such that Q*R = A.

Let A be a random 3-by-3 matrix, and initialize R = A, and Q = eye(3).

  R = A = [-0.8201    0.3573   -0.0100
           -0.7766   -0.0096   -0.7048
           -0.7274   -0.6206   -0.8901]

      Q = [ 1         0         0
            0         1         0
            0         0         1]

The first rotation is about the first and second row of R and the first and second column of Q. Element
R(1,1) is the pivot and R(2,1) rotates to 0.

    R before the first rotation            R after the first rotation
x [-0.8201    0.3573   -0.0100]   ->    x [1.1294   -0.2528    0.4918]
y [-0.7766   -0.0096   -0.7048]   ->    y [     0    0.2527    0.5049]
   -0.7274   -0.6206   -0.8901            -0.7274   -0.6206   -0.8901

    Q before the first rotation            Q after the first rotation
    u         v                            u         v
   [1]       [0]        0                [-0.7261] [ 0.6876]        0
   [0]       [1]        0         ->     [-0.6876] [-0.7261]        0
   [0]       [0]        1                [      0] [      0]        1

In the following plot, you can see the growth in x in each of the CORDIC iterations. The growth is
factored out at the last step by multiplying it by Kn = 0.60725. You can see that y(1) iterates to 0.
Initially, the point [x(1), y(1)] is in the third quadrant, and is reflected into the first quadrant
before the start of the CORDIC iterations.
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The second rotation is about the first and third row of R and the first and third column of Q. Element
R(1,1) is the pivot and R(3,1) rotates to 0.

    R before the second rotation           R after the second rotation
x  [1.1294   -0.2528    0.4918]   ->    x [1.3434    0.1235    0.8954]
         0    0.2527    0.5049                  0    0.2527    0.5049
y [-0.7274]  -0.6206   -0.8901    ->    y [     0   -0.6586   -0.4820]

    Q before the second rotation           Q after the second rotation
    u                       v              u                   v
  [-0.7261]   0.6876       [0]           [-0.6105]   0.6876  [-0.3932]
  [-0.6876]  -0.7261       [0]    ->     [-0.5781]  -0.7261  [-0.3723]
  [      0]        0       [1]           [-0.5415]        0  [ 0.8407]
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The third rotation is about the second and third row of R and the second and third column of Q.
Element R(2,2) is the pivot and R(3,2) rotates to 0.

    R before the third rotation            R after the third rotation
    1.3434    0.1235    0.8954             1.3434    0.1235    0.8954
 x       0  [ 0.2527    0.5049]   ->    x       0   [0.7054    0.6308]
 y       0  [-0.6586   -0.4820]   ->    y       0   [     0    0.2987]

    Q before the third rotation            Q after the third rotation
              u         v                            u         v
   -0.6105  [ 0.6876] [-0.3932]           -0.6105  [ 0.6134] [ 0.5011]
   -0.5781  [-0.7261] [-0.3723]   ->      -0.5781  [ 0.0875] [-0.8113]
   -0.5415  [      0] [ 0.8407]           -0.5415  [-0.7849] [ 0.3011]
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This completes the QR factorization. R is upper triangular, and Q is orthogonal.

R =
   1.3434    0.1235    0.8954
        0    0.7054    0.6308
        0         0    0.2987

Q =
  -0.6105    0.6134    0.5011
  -0.5781    0.0875   -0.8113
  -0.5415   -0.7849    0.3011

You can verify that Q is within roundoff error of being orthogonal by multiplying and seeing that it is
close to the identity matrix.

Q*Q' =  1.0000    0.0000    0.0000
        0.0000    1.0000         0
        0.0000         0    1.0000

Q'*Q =  1.0000    0.0000   -0.0000
        0.0000    1.0000   -0.0000
       -0.0000   -0.0000    1.0000
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You can see the error difference by subtracting the identity matrix.

Q*Q' - eye(size(Q)) =           0   2.7756e-16   3.0531e-16
                       2.7756e-16   4.4409e-16            0
                       3.0531e-16            0   6.6613e-16

You can verify that Q*R is close to A by subtracting to see the error difference.

Q*R - A =  -3.7802e-11  -7.2325e-13  -2.7756e-17
           -3.0512e-10   1.1708e-12  -4.4409e-16
            3.6836e-10  -4.3487e-13  -7.7716e-16

Determining the Optimal Output Type of Q for Fixed Word Length

Since Q is orthogonal, you know that all of its values are between -1 and +1. In floating-point, there is
no decision about the type of Q: it should be the same floating-point type as A. However, in fixed-
point, you can do better than making Q have the identical fixed-point type as A. For example, if A has
word length 16 and fraction length 8, and if we make Q also have word length 16 and fraction length
8, then you force Q to be less accurate than it could be and waste the upper half of the fixed-point
range.

The best type for Q is to make it have full range of its possible outputs, plus accommodate the 1.6468
CORDIC growth factor in intermediate calculations. Therefore, assuming that the word length of Q is
the same as the word length of input A, then the best fraction length for Q is 2 bits less than the word
length (one bit for 1.6468 and one bit for the sign).

Hence, our initialization of Q in cordicqr can be improved like this.

if isfi(A) && (isfixed(A) || isscaleddouble(A))
      Q = fi(one*eye(m), get(A,'NumericType'), ...
             'FractionLength',get(A,'WordLength')-2);
else
  Q = coder.nullcopy(repmat(A(:,1),1,m));
  Q(:) = eye(m);
end

A slight disadvantage is that this section of code is dependent on data type. However, you gain a
major advantage by picking the optimal type for Q, and the main algorithm is still independent of data
type. You can do this kind of input parsing in the beginning of a function and leave the main algorithm
data-type independent.

Preventing Overflow in Fixed Point R

This section describes how to determine a fixed-point output type for R in order to prevent overflow.
In order to pick an output type, you need to know how much the magnitude of the values of R will
grow.

Given real matrix A and its QR factorization computed by Givens rotations without pivoting, an upper-
bound on the magnitude of the elements of R is the square-root of the number of rows of A times the
magnitude of the largest element in A. Furthermore, this growth will never be greater during an
intermediate computation. In other words, let [m,n]=size(A), and [Q,R]=givensqr(A). Then

max(abs(R(:))) <= sqrt(m) * max(abs(A(:))).

This is true because the each element of R is formed from orthogonal rotations from its
corresponding column in A, so the largest that any element R(i,j) can get is if all of the elements of
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its corresponding column A(:,j) were rotated to a single value. In other words, the largest possible
value will be bounded by the 2-norm of A(:,j). Since the 2-norm of A(:,j) is equal to the square-
root of the sum of the squares of the m elements, and each element is less-than-or-equal-to the
largest element of A, then

norm(A(:,j)) <= sqrt(m) * max(abs(A(:))).

That is, for all j

norm(A(:,j))  = sqrt(A(1,j)^2 + A(2,j)^2 + ... + A(m,j)^2)
             <= sqrt( m * max(abs(A(:)))^2)
              = sqrt(m) * max(abs(A(:))).

and so for all i,j

abs(R(i,j)) <= norm(A(:,j)) <= sqrt(m) * max(abs(A(:))).

Hence, it is also true for the largest element of R

max(abs(R(:))) <= sqrt(m) * max(abs(A(:))).

This becomes useful in fixed-point where the elements of A are often very close to the maximum value
attainable by the data type, so we can set a tight upper bound without knowing the values of A. This
is important because we want to set an output type for R with a minimum number of bits, only
knowing the upper bound of the data type of A. You can use fi method upperbound to get this value.

Therefore, for all i,j

abs(R(i,j)) <= sqrt(m) * upperbound(A)

Note that sqrt(m)*upperbound(A) is also an upper bound for the elements of A:

abs(A(i,j)) <= upperbound(A) <= sqrt(m)*upperbound(A)

Therefore, when picking fixed-point data types, sqrt(m)*upperbound(A) is an upper bound that
will work for both A and R.

Attaining the maximum is easy and common. The maximum will occur when all elements get rotated
into a single element, like the following matrix with orthogonal columns:

A = [7    -7     7     7
     7     7    -7     7
     7    -7    -7    -7
     7     7     7    -7];

Its maximum value is 7 and its number of rows is m=4, so we expect that the maximum value in R will
be bounded by max(abs(A(:)))*sqrt(m) = 7*sqrt(4) = 14. Since A in this example is
orthogonal, each column gets rotated to the max value on the diagonal.

niter = 52;
[Q,R] = cordicqr(A,niter)

Q =

    0.5000   -0.5000    0.5000    0.5000
    0.5000    0.5000   -0.5000    0.5000
    0.5000   -0.5000   -0.5000   -0.5000
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    0.5000    0.5000    0.5000   -0.5000

R =

   14.0000    0.0000   -0.0000   -0.0000
         0   14.0000   -0.0000    0.0000
         0         0   14.0000    0.0000
         0         0         0   14.0000

Another simple example of attaining maximum growth is a matrix that has all identical elements, like
a matrix of all ones. A matrix of ones will get rotated into 1*sqrt(m) in the first row and zeros
elsewhere. For example, this 9-by-5 matrix will have all 1*sqrt(9)=3 in the first row of R.

m = 9; n = 5;
A = ones(m,n)
niter = 52;
[Q,R] = cordicqr(A,niter)

A =

     1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1

Q =

  Columns 1 through 7

    0.3333    0.5567   -0.6784    0.3035   -0.1237    0.0503    0.0158
    0.3333    0.0296    0.2498   -0.1702   -0.6336    0.1229   -0.3012
    0.3333    0.2401    0.0562   -0.3918    0.4927    0.2048   -0.5395
    0.3333    0.0003    0.0952   -0.1857    0.2148    0.4923    0.7080
    0.3333    0.1138    0.0664   -0.2263    0.1293   -0.8348    0.2510
    0.3333   -0.3973   -0.0143    0.3271    0.4132   -0.0354   -0.2165
    0.3333    0.1808    0.3538   -0.1012   -0.2195         0    0.0824
    0.3333   -0.6500   -0.4688   -0.2380   -0.2400         0         0
    0.3333   -0.0740    0.3400    0.6825   -0.0331         0         0

  Columns 8 through 9

    0.0056   -0.0921
   -0.5069   -0.1799
    0.0359    0.3122
   -0.2351   -0.0175
   -0.2001    0.0610
   -0.0939   -0.6294
    0.7646   -0.2849
    0.2300    0.2820
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         0    0.5485

R =

    3.0000    3.0000    3.0000    3.0000    3.0000
         0    0.0000    0.0000    0.0000    0.0000
         0         0    0.0000    0.0000    0.0000
         0         0         0    0.0000    0.0000
         0         0         0         0    0.0000
         0         0         0         0         0
         0         0         0         0         0
         0         0         0         0         0
         0         0         0         0         0

As in the cordicqr function, the Givens QR algorithm is often written by overwriting A in-place with
R, so being able to cast A into R's data type at the beginning of the algorithm is convenient.

In addition, if you compute the Givens rotations with CORDIC, there is a growth-factor that converges
quickly to approximately 1.6468. This growth factor gets normalized out after each Givens rotation,
but you need to accommodate it in the intermediate calculations. Therefore, the number of additional
bits that are required including the Givens and CORDIC growth are log2(1.6468* sqrt(m)). The
additional bits of head-room can be added either by increasing the word length, or decreasing the
fraction length.

A benefit of increasing the word length is that it allows for the maximum possible precision for a
given word length. A disadvantage is that the optimal word length may not correspond to a native
type on your processor (e.g. increasing from 16 to 18 bits), or you may have to increase to the next
larger native word size which could be quite large (e.g. increasing from 16 to 32 bits, when you only
needed 18).

A benefit of decreasing fraction length is that you can do the computation in-place in the native word
size of A. A disadvantage is that you lose precision.

Another option is to pre-scale the input by right-shifting. This is equivalent to decreasing the fraction
length, with the additional disadvantage of changing the scaling of your problem. However, this may
be an attractive option to you if you prefer to only work in fractional arithmetic or integer arithmetic.

Example of Fixed Point Growth in R

If you have a fixed-point input matrix A, you can define fixed-point output R with the growth defined
in the previous section.

Start with a random matrix X.

X = [0.0513   -0.2097    0.9492    0.2614
     0.8261    0.6252    0.3071   -0.9415
     1.5270    0.1832    0.1352   -0.1623
     0.4669   -1.0298    0.5152   -0.1461];

Create a fixed-point A from X.

A = sfi(X)

A = 
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    0.0513   -0.2097    0.9492    0.2614
    0.8261    0.6252    0.3071   -0.9415
    1.5270    0.1832    0.1352   -0.1623
    0.4669   -1.0298    0.5152   -0.1461

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 14

m = size(A,1)

m =

     4

The growth factor is 1.6468 times the square-root of the number of rows of A. The bit growth is the
next integer above the base-2 logarithm of the growth.

bit_growth = ceil(log2(cordic_growth_constant * sqrt(m)))

bit_growth =

     2

Initialize R with the same values as A, and a word length increased by the bit growth.

R = sfi(A, get(A,'WordLength')+bit_growth, get(A,'FractionLength'))

R = 

    0.0513   -0.2097    0.9492    0.2614
    0.8261    0.6252    0.3071   -0.9415
    1.5270    0.1832    0.1352   -0.1623
    0.4669   -1.0298    0.5152   -0.1461

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 18
        FractionLength: 14

Use R as input and overwrite it.

niter = get(R,'WordLength') - 1
[Q,R] = cordicqr(R, niter)

niter =

    17

Q = 
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    0.0284   -0.1753    0.9110    0.3723
    0.4594    0.4470    0.3507   -0.6828
    0.8490    0.0320   -0.2169    0.4808
    0.2596   -0.8766   -0.0112   -0.4050

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 18
        FractionLength: 16

R = 

    1.7989    0.1694    0.4166   -0.6008
         0    1.2251   -0.4764   -0.3438
         0         0    0.9375   -0.0555
         0         0         0    0.7214

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 18
        FractionLength: 14

Verify that Q*Q' is near the identity matrix.

double(Q)*double(Q')

ans =

    1.0000   -0.0001    0.0000    0.0000
   -0.0001    1.0001    0.0000   -0.0000
    0.0000    0.0000    1.0000   -0.0000
    0.0000   -0.0000   -0.0000    1.0000

Verify that Q*R - A is small relative to the precision of A.

err = double(Q)*double(R) - double(A)

err =

   1.0e-03 *

   -0.1048   -0.2355    0.1829   -0.2146
    0.3472    0.2949    0.0260   -0.2570
    0.2776   -0.1740   -0.1007    0.0966
    0.0138   -0.1558    0.0417   -0.0362

Increasing Precision in R

The previous section showed you how to prevent overflow in R while maintaining the precision of A. If
you leave the fraction length of R the same as A, then R cannot have more precision than A, and your
precision requirements may be such that the precision of R must be greater.
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An extreme example of this is to define a matrix with an integer fixed-point type (i.e. fraction length is
zero). Let matrix X have elements that are the full range for signed 8 bit integers, between -128 and
+127.

 X = [-128  -128  -128   127
      -128   127   127  -128
       127   127   127   127
       127   127  -128  -128];

Define fixed-point A to be equivalent to an 8-bit integer.

A = sfi(X,8,0)

A = 

  -128  -128  -128   127
  -128   127   127  -128
   127   127   127   127
   127   127  -128  -128

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 8
        FractionLength: 0

m = size(A,1)

m =

     4

The necessary growth is 1.6468 times the square-root of the number of rows of A.

bit_growth = ceil(log2(cordic_growth_constant*sqrt(m)))

bit_growth =

     2

Initialize R with the same values as A, and allow for bit growth like you did in the previous section.

R = sfi(A, get(A,'WordLength')+bit_growth, get(A,'FractionLength'))

R = 

  -128  -128  -128   127
  -128   127   127  -128
   127   127   127   127
   127   127  -128  -128

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 10
        FractionLength: 0
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Compute the QR factorization, overwriting R.

niter = get(R,'WordLength') - 1;
[Q,R] = cordicqr(R, niter)

Q = 

   -0.5039   -0.2930   -0.4062   -0.6914
   -0.5039    0.8750    0.0039    0.0078
    0.5000    0.2930    0.3984   -0.7148
    0.4922    0.2930   -0.8203    0.0039

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 10
        FractionLength: 8

R = 

   257   126    -1    -1
     0   225   151  -148
     0     0   211   104
     0     0     0  -180

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 10
        FractionLength: 0

Notice that R is returned with integer values because you left the fraction length of R at 0, the same
as the fraction length of A.

The scaling of the least-significant bit (LSB) of A is 1, and you can see that the error is proportional to
the LSB.

err = double(Q)*double(R)-double(A)

err =

   -1.5039   -1.4102   -1.4531   -0.9336
   -1.5039    6.3828    6.4531   -1.9961
    1.5000    1.9180    0.8086   -0.7500
   -0.5078    0.9336   -1.3398   -1.8672

You can increase the precision in the QR factorization by increasing the fraction length. In this
example, you needed 10 bits for the integer part (8 bits to start with, plus 2 bits growth), so when you
increase the fraction length you still need to keep the 10 bits in the integer part. For example, you
can increase the word length to 32 and set the fraction length to 22, which leaves 10 bits in the
integer part.

R = sfi(A, 32, 22)

R = 
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  -128  -128  -128   127
  -128   127   127  -128
   127   127   127   127
   127   127  -128  -128

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 32
        FractionLength: 22

niter = get(R,'WordLength') - 1;
[Q,R] = cordicqr(R, niter)

Q = 

   -0.5020   -0.2913   -0.4088   -0.7043
   -0.5020    0.8649    0.0000    0.0000
    0.4980    0.2890    0.4056   -0.7099
    0.4980    0.2890   -0.8176    0.0000

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 32
        FractionLength: 30

R = 

  255.0020  127.0029    0.0039    0.0039
         0  220.5476  146.8413 -147.9930
         0         0  208.4793  104.2429
         0         0         0 -179.6037

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 32
        FractionLength: 22

Now you can see fractional parts in R, and Q*R-A is small.

err = double(Q)*double(R)-double(A)

err =

   1.0e-05 *

   -0.1234   -0.0014   -0.0845    0.0267
   -0.1234    0.2574    0.1260   -0.1094
    0.0720    0.0289   -0.0400   -0.0684
    0.0957    0.0818   -0.1034    0.0095

The number of bits you choose for fraction length will depend on the precision requirements for your
particular algorithm.
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Picking Default Number of Iterations

The number of iterations is dependent on the desired precision, but limited by the word length of A.
With each iteration, the values are right-shifted one bit. After the last bit gets shifted off and the
value becomes 0, then there is no additional value in continuing to rotate. Hence, the most precision
will be attained by choosing niter to be one less than the word length.

For floating-point, the number of iterations is bounded by the size of the mantissa. In double, 52
iterations is the most you can do to continue adding to something with the same exponent. In single,
it is 23. See the reference page for eps for more information about floating-point accuracy.

Thus, we can make our code more usable by not requiring the number of iterations to be input, and
assuming that we want the most precision possible by changing cordicqr to use this default for
niter.

function [Q,R] = cordicqr(A,varargin)
  if nargin>=2 && ~isempty(varargin{1})
     niter = varargin{1};
  elseif isa(A,'double') || isfi(A) && isdouble(A)
    niter = 52;
  elseif isa(A,'single') || isfi(A) && issingle(A)
    niter = single(23);
  elseif isfi(A)
    niter = int32(get(A,'WordLength') - 1);
  else
    assert(0,'First input must be double, single, or fi.');
  end

A disadvantage of doing this is that this makes a section of our code dependent on data type.
However, an advantage is that the function is much more convenient to use because you don't have to
specify niter if you don't want to, and the main algorithm is still data-type independent. Similar to
picking an optimal output type for Q, you can do this kind of input parsing in the beginning of a
function and leave the main algorithm data-type independent.

Here is an example from a previous section, without needing to specify an optimal niter.

A = [7    -7     7     7
     7     7    -7     7
     7    -7    -7    -7
     7     7     7    -7];
[Q,R] = cordicqr(A)

Q =

    0.5000   -0.5000    0.5000    0.5000
    0.5000    0.5000   -0.5000    0.5000
    0.5000   -0.5000   -0.5000   -0.5000
    0.5000    0.5000    0.5000   -0.5000

R =

   14.0000    0.0000   -0.0000   -0.0000
         0   14.0000   -0.0000    0.0000
         0         0   14.0000    0.0000
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         0         0         0   14.0000

Example: QR Factorization Not Unique

When you compare the results from cordicqr and the QR function in MATLAB, you will notice that
the QR factorization is not unique. It is only important that Q is orthogonal, R is upper triangular, and
Q*R - A is small.

Here is a simple example that shows the difference.

m = 3;
A = ones(m)

A =

     1     1     1
     1     1     1
     1     1     1

The built-in QR function in MATLAB uses a different algorithm and produces:

[Q0,R0] = qr(A)

Q0 =

   -0.5774   -0.5774   -0.5774
   -0.5774    0.7887   -0.2113
   -0.5774   -0.2113    0.7887

R0 =

   -1.7321   -1.7321   -1.7321
         0         0         0
         0         0         0

And the cordicqr function produces:

[Q,R] = cordicqr(A)

Q =

    0.5774    0.7495    0.3240
    0.5774   -0.6553    0.4871
    0.5774   -0.0942   -0.8110

R =

    1.7321    1.7321    1.7321
         0    0.0000    0.0000
         0         0   -0.0000
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Notice that the elements of Q from function cordicqr are different from Q0 from built-in QR.
However, both results satisfy the requirement that Q is orthogonal:

Q0*Q0'

ans =

    1.0000    0.0000         0
    0.0000    1.0000         0
         0         0    1.0000

Q*Q'

ans =

    1.0000    0.0000    0.0000
    0.0000    1.0000   -0.0000
    0.0000   -0.0000    1.0000

And they both satisfy the requirement that Q*R - A is small:

Q0*R0 - A

ans =

   1.0e-15 *

   -0.1110   -0.1110   -0.1110
   -0.1110   -0.1110   -0.1110
   -0.1110   -0.1110   -0.1110

Q*R - A

ans =

   1.0e-15 *

   -0.2220    0.2220    0.2220
    0.4441         0         0
    0.2220    0.2220    0.2220

Solving Systems of Equations Without Forming Q

Given matrices A and B, you can use the QR factorization to solve for X in the following equation:

A*X = B.

If A has more rows than columns, then X will be the least-squares solution. If X and B have more than
one column, then several solutions can be computed at the same time. If A = Q*R is the QR
factorization of A, then the solution can be computed by back-solving

R*X = C
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where C = Q'*B. Instead of forming Q and multiplying to get C = Q'*B, it is more efficient to
compute C directly. You can compute C directly by applying the rotations to the rows of B instead of
to the columns of an identity matrix. The new algorithm is formed by the small modification of
initializing C = B, and operating along the rows of C instead of the columns of Q.

  function [R,C] = cordicrc(A,B,niter)
    Kn = inverse_cordic_growth_constant(niter);
    [m,n] = size(A);
    R = A;
    C = B;
    for j=1:n
      for i=j+1:m
        [R(j,j:end),R(i,j:end),C(j,:),C(i,:)] = ...
            cordicgivens(R(j,j:end),R(i,j:end),C(j,:),C(i,:),niter,Kn);
      end
    end
  end

You can verify the algorithm with this example. Let A be a random 3-by-3 matrix, and B be a random
3-by-2 matrix.

A = [-0.8201    0.3573   -0.0100
     -0.7766   -0.0096   -0.7048
     -0.7274   -0.6206   -0.8901];

B = [-0.9286    0.3575
      0.6983    0.5155
      0.8680    0.4863];

Compute the QR factorization of A.

[Q,R] = cordicqr(A)

Q =

   -0.6105    0.6133    0.5012
   -0.5781    0.0876   -0.8113
   -0.5415   -0.7850    0.3011

R =

    1.3434    0.1235    0.8955
         0    0.7054    0.6309
         0         0    0.2988

Compute C = Q'*B directly.

[R,C] = cordicrc(A,B)

R =

    1.3434    0.1235    0.8955
         0    0.7054    0.6309
         0         0    0.2988

 Perform QR Factorization Using CORDIC

48-73



C =

   -0.3068   -0.7795
   -1.1897   -0.1173
   -0.7706   -0.0926

Subtract, and you will see that the error difference is on the order of roundoff.

Q'*B - C

ans =

   1.0e-15 *

   -0.0555    0.3331
         0         0
    0.1110    0.2914

Now try the example in fixed-point. Declare A and B to be fixed-point types.

A = sfi(A)

A = 

   -0.8201    0.3573   -0.0100
   -0.7766   -0.0096   -0.7048
   -0.7274   -0.6206   -0.8901

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 15

B = sfi(B)

B = 

   -0.9286    0.3575
    0.6983    0.5155
    0.8680    0.4863

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 15

The necessary growth is 1.6468 times the square-root of the number of rows of A.

bit_growth = ceil(log2(cordic_growth_constant*sqrt(m)))

bit_growth =
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     2

Initialize R with the same values as A, and allow for bit growth.

R = sfi(A, get(A,'WordLength')+bit_growth, get(A,'FractionLength'))

R = 

   -0.8201    0.3573   -0.0100
   -0.7766   -0.0096   -0.7048
   -0.7274   -0.6206   -0.8901

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 18
        FractionLength: 15

The growth in C is the same as R, so initialize C and allow for bit growth the same way.

C = sfi(B, get(B,'WordLength')+bit_growth, get(B,'FractionLength'))

C = 

   -0.9286    0.3575
    0.6983    0.5155
    0.8680    0.4863

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 18
        FractionLength: 15

Compute C = Q'*B directly, overwriting R and C.

[R,C] = cordicrc(R,C)

R = 

    1.3435    0.1233    0.8954
         0    0.7055    0.6308
         0         0    0.2988

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 18
        FractionLength: 15

C = 

   -0.3068   -0.7796
   -1.1898   -0.1175
   -0.7706   -0.0926

          DataTypeMode: Fixed-point: binary point scaling
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            Signedness: Signed
            WordLength: 18
        FractionLength: 15

An interesting use of this algorithm is that if you initialize B to be the identity matrix, then output
argument C is Q'. You may want to use this feature to have more control over the data type of Q. For
example,

A = [-0.8201    0.3573   -0.0100
     -0.7766   -0.0096   -0.7048
     -0.7274   -0.6206   -0.8901];
B = eye(size(A,1))

B =

     1     0     0
     0     1     0
     0     0     1

[R,C] = cordicrc(A,B)

R =

    1.3434    0.1235    0.8955
         0    0.7054    0.6309
         0         0    0.2988

C =

   -0.6105   -0.5781   -0.5415
    0.6133    0.0876   -0.7850
    0.5012   -0.8113    0.3011

Then C is orthogonal

C'*C

ans =

    1.0000    0.0000    0.0000
    0.0000    1.0000   -0.0000
    0.0000   -0.0000    1.0000

and R = C*A

R - C*A

ans =

   1.0e-15 *
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    0.6661   -0.0139   -0.1110
    0.5551   -0.2220    0.6661
   -0.2220   -0.1110    0.2776

Links to the Documentation

Fixed-Point Designer™

• bitsra Bit shift right arithmetic
• fi Construct fixed-point numeric object
• fimath Construct fimath object
• fipref Construct fipref object
• get Property values of object
• globalfimath Configure global fimath and return handle object
• isfi Determine whether variable is fi object
• sfi Construct signed fixed-point numeric object
• upperbound Upper bound of range of fi object
• fiaccel Accelerate fixed-point code

MATLAB

• bitshift Shift bits specified number of places
• ceil Round toward positive infinity
• double Convert to double precision floating point
• eps Floating-point relative accuracy
• eye Identity matrix
• log2 Base 2 logarithm and dissect floating-point numbers into exponent and mantissa
• prod Product of array elements
• qr Orthogonal-triangular factorization
• repmat Replicate and tile array
• single Convert to single precision floating point
• size Array dimensions
• sqrt Square root
• subsasgn Subscripted assignment

Functions Used in this Example

These are the MATLAB functions used in this example.

CORDICQR computes the QR factorization using CORDIC.

• [Q,R] = cordicqr(A) chooses the number of CORDIC iterations based on the type of A.

• [Q,R] = cordicqr(A,niter) uses niter number of CORDIC iterations.

CORDICRC computes R from the QR factorization of A, and also returns C = Q'*B without
computing Q.
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• [R,C] = cordicrc(A,B) chooses the number of CORDIC iterations based on the type of A.

• [R,C] = cordicrc(A,B,niter) uses niter number of CORDIC iterations.

CORDIC_GROWTH_CONSTANT returns the CORDIC growth constant.

• cordic_growth = cordic_growth_constant(niter) returns the CORDIC growth constant
as a function of the number of CORDIC iterations, niter.

GIVENSQR computes the QR factorization using standard Givens rotations.

• [Q,R] = givensqr(A), where A is M-by-N, produces an M-by-N upper triangular matrix R and
an M-by-M orthogonal matrix Q so that A = Q*R.

CORDICQR_MAKEPLOTS makes the plots in this example by executing the following from the
MATLAB command line.

load A_3_by_3_for_cordicqr_demo.mat
niter=32;
[Q,R] = cordicqr_makeplots(A,niter)
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Cleanup

fipref(originalFipref);
globalfimath(originalGlobalFimath);
close all
set(0, 'format', originalFormat);
%#ok<*MNEFF,*NASGU,*NOPTS,*ASGLU>
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Implement Hardware-Efficient Real Partial-Systolic Matrix
Solve Using QR Decomposition

This example shows how to implement a hardware-efficient least-squares solution to the real-valued
matrix equation AX=B using the Real Partial-Systolic Matrix Solve Using QR Decomposition block.

Define Matrix Dimensions

Specify the number of rows in matrices A and B, the number of columns in matrix A, and the number
of columns in matrix B.

m = 300; % Number of rows in matrices A and B
n = 10;  % Number of columns in matrix A
p = 1;   % Number of columns in matrix B

Generate Random Least-Squares Matrices

For this example, use the helper function realRandomLeastSquaresMatrices to generate random
matrices A and B for the least-squares problem AX=B. The matrices are generated such that the
elements of A and B are between -1 and +1, and A is full rank.

rng('default')
[A,B] = fixed.example.realRandomLeastSquaresMatrices(m,n,p);

Select Fixed-Point Data Types

Use the helper function realQRMatrixSolveFixedpointTypes to select fixed-point data types for
input matrices A and B, and output X such that there is a low probability of overflow during the
computation.

max_abs_A = 1;       % Upper bound on max(abs(A(:))
max_abs_B = 1;       % Upper bound on max(abs(B(:))
precisionBits = 24;  % Number of bits of precision
T = fixed.realQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,precisionBits);
A = cast(A,'like',T.A);
B = cast(B,'like',T.B);
OutputType = fixed.extractNumericType(T.X);

Open the Model
model = 'RealPartialSystolicQRMatrixSolveModel';
open_system(model);
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The Data Handler subsystem in this model takes real matrices A and B as inputs. The ready port
triggers the Data Handler. After sending a true validIn signal, there may be some delay before
ready is set to false. When the Data Handler detects the leading edge of the ready signal, the block
sets validIn to true and sends the next row of A and B. This protocol allows data to be sent
whenever a leading edge of the ready signal is detected, ensuring that all data is processed.

Set Variables in the Model Workspace

Use the helper function setModelWorkspace to add the variables defined above to the model
workspace. These variables correspond to the block parameters for the Real Partial-Systolic Matrix
Solve Using QR Decomposition block.

numSamples = 1; % Number of sample matrices
fixed.example.setModelWorkspace(model,'A',A,'B',B,'m',m,'n',n,'p',p,...
    'regularizationParameter',0,...
    'numSamples',numSamples,'OutputType',OutputType);

Simulate the Model

out = sim(model);

Construct the Solution from the Output Data

The Real Partial-Systolic Matrix Solve Using QR Decomposition block outputs data one row at a time.
When a result row is output, the block sets validOut to true. The rows of X are output in the order
they are computed, last row first, so you must reconstruct the data to interpret the results. To
reconstruct the matrix X from the output data, use the helper function
matrixSolveModelOutputToArray.

X = fixed.example.matrixSolveModelOutputToArray(out.X,n,p,numSamples);

Verify the Accuracy of the Output

To evaluate the accuracy of the Real Partial-Systolic Matrix Solve Using QR Decomposition block,
compute the relative error.

relative_error = norm(double(A*X - B))/norm(double(B)) %#ok<NOPTS>

relative_error =

   2.3952e-05
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Implement Hardware-Efficient Real Partial-Systolic Matrix
Solve Using Q-less QR Decomposition

This example shows how to implement a hardware-efficient solution to the real-valued matrix
equation A'AX=B using the Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition block.

Define Matrix Dimensions

Specify the number of rows in matrix A, the number of columns in matrix A and rows in B, and the
number of columns in matrix B.

m = 300; % Number of rows in A
n = 10;  % Number of columns in A and rows in B
p = 1;   % Number of columns in B

Generate Matrices

For this example, use the helper function realRandomQlessQRMatrices to generate random
matrices A and B for the problem A'AX=B. The matrices are generated such that the elements of A
and B are between -1 and +1, and A is full rank.

rng('default')
[A,B] = fixed.example.realRandomQlessQRMatrices(m,n,p);

Select Fixed-Point Data Types

Use the helper function realQlessQRMatrixSolveFixedpointTypes to select fixed-point data
types for input matrices A and B, and output X such that there is a low probability of overflow during
the computation.

max_abs_A = 1;      % Upper bound on max(abs(A(:))
max_abs_B = 1;      % Upper bound on max(abs(B(:))
precisionBits = 24; % Number of bits of precision
T = fixed.realQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,precisionBits);
A = cast(A,'like',T.A);
B = cast(B,'like',T.B);
OutputType = fixed.extractNumericType(T.X);

Open the Model

model = 'RealPartialSystolicQlessQRMatrixSolveModel';
open_system(model);
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The Data Handler subsystem in this model takes real matrices A and B as inputs. The readyA and
readyB ports trigger the Data Handler. After sending a true validIn signal, there may be some delay
before ready is set to false. When the Data Handler detects the leading edge of the readyA signal,
the block sets validInA to true and sends the next row of A. When the Data Handler detects the
leading edge of the readyB signal, the block sets validInB to true and sends the next matrix B. This
protocol allows data to be sent whenever a leading edge of a ready signal is detected, ensuring that
all data is processed.

Set Variables in the Model Workspace

Use the helper function setModelWorkspace to add the variables defined above to the model
workspace. These variables correspond to the block parameters for the Real Partial-Systolic Matrix
Solve Using Q-less QR Decomposition block.

numSamples = 1; % Number of samples
fixed.example.setModelWorkspace(model,'A',A,'B',B,'m',m,'n',n,'p',p,...
    'regularizationParameter',0,...
    'numSamples',numSamples,'OutputType',OutputType);

Simulate the Model

out = sim(model);

Construct the Solution from the Output Data

The Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition block outputs matrix X at each
time step. When a valid result matrix is output, the block sets validOut to true.

X = out.X;

Verify the Accuracy of the Output

To evaluate the accuracy of the Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition
block, compute the relative error.

relative_error = norm(double(A'*A*X - B))/norm(double(B)) %#ok<NOPTS>

relative_error =

   8.6289e-05
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Implement Hardware-Efficient Real Burst Matrix Solve Using
QR Decomposition

This example shows how to implement a hardware-efficient least-squares solution to the real-valued
matrix equation AX=B using the Real Burst Matrix Solve Using QR Decomposition block.

Define Matrix Dimensions

Specify the number of rows in matrices A and B, the number of columns in matrix A, and the number
of columns in matrix B.

m = 50;  % Number of rows in matrices A and B
n = 10;  % Number of columns in matrix A
p = 1;   % Number of columns in matrix B

Generate Random Least-Squares Matrices

For this example, use the helper function realRandomLeastSquaresMatrices to generate random
matrices A and B for the least-squares problem AX=B. The matrices are generated such that the
elements of A and B are between -1 and +1, and A has rank r.

rng('default')
r = 3;   % Rank of A
[A,B] = fixed.example.realRandomLeastSquaresMatrices(m,n,p,r);

Select Fixed-Point Data Types

Use the helper function realQRMatrixSolveFixedpointTypes to select fixed-point data types for
input matrices A and B, and output X such that there is a low probability of overflow during the
computation.

max_abs_A = 1;      % Upper bound on max(abs(A(:))
max_abs_B = 1;      % Upper bound on max(abs(B(:))
precisionBits = 24; % Number of bits of precision

T = fixed.realQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,precisionBits);
A = cast(A,'like',T.A);
B = cast(B,'like',T.B);
OutputType = fixed.extractNumericType(T.X);

Open the Model

model = 'RealBurstQRMatrixSolveModel';
open_system(model);
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The Data Handler subsystem in this model takes real matrices A and B as inputs. The ready port
triggers the Data Handler. After sending a true validIn signal, there may be some delay before
ready is set to false. When the Data Handler detects the leading edge of the ready signal, the block
sets validIn to true and sends the next row of A and B. This protocol allows data to be sent
whenever a leading edge of the ready signal is detected, ensuring that all data is processed.

Set Variables in the Model Workspace

Use the helper function setModelWorkspace to add the variables defined above to the model
workspace. These variables correspond to the block parameters for the Real Burst Matrix Solve Using
QR Decomposition block.

numSamples = 1; % Number of sample matrices
fixed.example.setModelWorkspace(model,'A',A,'B',B,'m',m,'n',n,'p',p,...
    'regularizationParameter',0,...
    'numSamples',numSamples,'OutputType',OutputType);

Simulate the Model

out = sim(model);

Construct the Solution from the Output Data

The Real Burst Matrix Solve Using QR Decomposition block outputs data one row at a time. When a
result row is output, the block sets validOut to true. The rows of X are output in the order they are
computed, last row first, so you must reconstruct the data to interpret the results. To reconstruct the
matrix X from the output data, use the helper function matrixSolveModelOutputToArray.

X = fixed.example.matrixSolveModelOutputToArray(out.X,n,p,numSamples);

Verify the Accuracy of the Output

To evaluate the accuracy of the Real Burst Matrix Solve Using QR Decomposition block, compute the
relative error.

relative_error = norm(double(A*X - B))/norm(double(B)) %#ok<NOPTS>

relative_error =

48 Code Generation

48-84



   3.4664e-06
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Implement Hardware-Efficient Real Burst Matrix Solve Using Q-
less QR Decomposition

This example shows how to implement a hardware-efficient solution to the real-valued matrix
equation A'AX=B using the Real Burst Matrix Solve Using Q-less QR Decomposition block.

Define Matrix Dimensions

Specify the number of rows in matrix A, the number of columns in matrix A and rows in B, and the
number of columns in matrix B.

m = 100; % Number of rows in A
n = 10;  % Number of columns in A and rows in B
p = 1;   % Number of columns in B

Generate Matrices

For this example, use the helper function realRandomQlessQRMatrices to generate random
matrices A and B for the problem A'AX=B. The matrices are generated such that the elements of A
and B are between -1 and +1, and A is full rank.

rng('default')
[A,B] = fixed.example.realRandomQlessQRMatrices(m,n,p);

Select Fixed-Point Data Types

Use the helper function realQlessQRMatrixSolveFixedpointTypes to select fixed-point data
types for input matrices A and B, and output X such that there is a low probability of overflow during
the computation.

max_abs_A = 1;       % Upper bound on max(abs(A(:))
max_abs_B = 1;       % Upper bound on max(abs(B(:))
precisionBits = 24;  % Number of bits of precision
T = fixed.realQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,precisionBits);
A = cast(A,'like',T.A);
B = cast(B,'like',T.B);
OutputType = fixed.extractNumericType(T.X);

Open the Model

model = 'RealBurstQlessQRMatrixSolveModel';
open_system(model);
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The Data Handler subsystem in this model takes real matrices A and B as inputs. The ready port
triggers the Data Handler. After sending a true validIn signal, there may be some delay before
ready is set to false. When the Data Handler detects the leading edge of the ready signal, the block
sets validIn to true and sends the next row of A and B. This protocol allows data to be sent
whenever a leading edge of the ready signal is detected, ensuring that all data is processed.

Set Variables in the Model Workspace

Use the helper function setModelWorkspace to add the variables defined above to the model
workspace. These variables correspond to the block parameters for the Real Burst Matrix Solve Using
Q-less QR Decomposition block.

numSamples = 1; % Number of samples
fixed.example.setModelWorkspace(model,'A',A,'B',B,'m',m,'n',n,'p',p,...
    'regularizationParameter',0,...
    'numSamples',numSamples,'OutputType',OutputType);

Simulate the Model

out = sim(model);

Construct the Solution from the Output Data

The Real Burst Matrix Solve Using Q-less QR Decomposition block outputs data one row at a time.
When a result row is output, the block sets validOut to true. The rows of X are output in the order
they are computed, last row first, so you must reconstruct the data to interpret the results. To
reconstruct the matrix X from the output data, use the helper function
matrixSolveModelOutputToArray.

X = fixed.example.matrixSolveModelOutputToArray(out.X,n,p);

Verify the Accuracy of the Output

To evaluate the accuracy of the Real Burst Matrix Solve Using Q-less QR Decomposition block,
compute the relative error.

relative_error = norm(double(A'*A*X - B))/norm(double(B)) %#ok<NOPTS>

relative_error =

   5.5603e-04
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Implement Hardware-Efficient Real Partial-Systolic QR
Decomposition

This example shows how to implement a hardware-efficient QR decomposition using the Real Partial-
Systolic QR Decomposition block.

Economy Size QR Decomposition

The Real Partial-Systolic QR Decomposition block performs the first step of solving the least-squares
matrix equation AX = B which transforms A in-place to R and B in-place to C = Q'B, then solves the
transformed system RX = C, where QR is the orthogonal-triangular decomposition of A.

To compute the stand-alone QR decomposition, this example sets B to be the identity matrix so that
the output of the Real Partial-Systolic QR Decomposition block is the upper-triangular R and C = Q'.

Define Matrix Dimensions

Specify the number of rows in matrices A and B, the number of columns in matrix A, and the number
of columns in matrix B. This example sets B to be the identity matrix the same size as the number of
rows of A.

m = 10; % Number of rows in matrices A and B
n = 3;  % Number of columns in matrix A
p = m;  % Number of columns in matrix B

Generate Matrices A and B

Use the helper function realUniformRandomArray to generate a random matrix A such that the
elements of A are between -1 and +1, and A is full rank. Matrix B is the identity matrix.

rng('default')
A = fixed.example.realUniformRandomArray(-1,1,m,n);
B = eye(m);

Select Fixed-Point Data Types

Use the helper function qrFixedpointTypes to select fixed-point data types for matrices A and B
that guarantee no overflow will occur in the transformation of A in-place to R and B in-place to C =
Q'B.

max_abs_A = 1;  % Upper bound on max(abs(A(:))
max_abs_B = 1;  % Upper bound on max(abs(B(:))
precisionBits = 24;  % Number of bits of precision
T = fixed.qrFixedpointTypes(m,max_abs_A,max_abs_B,precisionBits);
A = cast(A,'like',T.A);
B = cast(B,'like',T.B);

Open the Model

model = 'RealPartialSystolicQRModel';
open_system(model);
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The Data Handler subsystem in this model takes real matrices A and B as inputs. The ready port
triggers the Data Handler. After sending a true validIn signal, there may be some delay before
ready is set to false. When the Data Handler detects the leading edge of the ready signal, the block
sets validIn to true and sends the next row of A and B. This protocol allows data to be sent
whenever a leading edge of the ready signal is detected, ensuring that all data is processed.

Set Variables in the Model Workspace

Use the helper function setModelWorkspace to add the variables defined above to the model
workspace. These variables correspond to the block parameters for the Real Partial-Systolic QR
Decomposition block.

numSamples = 1; % Number of sample matrices
fixed.example.setModelWorkspace(model,'A',A,'B',B,'m',m,'n',n,'p',p,...
    'numSamples',numSamples);

Simulate the Model

out = sim(model);

Construct the Solution from the Output Data

The Real Partial-Systolic QR Decomposition block outputs matrices R and C at each time step. When
valid result matrices are output, the block sets validOut to true.

R = out.R;
C = out.C;

Extract the Economy-Size Q

The block computes C = Q'B. In this example, B is the identity matrix, so Q = C' is the economy-size
orthogonal factor of the QR decomposition.

Q = C';

Verify that Q is Orthogonal and R is Upper-Triangular

Q is orothogonal, so Q'Q is the identity matrix within roundoff.

I = Q'*Q

I = 
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    1.0000   -0.0000   -0.0000
   -0.0000    1.0000   -0.0000
   -0.0000   -0.0000    1.0000

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 62
        FractionLength: 48

R is an upper-triangular matrix.

R

R = 

    2.2180    0.8559   -0.5607
         0    2.0578   -0.4017
         0         0    1.7117

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 29
        FractionLength: 24

isequal(R,triu(R))

ans =

  logical

   1

Verify the Accuracy of the Output

To evaluate the accuracy of the Real Partial-Systolic QR Decomposition block, compute the relative
error.

relative_error = norm(double(Q*R - A))/norm(double(A))

relative_error =

   1.5886e-06

Suppress mlint warnings.

%#ok<*NOPTS>
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Implement Hardware-Efficient Real Partial-Systolic Q-less QR
Decomposition

This example shows how to implement a hardware-efficient Q-less QR decomposition using the Real
Partial-Systolic Q-less QR Decomposition block.

Economy Size Q-less QR Decomposition

The Real Partial-Systolic Q-less QR Decomposition block performs the first step of solving the matrix
equation A'AX = B which transforms A in-place to upper-triangular R, then solves the transformed
system R'RX = B, where R'R = A'A.

Define Matrix Dimensions

Specify the number of rows and columns in matrix A.

m = 5;  % Number of rows in matrix A
n = 3;  % Number of columns in matrix A

Generate Matrix A

Use the helper function realUniformRandomArray to generate a random matrix A such that the
elements of A are between -1 and +1, and A is full rank.

rng('default')
A = fixed.example.realUniformRandomArray(-1,1,m,n);

Select Fixed-Point Data Types

Use the helper function qlessqrFixedpointTypes to select fixed-point data types for matrix A that
guarantee no overflow will occur in the transformation of A in-place to R.

max_abs_A = 1;        % Upper bound on max(abs(A(:))
precisionBits = 24;   % Number of bits of precision
T = fixed.qlessqrFixedpointTypes(m,max_abs_A,precisionBits);
A = cast(A,'like',T.A);

Open the Model

model = 'RealPartialSystolicQlessQRModel';
open_system(model);
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The Data Handler subsystem in this model takes real matrix A as input. The ready port triggers the
Data Handler. After sending a true validIn signal, there may be some delay before ready is set to
false. When the Data Handler detects the leading edge of the ready signal, the block sets validIn
to true and sends the next row of A. This protocol allows data to be sent whenever a leading edge of
the ready signal is detected, ensuring that all data is processed.

Set Variables in the Model Workspace

Use the helper function setModelWorkspace to add the variables defined above to the model
workspace. These variables correspond to the block parameters for the Real Partial-Systolic Q-less
QR Decomposition block.

numSamples = 1; % Number of sample matrices
fixed.example.setModelWorkspace(model,'A',A,'m',m,'n',n,...
    'numSamples',numSamples);

Simulate the Model

out = sim(model);

Construct the Solution from the Output Data

The Real Partial-Systolic QR Decomposition block outputs matrix R at each time step. When a valid
result matrix is output, the block sets validOut to true.

R = out.R;

R is an upper-triangular matrix.

R

R = 

    1.5379    0.0432   -0.1395
         0    1.5978    0.4742
         0         0    1.5192

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 28
        FractionLength: 24

isequal(R,triu(R))

ans =

  logical

   1

Verify the Accuracy of the Output

To evaluate the accuracy of the Real Partial-Systolic Q-less QR Decomposition block, compute the
relative error.

relative_error = norm(double(R'*R - A'*A))/norm(double(A'*A))
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relative_error =

   8.2641e-07

Suppress mlint warnings.

%#ok<*NOPTS>
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Implement Hardware-Efficient Real Burst QR Decomposition
This example shows how to implement a hardware-efficient QR decomposition using the Real Burst
QR Decomposition block.

Economy Size QR Decomposition

The Real Burst QR Decomposition block performs the first step of solving the least-squares matrix
equation AX = B which transforms A in-place to R and B in-place to C = Q'B, then solves the
transformed system RX = C, where QR is the orthogonal-triangular decomposition of A.

To compute the stand-alone QR decomposition, this example sets B to be the identity matrix so that
the output of the Real Burst QR Decomposition block is the upper-triangular R and C = Q'.

Define Matrix Dimensions

Specify the number of rows in matrices A and B, the number of columns in matrix A, and the number
of columns in matrix B. This example sets B to be the identity matrix the same size as the number of
rows of A.

m = 10; % Number of rows in matrices A and B
n = 3;  % Number of columns in matrix A
p = m;  % Number of columns in matrix B

Generate Matrices A and B

Use the helper function realUniformRandomArray to generate a random matrix A such that the
elements of A are between -1 and +1, and A is full rank. Matrix B is the identity matrix.

rng('default')
A = fixed.example.realUniformRandomArray(-1,1,m,n);
B = eye(m);

Select Fixed-Point Data Types

Use the helper function qrFixedpointTypes to select fixed-point data types for matrices A and B
that guarantee no overflow will occur in the transformation of A in-place to R and B in-place to C =
Q'B.

max_abs_A = 1;  % Upper bound on max(abs(A(:))
max_abs_B = 1;  % Upper bound on max(abs(B(:))
precisionBits = 24;  % Number of bits of precision
T = fixed.qrFixedpointTypes(m,max_abs_A,max_abs_B,precisionBits);
A = cast(A,'like',T.A);
B = cast(B,'like',T.B);

Open the Model

model = 'RealBurstQRModel';
open_system(model);
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The Data Handler subsystem in this model takes real matrices A and B as inputs. The ready port
triggers the Data Handler. After sending a true validIn signal, there may be some delay before
ready is set to false. When the Data Handler detects the leading edge of the ready signal, the block
sets validIn to true and sends the next row of A and B. This protocol allows data to be sent
whenever a leading edge of the ready signal is detected, ensuring that all data is processed.

Set Variables in the Model Workspace

Use the helper function setModelWorkspace to add the variables defined above to the model
workspace. These variables correspond to the block parameters for the Real Burst QR Decomposition
block.

numSamples = 1; % Number of sample matrices
fixed.example.setModelWorkspace(model,'A',A,'B',B,'m',m,'n',n,'p',p,...
    'numSamples',numSamples);

Simulate the Model
out = sim(model);

Construct the Solution from the Output Data

The Real Burst QR Decomposition block outputs data one row at a time. When a result row is output,
the block sets validOut to true. The rows of matrices R and C are output in reverse order to
accommodate back-substitution, so you must reconstruct the data to interpret the results. To
reconstruct the matrices R and C from the output data, use the helper function
qrModelOutputToArray.

[C,R] = fixed.example.qrModelOutputToArray(out.C,out.R,m,n,p,numSamples);

Extract the Economy-Size Q

The block computes C = Q'B. In this example, B is the identity matrix, so Q = C' is the economy-size
orthogonal factor of the QR decomposition.

Q = C';

Verify that Q is Orthogonal and R is Upper-Triangular

Q is orothogonal, so Q'Q is the identity matrix within roundoff.

I = Q'*Q

I = 
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    1.0000   -0.0000   -0.0000
   -0.0000    1.0000   -0.0000
   -0.0000   -0.0000    1.0000

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 62
        FractionLength: 48

R is an upper-triangular matrix.

R

R = 

    2.2180    0.8559   -0.5607
         0    2.0578   -0.4017
         0         0    1.7117

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 29
        FractionLength: 24

isequal(R,triu(R))

ans =

  logical

   1

Verify the Accuracy of the Output

To evaluate the accuracy of the Real Burst QR Decomposition block, compute the relative error.

relative_error = norm(double(Q*R - A))/norm(double(A))

relative_error =

   1.5886e-06

Suppress mlint warnings.

%#ok<*NOPTS>
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Implement Hardware-Efficient Real Burst Q-less QR
Decomposition

This example shows how to implement a hardware-efficient Q-less QR decomposition using the Real
Burst Q-less QR Decomposition block.

Economy Size Q-less QR Decomposition

The Real Burst Q-less QR Decomposition block performs the first step of solving the matrix equation
A'AX = B which transforms A in-place to upper-triangular R, then solves the transformed system R'RX
= B, where R'R = A'A.

Define Matrix Dimensions

Specify the number of rows and columns in matrix A.

m = 5;  % Number of rows in matrix A
n = 3;  % Number of columns in matrix A

Generate Matrix A

Use the helper function realUniformRandomArray to generate a random matrix A such that the
elements of A are between -1 and +1, and A is full rank.

rng('default')
A = fixed.example.realUniformRandomArray(-1,1,m,n);

Select Fixed-Point Data Types

Use the helper function qlessqrFixedpointTypes to select fixed-point data types for matrix A that
guarantee no overflow will occur in the transformation of A in-place to R.

max_abs_A = 1;      % Upper bound on max(abs(A(:))
precisionBits = 24; % Number of bits of precision
T = fixed.qlessqrFixedpointTypes(m,max_abs_A,precisionBits);
A = cast(A,'like',T.A);

Open the Model
model = 'RealBurstQlessQRModel';
open_system(model);

The Data Handler subsystem in this model takes real matrix A as input. The ready port triggers the
Data Handler. After sending a true validIn signal, there may be some delay before ready is set to
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false. When the Data Handler detects the leading edge of the ready signal, the block sets validIn
to true and sends the next row of A. This protocol allows data to be sent whenever a leading edge of
the ready signal is detected, ensuring that all data is processed.

Set Variables in the Model Workspace

Use the helper function setModelWorkspace to add the variables defined above to the model
workspace. These variables correspond to the block parameters for the Real Burst Q-less QR
Decomposition block.

numSamples = 1; % Number of sample matrices
fixed.example.setModelWorkspace(model,'A',A,'m',m,'n',n,...
    'regularizationParameter',0,...
    'numSamples',numSamples);

Simulate the Model
out = sim(model);

Construct the Solution from the Output Data

The Real Burst Q-less QR Decomposition block outputs data one row at a time. When a result row is
output, the block sets validOut to true. The rows of matrix R are output in reverse order to
accommodate back-substitution, so you must reconstruct the data to interpret the results. To
reconstruct the matrix R from the output data, use the helper function
qlessqrModelOutputToArray.

R = fixed.example.qlessqrModelOutputToArray(out.R,m,n,numSamples);

R is an upper-triangular matrix.

R

R = 

    1.5379    0.0432   -0.1395
         0    1.5978    0.4742
         0         0    1.5192

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 28
        FractionLength: 24

isequal(R,triu(R))

ans =

  logical

   1

Verify the Accuracy of the Output

To evaluate the accuracy of the Real Burst Q-less QR Decomposition block, compute the relative
error.
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relative_error = norm(double(R'*R - A'*A))/norm(double(A'*A))

relative_error =

   8.2641e-07

Suppress mlint warnings.

%#ok<*NOPTS>
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Implement Hardware-Efficient Complex Partial-Systolic Matrix
Solve Using QR Decomposition

This example shows how to implement a hardware-efficient least-squares solution to the complex-
valued matrix equation AX=B using the Complex Partial-Systolic Matrix Solve Using QR
Decomposition block.

Define Matrix Dimensions

Specify the number of rows in matrices A and B, the number of columns in matrix A, and the number
of columns in matrix B.

m = 300; % Number of rows in matrices A and B
n = 10;  % Number of columns in matrix A
p = 1;   % Number of columns in matrix B

Generate Random Least-Squares Matrices

For this example, use the helper function complexRandomLeastSquaresMatrices to generate
random matrices A and B for the least-squares problem AX=B. The matrices are generated such that
the real and imaginary parts of the elements of A and B are between -1 and +1, and A is full rank.

rng('default')
[A,B] = fixed.example.complexRandomLeastSquaresMatrices(m,n,p);

Select Fixed-Point Data Types

Use the helper function complexQRMatrixSolveFixedpointTypes to select fixed-point data types
for input matrices A and B, and output X such that there is a low probability of overflow during the
computation.

The real and imaginary parts of the elements of A and B are between -1 and 1, so the maximum
possible absolute value of any element is sqrt(2).

max_abs_A = sqrt(2);  % Upper bound on max(abs(A(:))
max_abs_B = sqrt(2);  % Upper bound on max(abs(B(:))
precisionBits = 24;   % Number of bits of precision
T = fixed.complexQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,precisionBits);
A = cast(A,'like',T.A);
B = cast(B,'like',T.B);
OutputType = fixed.extractNumericType(T.X);

Open the Model

model = 'ComplexPartialSystolicQRMatrixSolveModel';
open_system(model);
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The Data Handler subsystem in this model takes complex matrices A and B as inputs. The ready port
triggers the Data Handler. After sending a true validIn signal, there may be some delay before
ready is set to false. When the Data Handler detects the leading edge of the ready signal, the block
sets validIn to true and sends the next row of A and B. This protocol allows data to be sent
whenever a leading edge of the ready signal is detected, ensuring that all data is processed.

Set Variables in the Model Workspace

Use the helper function setModelWorkspace to add the variables defined above to the model
workspace. These variables correspond to the block parameters for the Complex Partial-Systolic
Matrix Solve Using QR Decomposition block.

numSamples = 1; % Number of sample matrices
fixed.example.setModelWorkspace(model,'A',A,'B',B,'m',m,'n',n,'p',p,...
    'regularizationParameter',0,...
    'numSamples',numSamples,'OutputType',OutputType);

Simulate the Model

out = sim(model);

Construct the Solution from the Output Data

The Complex Partial-Systolic Matrix Solve Using QR Decomposition block outputs data one row at a
time. When a result row is output, the block sets validOut to true. The rows of X are output in the
order they are computed, last row first, so you must reconstruct the data to interpret the results. To
reconstruct the matrix X from the output data, use the helper function
matrixSolveModelOutputToArray.

X = fixed.example.matrixSolveModelOutputToArray(out.X,n,p,numSamples);

Verify the Accuracy of the Output

To evaluate the accuracy of the Complex Partial-Systolic Matrix Solve Using QR Decomposition block,
compute the relative error.

relative_error = norm(double(A*X - B))/norm(double(B)) %#ok<NOPTS>

relative_error =
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   3.9937e-05
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Implement Hardware-Efficient Complex Partial-Systolic Matrix
Solve Using Q-less QR Decomposition

This example shows how to implement a hardware-efficient solution to the complex-valued matrix
equation A'AX=B using the Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition
block.

Define Matrix Dimensions

Specify the number of rows in matrix A, the number of columns in matrix A and rows in B, and the
number of columns in matrix B.

m = 300; % Number of rows in A
n = 10;  % Number of columns in A and rows in B
p = 1;   % Number of columns in B

Generate Matrices

For this example, use the helper function complexRandomQlessQRMatrices to generate random
matrices A and B for the problem A'AX=B. The matrices are generated such that the real and
imaginary parts of the elements of A and B are between -1 and +1, and A is full rank.

rng('default')
[A,B] = fixed.example.complexRandomQlessQRMatrices(m,n,p);

Select Fixed-Point Data Types

Use the helper function complexQlessQRMatrixSolveFixedpointTypes to select fixed-point data
types for input matrices A and B, and output X such that there is a low probability of overflow during
the computation.

The real and imaginary parts of the elements of A and B are between -1 and 1, so the maximum
possible absolute value of any element is sqrt(2).

max_abs_A = sqrt(2);  % Upper bound on max(abs(A(:))
max_abs_B = sqrt(2);  % Upper bound on max(abs(B(:))
precisionBits = 24;   % Number of bits of precision
T = fixed.complexQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,precisionBits);
A = cast(A,'like',T.A);
B = cast(B,'like',T.B);
OutputType = fixed.extractNumericType(T.X);

Open the Model

model = 'ComplexPartialSystolicQlessQRMatrixSolveModel';
open_system(model);
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The Data Handler subsystem in this model takes complex matrices A and B as inputs. The readyA
and readyB ports trigger the Data Handler. After sending a true validIn signal, there may be some
delay before ready is set to false. When the Data Handler detects the leading edge of the readyA
signal, the block sets validInA to true and sends the next row of A. When the Data Handler detects
the leading edge of the readyB signal, the block sets validInB to true and sends the next matrix B.
This protocol allows data to be sent whenever a leading edge of a ready signal is detected, ensuring
that all data is processed.

Set Variables in the Model Workspace

Use the helper function setModelWorkspace to add the variables defined above to the model
workspace. These variables correspond to the block parameters for the Complex Partial-Systolic
Matrix Solve Using Q-less QR Decomposition block.

numSamples = 1; % Number of samples
fixed.example.setModelWorkspace(model,'A',A,'B',B,'m',m,'n',n,'p',p,...
    'regularizationParameter',0,...
    'numSamples',numSamples,'OutputType',OutputType);

Simulate the Model

out = sim(model);

Construct the Solution from the Output Data

The Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition block outputs matrix X at
each time step. When a valid result matrix is output, the block sets validOut to true.

X = out.X;

Verify the Accuracy of the Output

To evaluate the accuracy of the Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition
block, compute the relative error.

relative_error = norm(double(A'*A*X - B))/norm(double(B)) %#ok<NOPTS>

relative_error =

   1.5861e-04
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Implement Hardware-Efficient Complex Burst Matrix Solve
Using QR Decomposition

This example shows how to implement a hardware-efficient least-squares solution to the complex-
valued matrix equation AX=B using the Complex Burst Matrix Solve Using QR Decomposition block.

Define Matrix Dimensions

Specify the number of rows in matrices A and B, the number of columns in matrix A, and the number
of columns in matrix B.

m = 50;  % Number of rows in matrices A and B
n = 10;  % Number of columns in matrix A
p = 1;   % Number of columns in matrix B

Generate Random Least-Squares Matrices

For this example, use the helper function complexRandomLeastSquaresMatrices to generate
random matrices A and B for the least-squares problem AX=B. The matrices are generated such that
the real and imaginary parts of the elements of A and B are between -1 and +1, and A has rank r.

rng('default')
r = 3;   % Rank of A
[A,B] = fixed.example.complexRandomLeastSquaresMatrices(m,n,p,r);

Select Fixed-Point Data Types

Use the helper function complexQRMatrixSolveFixedpointTypes to select fixed-point data types
for input matrices A and B, and output X such that there is a low probability of overflow during the
computation.

The real and imaginary parts of the elements of A and B are between -1 and 1, so the maximum
possible absolute value of any element is sqrt(2).

max_abs_A = sqrt(2);  % Upper bound on max(abs(A(:))
max_abs_B = sqrt(2);  % Upper bound on max(abs(B(:))
precisionBits = 24;   % Number of bits of precision
T = fixed.complexQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,precisionBits);
A = cast(A,'like',T.A);
B = cast(B,'like',T.B);
OutputType = fixed.extractNumericType(T.X);

Open the Model

model = 'ComplexBurstQRMatrixSolveModel';
open_system(model);
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The Data Handler subsystem in this model takes complex matrices A and B as inputs. The ready port
triggers the Data Handler. After sending a true validIn signal, there may be some delay before
ready is set to false. When the Data Handler detects the leading edge of the ready signal, the block
sets validIn to true and sends the next row of A and B. This protocol allows data to be sent
whenever a leading edge of the ready signal is detected, ensuring that all data is processed.

Set Variables in the Model Workspace

Use the helper function setModelWorkspace to add the variables defined above to the model
workspace. These variables correspond to the block parameters for the Complex Burst Matrix Solve
Using QR Decomposition block.

numSamples = 1; % Number of sample matrices
fixed.example.setModelWorkspace(model,'A',A,'B',B,'m',m,'n',n,'p',p,...
    'regularizationParameter',0,...
    'numSamples',numSamples,'OutputType',OutputType);

Simulate the Model

out = sim(model);

Construct the Solution from the Output Data

The Complex Burst Matrix Solve Using QR Decomposition block outputs data one row at a time.
When a result row is output, the block sets validOut to true. The rows of X are output in the order
they are computed, last row first, so you must reconstruct the data to interpret the results. To
reconstruct the matrix X from the output data, use the helper function
matrixSolveModelOutputToArray.

X = fixed.example.matrixSolveModelOutputToArray(out.X,n,p,numSamples);

Verify the Accuracy of the Output

To evaluate the accuracy of the Complex Burst Matrix Solve Using QR Decomposition block, compute
the relative error.

relative_error = norm(double(A*X - B))/norm(double(B)) %#ok<NOPTS>

relative_error =
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   3.3391e-06
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Implement Hardware-Efficient Complex Burst Matrix Solve
Using Q-less QR Decomposition

This example shows how to implement a hardware-efficient solution to the complex-valued matrix
equation A'AX=B using the Complex Burst Matrix Solve Using Q-less QR Decomposition block.

Define Matrix Dimensions

Specify the number of rows in matrix A, the number of columns in matrix A and rows in B, and the
number of columns in matrix B.

m = 100; % Number of rows in A
n = 10;  % Number of columns in A and rows in B
p = 1;   % Number of columns in B

Generate Matrices

For this example, use the helper function complexRandomQlessQRMatrices to generate random
matrices A and B for the problem A'AX=B. The matrices are generated such that the real and
imaginary parts of the elements of A and B are between -1 and +1, and A is full rank.

rng('default')
[A,B] = fixed.example.complexRandomQlessQRMatrices(m,n,p);

Select Fixed-Point Data Types

Use the helper function complexQlessQRMatrixSolveFixedpointTypes to select fixed-point data
types for input matrices A and B, and output X such that there is a low probability of overflow during
the computation.

The real and imaginary parts of the elements of A and B are between -1 and 1, so the maximum
possible absolute value of any element is sqrt(2).

max_abs_A = sqrt(2);  % Upper bound on max(abs(A(:))
max_abs_B = sqrt(2);  % Upper bound on max(abs(B(:))
precisionBits = 24;   % Number of bits of precision
T = fixed.complexQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,precisionBits);
A = cast(A,'like',T.A);
B = cast(B,'like',T.B);
OutputType = fixed.extractNumericType(T.X);

Open the Model

model = 'ComplexBurstQlessQRMatrixSolveModel';
open_system(model);
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The Data Handler subsystem in this model takes complex matrices A and B as inputs. The ready port
triggers the Data Handler. After sending a true validIn signal, there may be some delay before
ready is set to false. When the Data Handler detects the leading edge of the ready signal, the block
sets validIn to true and sends the next row of A and B. This protocol allows data to be sent
whenever a leading edge of the ready signal is detected, ensuring that all data is processed.

Set Variables in the Model Workspace

Use the helper function setModelWorkspace to add the variables defined above to the model
workspace. These variables correspond to the block parameters for the Complex Burst Matrix Solve
Using Q-less QR Decomposition block.

numSamples = 1; % Number of samples
fixed.example.setModelWorkspace(model,'A',A,'B',B,'m',m,'n',n,'p',p,...
    'regularizationParameter',0,...
    'numSamples',numSamples,'OutputType',OutputType);

Simulate the Model

out = sim(model);

Construct the Solution from the Output Data

The Complex Burst Matrix Solve Using Q-less QR Decomposition block outputs data one row at a
time. When a result row is output, the block sets validOut to true. The rows of X are output in the
order they are computed, last row first, so you must reconstruct the data to interpret the results. To
reconstruct the matrix X from the output data, use the helper function
matrixSolveModelOutputToArray.

X = fixed.example.matrixSolveModelOutputToArray(out.X,n,p);

Verify the Accuracy of the Output

To evaluate the accuracy of the Complex Burst Matrix Solve Using Q-less QR Decomposition block,
compute the relative error.

relative_error = norm(double(A'*A*X - B))/norm(double(B)) %#ok<NOPTS>

relative_error =

   2.5689e-04
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Implement Hardware-Efficient Complex Partial-Systolic QR
Decomposition

This example shows how to implement a hardware-efficient QR decomposition using the Complex
Partial-Systolic QR Decomposition block.

Economy Size QR Decomposition

The Complex Partial-Systolic QR Decomposition block performs the first step of solving the least-
squares matrix equation AX = B which transforms A in-place to R and B in-place to C = Q'B, then
solves the transformed system RX = C, where QR is the orthogonal-triangular decomposition of A.

To compute the stand-alone QR decomposition, this example sets B to be the identity matrix so that
the output of the Complex Partial-Systolic QR Decomposition block is the upper-triangular R and C =
Q'.

Define Matrix Dimensions

Specify the number of rows in matrices A and B, the number of columns in matrix A, and the number
of columns in matrix B. This example sets B to be the identity matrix the same size as the number of
rows of A.

m = 10; % Number of rows in matrices A and B
n = 3;  % Number of columns in matrix A
p = m;  % Number of columns in matrix B

Generate Matrices A and B

Use the helper function complexUniformRandomArray to generate a random matrix A such that the
real and imaginary parts of the elements of A are between -1 and +1, and A is full rank. Matrix B is
the identity matrix.

rng('default')
A = fixed.example.complexUniformRandomArray(-1,1,m,n);
B = eye(m);

Select Fixed-Point Data Types

Use the helper function qrFixedpointTypes to select fixed-point data types for input matrices A
and B that guarantee no overflow will occur in the transformation of A in-place to R and B in-place to
C = Q'B.

The real and imaginary parts of the elements of A are between -1 and 1, so the maximum possible
absolute value of any element is sqrt(2).

max_abs_A = sqrt(2);  % Upper bound on max(abs(A(:))
max_abs_B = 1;        % Upper bound on max(abs(B(:))
precisionBits = 24;   % Number of bits of precision
T = fixed.qrFixedpointTypes(m,max_abs_A,max_abs_B,precisionBits);
A = cast(A,'like',T.A);
B = complex(cast(B,'like',T.B));

Open the Model

model = 'ComplexPartialSystolicQRModel';
open_system(model);
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The Data Handler subsystem in this model takes complex matrices A and B as inputs. The ready port
triggers the Data Handler. After sending a true validIn signal, there may be some delay before
ready is set to false. When the Data Handler detects the leading edge of the ready signal, the block
sets validIn to true and sends the next row of A and B. This protocol allows data to be sent
whenever a leading edge of the ready signal is detected, ensuring that all data is processed.

Set Variables in the Model Workspace

Use the helper function setModelWorkspace to add the variables defined above to the model
workspace. These variables correspond to the block parameters for the Complex Partial-Systolic QR
Decomposition block.

numSamples = 1; % Number of sample matrices
fixed.example.setModelWorkspace(model,'A',A,'B',B,'m',m,'n',n,'p',p,...
    'numSamples',numSamples);

Simulate the Model

out = sim(model);

Construct the Solution from the Output Data

The Complex Partial-Systolic QR Decomposition block outputs matrices R and C at each time step.
When valid result matrices are output, the block sets validOut to true.

R = out.R;
C = out.C;

Extract the Economy-Size Q

The block computes C = Q'B. In this example, B is the identity matrix, so Q = C' is the economy-size
orthogonal factor of the QR decomposition.

Q = C';

Verify that Q is Orthogonal and R is Upper-Triangular

Q is orothogonal, so Q'Q is the identity matrix within roundoff.

I = Q'*Q

I = 
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   1.0000 + 0.0000i  -0.0000 + 0.0000i  -0.0000 + 0.0000i
  -0.0000 - 0.0000i   1.0000 + 0.0000i  -0.0000 + 0.0000i
  -0.0000 - 0.0000i  -0.0000 - 0.0000i   1.0000 + 0.0000i

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 62
        FractionLength: 48

R is an upper-triangular matrix.

R

R = 

   3.1655 + 0.0000i   0.4870 + 1.1980i   0.1466 - 0.9092i
   0.0000 + 0.0000i   2.2184 + 0.0000i  -0.2159 - 0.0972i
   0.0000 + 0.0000i   0.0000 + 0.0000i   2.2903 + 0.0000i

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 29
        FractionLength: 24

isequal(R,triu(R))

ans =

  logical

   1

Verify the Accuracy of the Output

To evaluate the accuracy of the Complex Partial-Systolic QR Decomposition block, compute the
relative error.

relative_error = norm(double(Q*R - A))/norm(double(A))

relative_error =

   1.2460e-06

Suppress mlint warnings.

%#ok<*NOPTS>
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Implement Hardware-Efficient Complex Partial-Systolic Q-less
QR Decomposition

This example shows how to implement a hardware-efficient Q-less QR decomposition using the
Complex Partial-Systolic Q-less QR Decomposition block.

Economy Size Q-less QR Decomposition

The Complex Partial-Systolic Q-less QR Decomposition block performs the first step of solving the
matrix equation A'AX = B which transforms A in-place to upper-triangular R, then solves the
transformed system R'RX = B, where R'R = A'A.

Define Matrix Dimensions

Specify the number of rows and columns in matrix A.

m = 5;  % Number of rows in matrix A
n = 3;  % Number of columns in matrix A

Generate Matrix A

Use the helper function complexUniformRandomArray to generate a random matrix A such that the
real and imaginary parts of the elements of A are between -1 and +1, and A is full rank.

rng('default')
A = fixed.example.complexUniformRandomArray(-1,1,m,n);

Select Fixed-Point Data Types

Use the helper function qlessqrFixedpointTypes to select fixed-point data types for matrix A that
guarantee no overflow will occur in the transformation of A in-place to R.

The real and imaginary parts of the elements of A are between -1 and 1, so the maximum possible
absolute value of any element is sqrt(2).

max_abs_A = sqrt(2);  % Upper bound on max(abs(A(:))
precisionBits = 24;   % Number of bits of precision
T = fixed.qlessqrFixedpointTypes(m,max_abs_A,precisionBits);
A = cast(A,'like',T.A);

Open the Model
model = 'ComplexPartialSystolicQlessQRModel';
open_system(model);
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The Data Handler subsystem in this model takes complex matrix A as input. The ready port triggers
the Data Handler. After sending a true validIn signal, there may be some delay before ready is set
to false. When the Data Handler detects the leading edge of the ready signal, the block sets
validIn to true and sends the next row of A. This protocol allows data to be sent whenever a leading
edge of the ready signal is detected, ensuring that all data is processed.

Set Variables in the Model Workspace

Use the helper function setModelWorkspace to add the variables defined above to the model
workspace. These variables correspond to the block parameters for the Complex Partial-Systolic Q-
less QR Decomposition block.

numSamples = 1; % Number of sample matrices
fixed.example.setModelWorkspace(model,'A',A,'m',m,'n',n,...
    'numSamples',numSamples);

Simulate the Model

out = sim(model);

Construct the Solution from the Output Data

The Complex Partial-Systolic QR Decomposition block outputs matrix R at each time step. When a
valid result matrix is output, the block sets validOut to true.

R = out.R;

R is an upper-triangular matrix.

R

R = 

   2.1863 + 0.0000i   0.6427 - 1.0882i  -0.5771 - 0.3089i
   0.0000 + 0.0000i   1.8126 + 0.0000i   0.2095 + 0.0599i
   0.0000 + 0.0000i   0.0000 + 0.0000i   1.7760 + 0.0000i

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 29
        FractionLength: 24

isequal(R,triu(R))

ans =

  logical

   1

Verify the Accuracy of the Output

To evaluate the accuracy of the Complex Partial-Systolic Q-less QR Decomposition block, compute the
relative error.

relative_error = norm(double(R'*R - A'*A))/norm(double(A'*A))
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relative_error =

   9.1285e-07

Suppress mlint warnings.

%#ok<*NOPTS>
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Implement Hardware-Efficient Complex Burst QR
Decomposition

This example shows how to implement a hardware-efficient QR decomposition using the Complex
Burst QR Decomposition block.

Economy Size QR Decomposition

The Complex Burst QR Decomposition block performs the first step of solving the least-squares
matrix equation AX = B which transforms A in-place to R and B in-place to C = Q'B, then solves the
transformed system RX = C, where QR is the orthogonal-triangular decomposition of A.

To compute the stand-alone QR decomposition, this example sets B to be the identity matrix so that
the output of the Complex Burst QR Decomposition block is the upper-triangular R and C = Q'.

Define Matrix Dimensions

Specify the number of rows in matrices A and B, the number of columns in matrix A, and the number
of columns in matrix B. This example sets B to be the identity matrix the same size as the number of
rows of A.

m = 10; % Number of rows in matrices A and B
n = 3;  % Number of columns in matrix A
p = m;  % Number of columns in matrix B

Generate Matrices A and B

Use the helper function complexUniformRandomArray to generate a random matrix A such that the
real and imaginary parts of the elements of A are between -1 and +1, and A is full rank. Matrix B is
the identity matrix.

rng('default')
A = fixed.example.complexUniformRandomArray(-1,1,m,n);
B = eye(m);

Select Fixed-Point Data Types

Use the helper function qrFixedpointTypes to select fixed-point data types for matrices A and B
that guarantee no overflow will occur in the transformation of A in-place to R and B in-place to C =
Q'B.

The real and imaginary parts of the elements of A are between -1 and 1, so the maximum possible
absolute value of any element is sqrt(2).

max_abs_A = sqrt(2);  % Upper bound on max(abs(A(:))
max_abs_B = 1;        % Upper bound on max(abs(B(:))
precisionBits = 24;   % Number of bits of precision
T = fixed.qrFixedpointTypes(m,max_abs_A,max_abs_B,precisionBits);
A = cast(A,'like',T.A);
B = complex(cast(B,'like',T.B));

Open the Model

model = 'ComplexBurstQRModel';
open_system(model);
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The Data Handler subsystem in this model takes complex matrices A and B as inputs. The ready port
triggers the Data Handler. After sending a true validIn signal, there may be some delay before
ready is set to false. When the Data Handler detects the leading edge of the ready signal, the block
sets validIn to true and sends the next row of A and B. This protocol allows data to be sent
whenever a leading edge of the ready signal is detected, ensuring that all data is processed.

Set Variables in the Model Workspace

Use the helper function setModelWorkspace to add the variables defined above to the model
workspace. These variables correspond to the block parameters for the Complex Burst QR
Decomposition block.

numSamples = 1; % Number of sample matrices
fixed.example.setModelWorkspace(model,'A',A,'B',B,'m',m,'n',n,'p',p,...
    'numSamples',numSamples);

Simulate the Model
out = sim(model);

Construct the Solution from the Output Data

The Complex Burst QR Decomposition block outputs data one row at a time. When a result row is
output, the block sets validOut to true. The rows of matrices R and C are output in reverse order to
accommodate back-substitution, so you must reconstruct the data to interpret the results. To
reconstruct the matrices R and C from the output data, use the helper function
qrModelOutputToArray.

[C,R] = fixed.example.qrModelOutputToArray(out.C,out.R,m,n,p,numSamples);

Extract the Economy-Size Q

The block computes C = Q'B. In this example, B is the identity matrix, so Q = C' is the economy-size
orthogonal factor of the QR decomposition.

Q = C';

Verify that Q is Orthogonal and R is Upper-Triangular

Q is orothogonal, so Q'Q is the identity matrix within roundoff.

I = Q'*Q

I = 
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   1.0000 + 0.0000i  -0.0000 + 0.0000i  -0.0000 + 0.0000i
  -0.0000 - 0.0000i   1.0000 + 0.0000i  -0.0000 - 0.0000i
  -0.0000 - 0.0000i  -0.0000 + 0.0000i   1.0000 + 0.0000i

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 62
        FractionLength: 48

R is an upper-triangular matrix.

R

R = 

   3.1655 + 0.0000i   0.4870 + 1.1980i   0.1466 - 0.9092i
   0.0000 + 0.0000i   2.2184 + 0.0000i  -0.2159 - 0.0972i
   0.0000 + 0.0000i   0.0000 + 0.0000i   2.2903 + 0.0000i

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 29
        FractionLength: 24

isequal(R,triu(R))

ans =

  logical

   1

Verify the Accuracy of the Output

To evaluate the accuracy of the Complex Burst QR Decomposition block, compute the relative error.

relative_error = norm(double(Q*R - A))/norm(double(A))

relative_error =

   2.5387e-06

Suppress mlint warnings.

%#ok<*NOPTS>

48 Code Generation

48-118



Implement Hardware-Efficient Complex Burst Q-less QR
Decomposition

This example shows how to implement a hardware-efficient Q-less QR decomposition using the
Complex Burst Q-less QR Decomposition block.

Economy Size Q-less QR Decomposition

The Complex Burst Q-less QR Decomposition block performs the first step of solving the matrix
equation A'AX = B which transforms A in-place to upper-triangular R, then solves the transformed
system R'RX = B, where R'R = A'A.

Define Matrix Dimensions

Specify the number of rows and columns in matrix A.

m = 5;  % Number of rows in matrix A
n = 3;  % Number of columns in matrix A

Generate Matrix A

Use the helper function complexUniformRandomArray to generate a random matrix A such that the
real and imaginary parts of the elements of A are between -1 and +1, and A is full rank.

rng('default')
A = fixed.example.complexUniformRandomArray(-1,1,m,n);

Select Fixed-Point Data Types

Use the helper function qlessqrFixedpointTypes to select fixed-point data types for matrix A that
guarantee no overflow will occur in the transformation of A in-place to R.

The real and imaginary parts of the elements of A are between -1 and 1, so the maximum possible
absolute value of any element is sqrt(2).

max_abs_A = sqrt(2);  % Upper bound on max(abs(A(:))
precisionBits = 24;   % Number of bits of precision
T = fixed.qlessqrFixedpointTypes(m,max_abs_A,precisionBits);
A = cast(A,'like',T.A);

Open the Model
model = 'ComplexBurstQlessQRModel';
open_system(model);

 Implement Hardware-Efficient Complex Burst Q-less QR Decomposition

48-119



The Data Handler subsystem in this model takes complex matrix A as input. The ready port triggers
the Data Handler. After sending a true validIn signal, there may be some delay before ready is set
to false. When the Data Handler detects the leading edge of the ready signal, the block sets
validIn to true and sends the next row of A. This protocol allows data to be sent whenever a leading
edge of the ready signal is detected, ensuring that all data is processed.

Set Variables in the Model Workspace

Use the helper function setModelWorkspace to add the variables defined above to the model
workspace. These variables correspond to the block parameters for the Complex Burst Q-less QR
Decomposition block.

numSamples = 1; % Number of sample matrices
fixed.example.setModelWorkspace(model,'A',A,'m',m,'n',n,...
    'numSamples',numSamples);

Simulate the Model

out = sim(model);

Construct the Solution from the Output Data

The Complex Burst Q-less QR Decomposition block outputs data one row at a time. When a result row
is output, the block sets validOut to true. The rows of matrix R are output in reverse order to
accommodate back-substitution, so you must reconstruct the data to interpret the results. To
reconstruct the matrix R from the output data, use the helper function
qlessqrModelOutputToArray.

R = fixed.example.qlessqrModelOutputToArray(out.R,m,n,numSamples);

R is an upper-triangular matrix.

R

R = 

   2.1863 + 0.0000i   0.6427 - 1.0882i  -0.5771 - 0.3089i
   0.0000 + 0.0000i   1.8126 + 0.0000i   0.2095 + 0.0599i
   0.0000 + 0.0000i   0.0000 + 0.0000i   1.7760 + 0.0000i

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 29
        FractionLength: 24

isequal(R,triu(R))

ans =

  logical

   1
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Verify the Accuracy of the Output

To evaluate the accuracy of the Complex Burst Q-less QR Decomposition block, compute the relative
error.

relative_error = norm(double(R'*R - A'*A))/norm(double(A'*A))

relative_error =

   1.4151e-06

Suppress mlint warnings.

%#ok<*NOPTS>

 Implement Hardware-Efficient Complex Burst Q-less QR Decomposition

48-121



Implement Hardware-Efficient Real Partial-Systolic Matrix
Solve Using QR Decomposition with Diagonal Loading

This example shows how to implement a hardware-efficient least-squares solution to the real-valued
matrix equation

using the Real Partial-Systolic Matrix Solve Using QR Decomposition block. This method is known as
diagonal loading, and  is known as a regularization parameter.

Diagonal Loading Method

When you set the regularization parameter to a non-zero value in block Real Partial-Systolic Matrix
Solve Using QR Decomposition, then the block computes the the least-squares solution to

where  is an n-by-n identity matrix and  is an array of zeros of size n-by-p.

This method is known as diagonal loading, and  is known as a regularization parameter. The familiar
textbook least-squares solution for this equation is the following, which is derived by multiplying both
sides of the equation by  and taking the inverse of the matrix on the left-hand side.

Real Partial-Systolic Matrix Solve Using QR Decomposition block computes the solution efficiently
without computing an inverse by computing the QR decomposition, transforming

in-place to upper-triangular R, and transforming

in-place to

and solving the transformed equation .

Define Matrix Dimensions

Specify the number of rows in matrices A and B, the number of columns in matrix A, and the number
of columns in matrix B.
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m = 300; % Number of rows in matrices A and B
n = 10;  % Number of columns in matrix A
p = 1;   % Number of columns in matrix B

Define the Regularization Parameter

When the regularization parameter is non-zero in block Real Partial-Systolic Matrix Solve Using QR
Decomposition, then the diagonal-loading method is used. When the regularization parameter is zero,
then the equations reduce to the regular least-squares formula AX=B.

regularizationParameter = 1e-3;

Block Parameters
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Generate Random Least-Squares Matrices

For this example, use the helper function realRandomLeastSquaresMatrices to generate random
matrices A and B for the least-squares problem AX=B. The matrices are generated such that the
elements of A and B are between -1 and +1, and A has rank r.

rng('default')
r = 3;   % Rank of matrix A
[A,B] = fixed.example.realRandomLeastSquaresMatrices(m,n,p,r);

Select Fixed-Point Data Types

Use the helper function realQRMatrixSolveFixedpointTypes to select fixed-point data types for
input matrices A and B, and output X such that there is a low probability of overflow during the
computation.

max_abs_A = 1;       % Upper bound on max(abs(A(:))
max_abs_B = 1;       % Upper bound on max(abs(B(:))
precisionBits = 24;  % Number of bits of precision
T = fixed.realQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,precisionBits);
A = cast(A,'like',T.A);
B = cast(B,'like',T.B);
OutputType = fixed.extractNumericType(T.X);

Open the Model
model = 'RealPartialSystolicQRDiagonalLoadingMatrixSolveModel';
open_system(model);

The Data Handler subsystem in this model takes real matrices A and B as inputs. The ready port
triggers the Data Handler. After sending a true validIn signal, there may be some delay before
ready is set to false. When the Data Handler detects the leading edge of the ready signal, the block
sets validIn to true and sends the next row of A and B. This protocol allows data to be sent
whenever a leading edge of the ready signal is detected, ensuring that all data is processed.

Set Variables in the Model Workspace

Use the helper function setModelWorkspace to add the variables defined above to the model
workspace. These variables correspond to the block parameters for the Real Partial-Systolic Matrix
Solve Using QR Decomposition block.

numSamples = 1; % Number of sample matrices
fixed.example.setModelWorkspace(model,'A',A,'B',B,'m',m,'n',n,'p',p,...
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    'regularizationParameter',regularizationParameter,...
    'numSamples',numSamples,'OutputType',OutputType);

Simulate the Model

out = sim(model);

Construct the Solution from the Output Data

The Real Partial-Systolic Matrix Solve Using QR Decomposition block outputs data one row at a time.
When a result row is output, the block sets validOut to true. The rows of X are output in the order
they are computed, last row first, so you must reconstruct the data to interpret the results. To
reconstruct the matrix X from the output data, use the helper function
matrixSolveModelOutputToArray.

X = fixed.example.matrixSolveModelOutputToArray(out.X,n,p,numSamples);

Verify the Accuracy of the Output

To evaluate the accuracy of the Real Partial-Systolic Matrix Solve Using QR Decomposition block,
compute the relative error.

A_lambda = [regularizationParameter * eye(n);A];
B_0 = [zeros(n,p);B];
relative_error = norm(double(A_lambda*X - B_0))/norm(double(B_0)) %#ok<NOPTS>

relative_error =

   1.2189e-04
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Implement Hardware-Efficient Complex Partial-Systolic Matrix
Solve Using QR Decomposition with Diagonal Loading

This example shows how to implement a hardware-efficient least-squares solution to the complex-
valued matrix equation

using the Complex Partial-Systolic Matrix Solve Using QR Decomposition block. This method is known
as diagonal loading, and  is known as a regularization parameter.

Diagonal Loading Method

When you set the regularization parameter to a non-zero value in block Complex Partial-Systolic
Matrix Solve Using QR Decomposition, then the block computes the the least-squares solution to

where  is an n-by-n identity matrix and  is an array of zeros of size n-by-p.

This method is known as diagonal loading, and  is known as a regularization parameter. The familiar
textbook least-squares solution for this equation is the following, which is derived by multiplying both
sides of the equation by  and taking the inverse of the matrix on the left-hand side.

Complex Partial-Systolic Matrix Solve Using QR Decomposition block computes the solution
efficiently without computing an inverse by computing the QR decomposition, transforming

in-place to upper-triangular R, and transforming

in-place to

and solving the transformed equation .

Define Matrix Dimensions

Specify the number of rows in matrices A and B, the number of columns in matrix A, and the number
of columns in matrix B.
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m = 300; % Number of rows in matrices A and B
n = 10;  % Number of columns in matrix A
p = 1;   % Number of columns in matrix B

Define the Regularization Parameter

When the regularization parameter is non-zero in block Complex Partial-Systolic Matrix Solve Using
QR Decomposition, then the diagonal-loading method is used. When the regularization parameter is
zero, then the equations reduce to the regular least-squares formula AX=B.

regularizationParameter = 1e-3;

Block Parameters
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Generate Random Least-Squares Matrices

For this example, use the helper function complexRandomLeastSquaresMatrices to generate
random matrices A and B for the least-squares problem AX=B. The matrices are generated such that
the elements of A and B are between -1 and +1, and A has rank r.

rng('default')
r = 3;   % Rank of matrix A
[A,B] = fixed.example.complexRandomLeastSquaresMatrices(m,n,p,r);

Select Fixed-Point Data Types

Use the helper function complexQRMatrixSolveFixedpointTypes to select fixed-point data types
for input matrices A and B, and output X such that there is a low probability of overflow during the
computation.

The real and imaginary parts of the elements of A and B are between -1 and 1, so the maximum
possible absolute value of any element is sqrt(2).

max_abs_A = sqrt(2);  % Upper bound on max(abs(A(:))
max_abs_B = sqrt(2);  % Upper bound on max(abs(B(:))
precisionBits = 24;   % Number of bits of precision
T = fixed.complexQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,precisionBits);
A = cast(A,'like',T.A);
B = cast(B,'like',T.B);
OutputType = fixed.extractNumericType(T.X);

Open the Model

model = 'ComplexPartialSystolicQRDiagonalLoadingMatrixSolveModel';
open_system(model);

The Data Handler subsystem in this model takes complex matrices A and B as inputs. The ready port
triggers the Data Handler. After sending a true validIn signal, there may be some delay before
ready is set to false. When the Data Handler detects the leading edge of the ready signal, the block
sets validIn to true and sends the next row of A and B. This protocol allows data to be sent
whenever a leading edge of the ready signal is detected, ensuring that all data is processed.
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Set Variables in the Model Workspace

Use the helper function setModelWorkspace to add the variables defined above to the model
workspace. These variables correspond to the block parameters for the Complex Partial-Systolic
Matrix Solve Using QR Decomposition block.

numSamples = 1; % Number of sample matrices
fixed.example.setModelWorkspace(model,'A',A,'B',B,'m',m,'n',n,'p',p,...
    'regularizationParameter',regularizationParameter,...
    'numSamples',numSamples,'OutputType',OutputType);

Simulate the Model

out = sim(model);

Construct the Solution from the Output Data

The Complex Partial-Systolic Matrix Solve Using QR Decomposition block outputs data one row at a
time. When a result row is output, the block sets validOut to true. The rows of X are output in the
order they are computed, last row first, so you must reconstruct the data to interpret the results. To
reconstruct the matrix X from the output data, use the helper function
matrixSolveModelOutputToArray.

X = fixed.example.matrixSolveModelOutputToArray(out.X,n,p,numSamples);

Verify the Accuracy of the Output

To evaluate the accuracy of the Complex Partial-Systolic Matrix Solve Using QR Decomposition block,
compute the relative error.

A_lambda = [regularizationParameter * eye(n);A];
B_0 = [zeros(n,p);B];
relative_error = norm(double(A_lambda*X - B_0))/norm(double(B_0)) %#ok<NOPTS>

relative_error =

   1.0386e-04
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Determine Fixed-Point Types for QR Decomposition
This example shows how to use fixed.qrFixedpointTypes to analytically determine fixed-point
types for the computation of the QR decomposition.

Define Matrix Dimensions

Specify the number of rows in matrices A and B, the number of columns in matrix A, and the number
of columns in matrix B. This example sets B to be the identity matrix the same size as the number of
rows of A.

m = 10; % Number of rows in matrices A and B
n = 3;  % Number of columns in matrix A

Generate Matrices A and B

Use the helper function realUniformRandomArray to generate a random matrix A such that the
elements of A are between −1 and +1. Matrix B is the identity matrix.

rng('default')
A = fixed.example.realUniformRandomArray(-1,1,m,n);
B = eye(m);

Select Fixed-Point Types

Use fixed.qrFixedpointTypes to select fixed-point data types for matrices A and B that
guarantee no overflow will occur in the transformation of A in-place to R = Q′A and B in-place to
C = Q′B.

max_abs_A = 1;  % Upper bound on max(abs(A(:))
max_abs_B = 1;  % Upper bound on max(abs(B(:))
precisionBits = 24;  % Number of bits of precision
T = fixed.qrFixedpointTypes(m,max_abs_A,max_abs_B,precisionBits)

T = struct with fields:
    A: [0x0 embedded.fi]
    B: [0x0 embedded.fi]

T.A is the type computed for transforming A to R = Q′A in-place so that it does not overflow.

T.A

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 29
        FractionLength: 24

T.B is the type computed for transforming B to C = Q′B in-place so that it does not overflow.

T.B

ans = 
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[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 29
        FractionLength: 24

Use the Specified Types to Compute the QR Decomposition

Cast the inputs to the types determined by fixed.qrFixedpointTypes.

A = cast(A,'like',T.A);
B = cast(B,'like',T.B);

Accelerate fixed.qrAB by using fiaccel to generate a MATLAB executable (MEX) function.

fiaccel fixed.qrAB -args {A,B} -o qrAB_mex

Compute the QR decomposition.

[C,R] = qrAB_mex(A,B);

Extract the Economy-Size Q

The function fixed.qrAB transforms A to R = Q′A and B to C = Q′B. In this example, B is the
identity matrix, so Q = C′ is the economy-size orthogonal factor of the QR decomposition.

Q = C';

Verify that Q is Orthogonal and R is Upper-Triangular

Q is orthogonal, so Q′Q is the identity matrix within rounding error.

I = Q'*Q

I = 
    1.0000   -0.0000   -0.0000
   -0.0000    1.0000   -0.0000
   -0.0000   -0.0000    1.0000

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 62
        FractionLength: 48

R is an upper-triangular matrix.

R

R = 
    2.2180    0.8559   -0.5607
         0    2.0578   -0.4017
         0         0    1.7117

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 29
        FractionLength: 24

isequal(R,triu(R))
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ans = logical
   1

Verify the Accuracy of the Output

To evaluate the accuracy of the fixed.qrAB function, compute the relative error.

relative_error = norm(double(Q*R - A))/norm(double(A))

relative_error = 1.5886e-06

Suppress mlint warnings.

%#ok<*NOPTS>

See Also
Functions
fixed.qrFixedpointTypes | fixed.qrAB | qr

Blocks
Real Burst QR Decomposition | Complex Burst QR Decomposition | Real Partial-Systolic QR
Decomposition | Complex Partial-Systolic QR Decomposition
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Determine Fixed-Point Types for Q-less QR Decomposition
This example shows how to use fixed.qlessqrFixedpointTypes to analytically determine a fixed-
point type for the computation of the Q-less QR decomposition.

Define Matrix Dimensions

Specify the number of rows and columns in matrix A.

m = 10; % Number of rows in matrix A
n = 3;  % Number of columns in matrix A

Generate Matrix A

Use the helper function realUniformRandomArray to generate a random matrix A such that the
elements of A are between −1 and +1.

rng('default')
A = fixed.example.realUniformRandomArray(-1,1,m,n);

Select Fixed-Point Type

Use the fixed.qlessqrFixedpointTypes function to select the fixed-point data type for matrix A
that guarantees no overflow will occur in the transformation of A in-place to R = Q′A.

max_abs_A = 1;  % Upper bound on max(abs(A(:))
precisionBits = 24;  % Number of bits of precision
T = fixed.qlessqrFixedpointTypes(m,max_abs_A,precisionBits)

T = struct with fields:
    A: [0x0 embedded.fi]

T.A is the type computed for transforming A to R = Q′A in-place so that it does not overflow.

T.A

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 29
        FractionLength: 24

Use the Specified Type to Compute the Q-less QR Decomposition

Cast the input to the type determined by fixed.qlessqrFixedpointTypes.

A = cast(A,'like',T.A);

Accelerate fixed.qlessQR by using fiaccel to generate a MATLAB executable (MEX) function.

fiaccel fixed.qlessQR -args {A} -o qlessQR_mex

Compute the QR decomposition.

R = qlessQR_mex(A);
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Verify that R is Upper-Triangular

R is an upper-triangular matrix.

R

R = 
    2.2180    0.8559   -0.5607
         0    2.0578   -0.4017
         0         0    1.7117

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 29
        FractionLength: 24

isequal(R,triu(R))

ans = logical
   1

Verify the Accuracy of the Output

To evaluate the accuracy of the fixed.qlessQR function, compute the relative error.

R = Q′A, and Q is orthogonal, so R′R = A′QQ′A = A′A, within rounding error.

relative_error = norm(double(R'*R - A'*A))/norm(double(A'*A))

relative_error = 9.3865e-07

Suppress mlint warnings.

%#ok<*NOPTS>

See Also
Functions
fixed.qlessqrFixedpointTypes | fixed.qlessQR

Blocks
Real Burst Q-less QR Decomposition | Complex Burst QR Decomposition | Real Partial-Systolic Q-less
QR Decomposition | Complex Partial-Systolic Q-less QR Decomposition | Real Partial-Systolic Q-less
QR Decomposition with Forgetting Factor | Complex Partial-Systolic Q-less QR Decomposition with
Forgetting Factor
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Algorithms to Determine Fixed-Point Types for Complex Q-less
QR Matrix Solve A'AX=B

This example shows the algorithms that the
fixed.complexQlessQRMatrixSolveFixedpointTypes function uses to analytically determine
fixed-point types for the solution of the complex matrix equation A′AX = B, where A is an m-by-n
matrix with m ≥ n, B is n-by-p, and X is n-by-p.

Overview

You can solve the fixed-point matrix equation A′AX = B using QR decomposition. Using a sequence of
orthogonal transformations, QR decomposition transforms matrix A in-place to upper triangular R,
where QR = A is the economy-size QR decomposition. This reduces the equation to an upper-
triangular system of equations R′RX = B. To solve for X, compute X = R\(R′\B) through forward- and
backward-substitution of R into B.

You can determine appropriate fixed-point types for the matrix equation A′AX = B by selecting the
fraction length based on the number of bits of precision defined by your requirements. The
fixed.complexQlessQRMatrixSolveFixedpointTypes function analytically computes the
following upper bounds on R, and X to determine the number of integer bits required to avoid
overflow [1,2,3].

The upper bound for the magnitude of the elements of R = Q′A is

max(|R(: ) | ) ≤ mmax(| A(: ) | ).

The upper bound for the magnitude of the elements of X = (A′A)\B is

max(| X(: ) | ) ≤ nmax(|B(: ) | )
min(svd(A))2

.

Since computing svd(A) is more computationally expensive than solving the system of equations, the
fixed.complexQlessQRMatrixSolveFixedpointTypes function estimates a lower bound of
min(svd(A)).

Fixed-point types for the solution of the matrix equation (A′A)X = B are generally well-bounded if the
number of rows, m, of A are much greater than the number of columns, n (i.e. m ≫ n), and A is full
rank. If A is not inherently full rank, then it can be made so by adding random noise. Random noise
naturally occurs in physical systems, such as thermal noise in radar or communications systems. If
m = n, then the dynamic range of the system can be unbounded, for example in the scalar equation
x = a2/b and a, b ∈ [− 1, 1], then x can be arbitrarily large if b is close to 0.

Proofs of the Bounds

Properties and Definitions of Vector and Matrix Norms

The proofs of the bounds use the following properties and definitions of matrix and vector norms,
where Q is an orthogonal matrix, and v is a vector of length m [6].

| | Av | |2 ≤ | | A | |2 | |v | |2
| |Q | |2 = 1
||v | |∞ = max(|v(: ) | )

| |v | |∞ ≤ | |v | |2 ≤ m | |v | |∞
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If A is an m-by-n matrix and QR = A is the economy-size QR decomposition of A, where Q is
orthogonal and m-by-n and R is upper-triangular and n-by-n, then the singular values of R are equal
to the singular values of A. If A is nonsingular, then

| |R−1 | |2 = | |(R′)−1 | |2 = 1
min(svd(R)) = 1

min(svd(A))

Upper Bound for R = Q'A

The upper bound for the magnitude of the elements of R is

max(|R(: ) | ) ≤ mmax(| A(: ) | ).

Proof of Upper Bound for R = Q'A

The jth column of R is equal to R(: , j) = Q′A(: , j), so

max(|R(: , j) | ) = | |R(: , j) | |∞
≤ | |R(: , j) | |2
= ||Q′A(: , j) | |2
≤ | |Q′ | |2 | | A(: , j) | |2
= || A(: , j) | |2
≤ m | | A(: , j) | |∞
= mmax(| A(: , j) | )
≤ mmax(| A(: ) | ) .

Since max(|R(: , j) | ) ≤ mmax(| A(: ) | ) for all 1 ≤ j, then

max(|R(: ) | ) ≤ mmax(| A(: ) | ) .

Upper Bound for X = (A'A)\B

The upper bound for the magnitude of the elements of X = (A′A)\B is

max(| X(: ) | ) ≤ nmax(|B(: ) | )
min(svd(A))2

.

Proof of Upper Bound for X = (A'A)\B

If A is not full rank, then min(svd(A)) = 0, and if B is not equal to zero, then
nmax(|B(: ) | )/min(svd(A))2 = ∞and so the inequality is true.

If A′Ax = b and QR = A is the economy-size QR decomposition of A, then A′Ax = R′Q′QRx = R′Rx = b.
If A is full rank then x = R−1 ⋅ ((R′)−1b). Let x = X(: , j) be the jth column of X, and b = B(: , j) be the j
th column of B. Then
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max(|x(: ) | ) = | |x | |∞
≤ | |x | |2
= ||R−1 ⋅ ((R′)−1b) | |2
≤ | |R−1 | |2 | | (R′)−1 | |2 | |b | |2
= 1/min(svd(A))2 ⋅ | |b | |2

= ||b | |2/min(svd(A))2

≤ n | |b | |∞/min(svd(A))2

= nmax(|b(: ) | )/min(svd(A))2 .

Since max(|x(: ) | ) ≤ nmax(|b(: ) | )/min(svd(A))2 for all rows and columns of B and X, then

max(| X(: ) | ) ≤ nmax(|B(: ) | )
min(svd(A))2

.

Lower Bound for min(svd(A))

You can estimate a lower bound s of min(svd(A))for complex-valued A using the following formula,

s =
σN

2 γ−1 ps Γ m− n + 2 2 Γ n
Γ m + 1 Γ m− n + 1 (m− n + 1), m− n + 1

where σN is the standard deviation of random noise added to the elements of A, 1− ps is the
probability that s ≤ min(svd(A)), Γ is the gamma function, and γ−1is the inverse incomplete gamma
function gammaincinv.

The proof is found in [1]. It is derived by integrating the formula in Lemma 3.4 from [3] and
rearranging terms.

Since s ≤ min(svd(A)) with probability 1− ps, then you can bound the magnitude of the elements of X
without computing svd(A),

max(| X(: ) | ) ≤ nmax(|B(: ) | )
min(svd(A))2

≤ nmax(|B(: ) | )
s2  with probability 1− ps.

You can compute s using the fixed.complexSingularValueLowerBound function which uses a
default probability of 5 standard deviations below the mean,
ps = (1 + erf(− 5/ 2))/2 ≈ 2 . 8665 ⋅ 10−7, so the probability that the estimated bound for the smallest
singular value s is less than the actual smallest singular value of A is 1− ps ≈ 0 . 9999997.

Example

This example runs a simulation with many random matrices and compares the analytical bounds with
the actual singular values of A and the actual largest elements of R = Q′A, and X = (A′A)\B.

Define System Parameters

Define the matrix attributes and system parameters for this example.
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m is the number of rows in matrix A. In a problem such as beamforming or direction finding, m
corresponds to the number of samples that are integrated over.

m = 300;

n is the number of columns in matrix A and rows in matrices B and X. In a least-squares problem, m is
greater than n, and usually m is much larger than n. In a problem such as beamforming or direction
finding, n corresponds to the number of sensors.

n = 10;

p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system
with p right-hand sides.

p = 1;

In this example, set the rank of matrix A to be less than the number of columns. In a problem such as
beamforming or direction finding, rank(A) corresponds to the number of signals impinging on the
sensor array.

rankA = 3;

precisionBits defines the number of bits of precision required for the matrix solve. Set this value
according to system requirements.

precisionBits = 24;

In this example, complex-valued matrices A and B are constructed such that the magnitude of the real
and imaginary parts of their elements is less than or equal to one, so the maximum possible absolute
value of any element is |1 + 1i | = 2. Your own system requirements will define what those values
are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can
use the upperbound function to determine the upper bounds of the fixed-point types of A and B.

max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = sqrt(2);

max_abs_B is an upper bound on the maximum magnitude element of B.

max_abs_B = sqrt(2);

Thermal noise standard deviation is the square root of thermal noise power, which is a system
parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set
thermalNoiseStandardDeviation to the equivalent of −50dB noise power.

thermalNoiseStandardDeviation = sqrt(10^(-50/10))

thermalNoiseStandardDeviation = 0.0032

The standard deviation of the noise from quantizing the real and imaginary parts of a complex signal
is 2−precisionBits/ 6 [4,5]. Use fixed.complexQuantizationNoiseStandardDeviation to
compute this. See that it is less than thermalNoiseStandardDeviation.

quantizationNoiseStandardDeviation = fixed.complexQuantizationNoiseStandardDeviation(precisionBits)

quantizationNoiseStandardDeviation = 2.4333e-08
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Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer
signals of interest than number of columns of matrix A), and the measured system matrix A has
additive thermal noise that is larger than the quantization noise. The additive noise makes the
measured matrix A have full rank.

Set σnoise = σthermal noise.

noiseStandardDeviation = thermalNoiseStandardDeviation;

Use fixed.complexQlessQRMatrixSolveFixedpointTypes to compute fixed-point types.

T = fixed.complexQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
    precisionBits,noiseStandardDeviation)

T = struct with fields:
    A: [0x0 embedded.fi]
    B: [0x0 embedded.fi]
    X: [0x0 embedded.fi]

T.A is the type computed for transforming A to R in-place so that it does not overflow.

T.A

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 32
        FractionLength: 24

T.B is the type computed for B so that it does not overflow.

T.B

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 27
        FractionLength: 24

T.X is the type computed for the solution X = (A′A)\B so that there is a low probability that it
overflows.

T.X

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
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            WordLength: 40
        FractionLength: 24

Upper Bound for R

The upper bound for R is computed using the formula max(|R(: ) | ) ≤ mmax(| A(: ) | ), where m is the
number of rows of matrix A. This upper bound is used to select a fixed-point type with the required
number of bits of precision to avoid an overflow in the upper bound.

upperBoundR = sqrt(m)*max_abs_A

upperBoundR = 24.4949

Lower Bound for min(svd(A)) for Complex A

A lower bound for min(svd(A)) is estimated by the fixed.complexSingularValueLowerBound
function using a probability that the estimate s is not greater than the actual smallest singular value.
The default probability is 5 standard deviations below the mean. You can change this probability by
specifying it as the last input parameter to the fixed.complexSingularValueLowerBound
function.

estimatedSingularValueLowerBound = fixed.complexSingularValueLowerBound(m,n,noiseStandardDeviation)

estimatedSingularValueLowerBound = 0.0389

Simulate and Compare to the Computed Bounds

The bounds are within an order of magnitude of the simulated results. This is sufficient because the
number of bits translates to a logarithmic scale relative to the range of values. Being within a factor
of 10 is between 3 and 4 bits. This is a good starting point for specifying a fixed-point type. If you run
the simulation for more samples, then it is more likely that the simulated results will be closer to the
bound. This example uses a limited number of simulations so it doesn't take too long to run. For real-
world system design, you should run additional simulations.

Define the number of samples, numSamples, over which to run the simulation.

numSamples = 1e4;

Run the simulation.

[actualMaxR,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs_B,numSamples,...
    noiseStandardDeviation,T);

You can see that the upper bound on R compared to the measured simulation results of the maximum
value of R over all runs is within an order of magnitude.

upperBoundR

upperBoundR = 24.4949

max(actualMaxR)

ans = 9.4990

Finally, see that the estimated lower bound of min(svd(A)) compared to the measured simulation
results of min(svd(A)) over all runs is also within an order of magnitude.

estimatedSingularValueLowerBound
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estimatedSingularValueLowerBound = 0.0389

actualSmallestSingularValue = min(singularValues,[],'all')

actualSmallestSingularValue = 0.0443

Plot the distribution of the singular values over all simulation runs. The distributions of the largest
singular values correspond to the signals that determine the rank of the matrix. The distributions of
the smallest singular values correspond to the noise. The derivation of the estimated bound of the
smallest singular value makes use of the random nature of the noise.

clf
fixed.example.plot.singularValueDistribution(m,n,rankA,...
    noiseStandardDeviation,singularValues,...
    estimatedSingularValueLowerBound,"complex");

Zoom in to the smallest singular value to see that the estimated bound is close to it.

xlim([estimatedSingularValueLowerBound*0.9, max(singularValues(n,:))]);
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Estimate the largest value of the solution, X, and compare it to the largest value of X found during the
simulation runs. The estimation is within an order of magnitude of the actual value, which is sufficient
for estimating a fixed-point data type, because it is between 3 and 4 bits.

This example uses a limited number of simulation runs. With additional simulation runs, the actual
largest value of X will approach the estimated largest value of X.

estimated_largest_X = fixed.complexQlessQRMatrixSolveUpperBoundX(m,n,max_abs_B,noiseStandardDeviation)

estimated_largest_X = 9.3348e+03

actual_largest_X = max(abs(X_values),[],'all')

actual_largest_X = 977.7440

Plot the distribution of X values and compare it to the estimated upper bound for X.

clf
fixed.example.plot.xValueDistribution(m,n,rankA,noiseStandardDeviation,...
    X_values,estimated_largest_X,"complex normally distributed random");
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Supporting Functions

The runSimulations function creates a series of random matrices A and B of a given size and rank,
quantizes them according to the computed types, computes the QR decomposition of A, and solves
the equation A′AX = B. It returns the maximum values of R = Q′A, the singular values of A, and the
values of X so their distributions can be plotted and compared to the bounds.

function [actualMaxR,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs_B,...
        numSamples,noiseStandardDeviation,T)
    precisionBits = T.A.FractionLength;
    A_WordLength = T.A.WordLength;
    B_WordLength = T.B.WordLength;
    actualMaxR = zeros(1,numSamples);
    singularValues = zeros(n,numSamples);
    X_values = zeros(n,numSamples);
    for j = 1:numSamples
        A = (max_abs_A/sqrt(2))*fixed.example.complexRandomLowRankMatrix(m,n,rankA);
        % Adding random noise makes A non-singular.
        A = A + fixed.example.complexNormalRandomArray(0,noiseStandardDeviation,m,n);
        A = quantizenumeric(A,1,A_WordLength,precisionBits);
        B = fixed.example.complexUniformRandomArray(-max_abs_B,max_abs_B,n,p);
        B = quantizenumeric(B,1,B_WordLength,precisionBits);
        [~,R] = qr(A,0);
        X = R\(R'\B);
        actualMaxR(j) = max(abs(R(:)));
        singularValues(:,j) = svd(A);
        X_values(:,j) = X;
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    end
end
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Determine Fixed-Point Types for Complex Q-less QR Matrix
Solve A'AX=B

This example shows how to use the fixed.complexQlessQRMatrixSolveFixedpointTypes
function to analytically determine fixed-point types for the solution of the complex least-squares
matrix equation A′AX = B, where A is an m-by-n matrix with m ≥ n, B is n-by-p, and X is n-by-p.

Fixed-point types for the solution of the matrix equation A′AX = B are well-bounded if the number of
rows, m, of A are much greater than the number of columns, n (i.e. m ≫ n), and A is full rank. If A is
not inherently full rank, then it can be made so by adding random noise. Random noise naturally
occurs in physical systems, such as thermal noise in radar or communications systems. If m = n, then
the dynamic range of the system can be unbounded, for example in the scalar equation x = a/b and
a, b ∈ [− 1, 1], then x can be arbitrarily large if b is close to 0.

Define System Parameters

Define the matrix attributes and system parameters for this example.

m is the number of rows in matrix A. In a problem such as beamforming or direction finding, m
corresponds to the number of samples that are integrated over.

m = 300;

n is the number of columns in matrix A and rows in matrices B and X. In a least-squares problem, m is
greater than n, and usually m is much larger than n. In a problem such as beamforming or direction
finding, n corresponds to the number of sensors.

n = 10;

p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system
with p right-hand sides.

p = 1;

In this example, set the rank of matrix A to be less than the number of columns. In a problem such as
beamforming or direction finding, rank(A) corresponds to the number of signals impinging on the
sensor array.

rankA = 3;

precisionBits defines the number of bits of precision required for the matrix solve. Set this value
according to system requirements.

precisionBits = 24;

In this example, complex-valued matrices A and B are constructed such that the magnitude of the real
and imaginary parts of their elements is less than or equal to one, so the maximum possible absolute
value of any element is |1 + 1i | = 2. Your own system requirements will define what those values
are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can
use the upperbound function to determine the upper bounds of the fixed-point types of A and B.

max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = sqrt(2);
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max_abs_B is an upper bound on the maximum magnitude element of B.

max_abs_B = sqrt(2);

Thermal noise standard deviation is the square root of thermal noise power, which is a system
parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set
thermalNoiseStandardDeviation to the equivalent of −50dB noise power.

thermalNoiseStandardDeviation = sqrt(10^(-50/10))

thermalNoiseStandardDeviation = 0.0032

The quantization noise standard deviation is a function of the required number of bits of precision.
Use fixed.complexQuantizationNoiseStandardDeviation to compute this. See that it is less
than thermalNoiseStandardDeviation.

quantizationNoiseStandardDeviation = fixed.complexQuantizationNoiseStandardDeviation(precisionBits)

quantizationNoiseStandardDeviation = 2.4333e-08

Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer
signals of interest than number of columns of matrix A), and the measured system matrix A has
additive thermal noise that is larger than the quantization noise. The additive noise makes the
measured matrix A have full rank.

Set σnoise = σthermal noise.

noiseStandardDeviation = thermalNoiseStandardDeviation;

Use the fixed.complexQlessQRMatrixSolveFixedpointTypes function to compute fixed-point
types.

T = fixed.complexQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
    precisionBits,noiseStandardDeviation)

T = struct with fields:
    A: [0x0 embedded.fi]
    B: [0x0 embedded.fi]
    X: [0x0 embedded.fi]

T.A is the type computed for transforming A to R = Q′A in-place so that it does not overflow.

T.A

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 32
        FractionLength: 24

T.B is the type computed for B so that it does not overflow.

T.B
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ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 27
        FractionLength: 24

T.X is the type computed for the solution X = (A′A)\B so that there is a low probability that it
overflows.

T.X

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 40
        FractionLength: 24

Use the Specified Types to Solve the Matrix Equation A'AX=B

Create random matrices A and B such that rankA=rank(A). Add random measurement noise to A
which will make it become full rank.

rng('default');
[A,B] = fixed.example.complexRandomQlessQRMatrices(m,n,p,rankA);
A = A + fixed.example.complexNormalRandomArray(0,noiseStandardDeviation,m,n);

Cast the inputs to the types determined by
fixed.complexQlessQRMatrixSolveFixedpointTypes. Quantizing to fixed-point is equivalent
to adding random noise.

A = cast(A,'like',T.A);
B = cast(B,'like',T.B);

Accelerate the fixed.qlessQRMatrixSolve function by using fiaccel to generate a MATLAB
executable (MEX) function.

fiaccel fixed.qlessQRMatrixSolve -args {A,B,T.X} -o qlessQRMatrixSolve_mex

Specify output type T.X and compute fixed-point X = (A′A)\B using the QR method.

X = qlessQRMatrixSolve_mex(A,B,T.X);

Compute the relative error to verify the accuracy of the output.

relative_error = norm(double(A'*A*X - B))/norm(double(B))

relative_error = 0.1052

Suppress mlint warnings in this file.
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Algorithms to Determine Fixed-Point Types for Complex Least-
Squares Matrix Solve AX=B

This example shows the algorithms that the fixed.complexQRMatrixSolveFixedpointTypes
function uses to analytically determine fixed-point types for the solution of the complex least-squares
matrix equation AX = B, where A is an m-by-n matrix with m ≥ n, B is m-by-p, and X is n-by-p.

Overview

You can solve the fixed-point least-squares matrix equation AX = B using QR decomposition. Using a
sequence of orthogonal transformations, QR decomposition transforms matrix A in-place to upper
triangular R, and transforms matrix B in-place to C = Q′B, where QR = A is the economy-size QR
decomposition. This reduces the equation to an upper-triangular system of equations RX = C. To
solve for X, compute X = R\C through back-substitution of R into C.

You can determine appropriate fixed-point types for the least-squares matrix equation AX = B by
selecting the fraction length based on the number of bits of precision defined by your requirements.
The fixed.complexQRMatrixSolveFixedpointTypes function analytically computes the
following upper bounds on R = Q′A, C = Q′B, and X to determine the number of integer bits required
to avoid overflow [1,2,3].

The upper bound for the magnitude of the elements of R = Q′A is

max(|R(: ) | ) ≤ mmax(| A(: ) | ).

The upper bound for the magnitude of the elements of C = Q′B is

max(|C(: ) | ) ≤ mmax(|B(: ) | ).

The upper bound for the magnitude of the elements of X = A\B is

max(| X(: ) | ) ≤ mmax(|B(: ) | )
min(svd(A)) .

Since computing svd(A) is more computationally expensive than solving the system of equations, the
fixed.complexQRMatrixSolveFixedpointTypes function estimates a lower bound of
min(svd(A)).

Fixed-point types for the solution of the matrix equation AX = B are generally well-bounded if the
number of rows, m, of A are much greater than the number of columns, n (i.e. m ≫ n), and A is full
rank. If A is not inherently full rank, then it can be made so by adding random noise. Random noise
naturally occurs in physical systems, such as thermal noise in radar or communications systems. If
m = n, then the dynamic range of the system can be unbounded, for example in the scalar equation
x = a/b and a, b ∈ [− 1, 1], then x can be arbitrarily large if b is close to 0.

Proofs of the Bounds

Properties and Definitions of Vector and Matrix Norms

The proofs of the bounds use the following properties and definitions of matrix and vector norms,
where Q is an orthogonal matrix, and v is a vector of length m [6].
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| | Av | |2 ≤ | | A | |2 | |v | |2
| |Q | |2 = 1
||v | |∞ = max(|v(: ) | )

| |v | |∞ ≤ | |v | |2 ≤ m | |v | |∞

If A is an m-by-n matrix and QR = A is the economy-size QR decomposition of A, where Q is
orthogonal and m-by-n and R is upper-triangular and n-by-n, then the singular values of R are equal
to the singular values of A. If A is nonsingular, then

| |R−1 | |2 = | |(R′)−1 | |2 = 1
min(svd(R)) = 1

min(svd(A))

Upper Bound for R = Q'A

The upper bound for the magnitude of the elements of R is

max(|R(: ) | ) ≤ mmax(| A(: ) | ).

Proof of Upper Bound for R = Q'A

The jth column of R is equal to R(: , j) = Q′A(: , j), so

max(|R(: , j) | ) = | |R(: , j) | |∞
≤ | |R(: , j) | |2
= ||Q′A(: , j) | |2
≤ | |Q′ | |2 | | A(: , j) | |2
= || A(: , j) | |2
≤ m | | A(: , j) | |∞
= mmax(| A(: , j) | )
≤ mmax(| A(: ) | ) .

Since max(|R(: , j) | ) ≤ mmax(| A(: ) | ) for all 1 ≤ j, then

max(|R(: ) | ) ≤ mmax(| A(: ) | ) .

Upper Bound for C = Q'B

The upper bound for the magnitude of the elements of C = Q′B is

max(|C(: ) | ) ≤ mmax(|B(: ) | ).

Proof of Upper Bound for C = Q'B

The proof of the upper bound for C = Q′B is the same as the proof of the upper bound for R = Q′A by
substituting C for R and B for A.

Upper Bound for X = A\B

The upper bound for the magnitude of the elements of X = A\B is
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max(| X(: ) | ) ≤ mmax(|B(: ) | )
min(svd(A)) .

Proof of Upper Bound for X = A\B

If A is not full rank, then min(svd(A)) = 0, and if B is not equal to zero, then
mmax(|B(: ) | )/min(svd(A)) = ∞ and so the inequality is true.

If A is full rank, then x = R−1(Q′b). Let x = X(: , j) be the jth column of X, and b = B(: , j) be the jth
column of B. Then

max(|x(: ) | ) = | |x | |∞
≤ | |x | |2
= ||R−1 ⋅ (Q′b) | |2
≤ | |R−1 | |2 | |Q′ | |2 | |b | |2
= 1/min(svd(A)) ⋅ 1 ⋅ | |b | |2
= ||b | |2/min(svd(A))

≤ m | |b | |∞/min(svd(A))

= mmax(|b(: ) | )/min(svd(A)) .

Since max(|x(: ) | ) ≤ mmax(|b(: ) | )/min(svd(A)) for all rows and columns of B and X, then

max(| X(: ) | ) ≤ mmax(|B(: ) | )
min(svd(A)) .

Lower Bound for min(svd(A))

You can estimate a lower bound s of min(svd(A))for complex-valued A using the following formula,

s =
σN

2 γ−1 ps Γ m− n + 2 2 Γ n
Γ m + 1 Γ m− n + 1 (m− n + 1), m− n + 1

where σN is the standard deviation of random noise added to the elements of A, 1− ps is the
probability that s ≤ min(svd(A)), Γ is the gamma function, and γ−1is the inverse incomplete gamma
function gammaincinv.

The proof is found in [1]. It is derived by integrating the formula in Lemma 3.4 from [3] and
rearranging terms.

Since s ≤ min(svd(A)) with probability 1− ps, then you can bound the magnitude of the elements of X
without computing svd(A),

max(| X(: ) | ) ≤ mmax(|B(: ) | )
min(svd(A)) ≤ mmax(|B(: ) | )

s  with probability 1− ps.

You can compute s using the fixed.complexSingularValueLowerBound function which uses a
default probability of 5 standard deviations below the mean,
ps = (1 + erf(− 5/ 2))/2 ≈ 2 . 8665 ⋅ 10−7, so the probability that the estimated bound for the smallest
singular value s is less than the actual smallest singular value of A is 1− ps ≈ 0 . 9999997.
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Example

This example runs a simulation with many random matrices and compares the analytical bounds with
the actual singular values of A and the actual largest elements of R = Q′A, C = Q′B, and X = A\B.

Define System Parameters

Define the matrix attributes and system parameters for this example.

m is the number of rows in matrices A and B. In a problem such as beamforming or direction finding,
m corresponds to the number of samples that are integrated over.

m = 300;

n is the number of columns in matrix A and rows in matrix X. In a least-squares problem, m is greater
than n, and usually m is much larger than n. In a problem such as beamforming or direction finding, n
corresponds to the number of sensors.

n = 10;

p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system
with p right-hand sides.

p = 1;

In this example, set the rank of matrix A to be less than the number of columns. In a problem such as
beamforming or direction finding, rank(A) corresponds to the number of signals impinging on the
sensor array.

rankA = 3;

precisionBits defines the number of bits of precision required for the matrix solve. Set this value
according to system requirements.

precisionBits = 24;

In this example, complex-valued matrices A and B are constructed such that the magnitude of the real
and imaginary parts of their elements is less than or equal to one, so the maximum possible absolute
value of any element is |1 + 1i | = 2. Your own system requirements will define what those values
are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can
use the upperbound function to determine the upper bounds of the fixed-point types of A and B.

max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = sqrt(2);

max_abs_B is an upper bound on the maximum magnitude element of B.

max_abs_B = sqrt(2);

Thermal noise standard deviation is the square root of thermal noise power, which is a system
parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set
thermalNoiseStandardDeviation to the equivalent of −50dB noise power.

thermalNoiseStandardDeviation = sqrt(10^(-50/10))

thermalNoiseStandardDeviation = 0.0032
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The standard deviation of the noise from quantizing the real and imaginary parts of a complex signal
is 2−precisionBits/ 6 [4,5]. Use the fixed.complexQuantizationNoiseStandardDeviation
function to compute this. See that it is less than thermalNoiseStandardDeviation.

quantizationNoiseStandardDeviation = fixed.complexQuantizationNoiseStandardDeviation(precisionBits)

quantizationNoiseStandardDeviation = 2.4333e-08

Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer
signals of interest than number of columns of matrix A), and the measured system matrix A has
additive thermal noise that is larger than the quantization noise. The additive noise makes the
measured matrix A have full rank.

Set σnoise = σthermal noise.

noiseStandardDeviation = thermalNoiseStandardDeviation;

Use fixed.complexQRMatrixSolveFixedpointTypes to compute fixed-point types.

T = fixed.complexQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
    precisionBits,noiseStandardDeviation)

T = struct with fields:
    A: [0x0 embedded.fi]
    B: [0x0 embedded.fi]
    X: [0x0 embedded.fi]

T.A is the type computed for transforming A to R in-place so that it does not overflow.

T.A

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 32
        FractionLength: 24

T.B is the type computed for transforming B to Q′B in-place so that it does not overflow.

T.B

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 32
        FractionLength: 24

T.X is the type computed for the solution X = A\B so that there is a low probability that it overflows.

T.X
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ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 37
        FractionLength: 24

Upper Bounds for R and C=Q'B

The upper bounds for R and C = Q′B are computed using the following formulas, where m is the
number of rows of matrices A and B.

max(|R(: ) | ) ≤ mmax(| A(: ) | )

max(|C(: ) | ) ≤ mmax(|B(: ) | )

These upper bounds are used to select a fixed-point type with the required number of bits of precision
to avoid overflows.

upperBoundR = sqrt(m)*max_abs_A

upperBoundR = 24.4949

upperBoundQB = sqrt(m)*max_abs_B

upperBoundQB = 24.4949

Lower Bound for min(svd(A)) for Complex A

A lower bound for min(svd(A)) is estimated by the fixed.complexSingularValueLowerBound
function using a probability that the estimate s is not greater than the actual smallest singular value.
The default probability is 5 standard deviations below the mean. You can change this probability by
specifying it as the last input parameter to the fixed.complexSingularValueLowerBound
function.

estimatedSingularValueLowerBound = fixed.complexSingularValueLowerBound(m,n,noiseStandardDeviation)

estimatedSingularValueLowerBound = 0.0389

Simulate and Compare to the Computed Bounds

The bounds are within an order of magnitude of the simulated results. This is sufficient because the
number of bits translates to a logarithmic scale relative to the range of values. Being within a factor
of 10 is between 3 and 4 bits. This is a good starting point for specifying a fixed-point type. If you run
the simulation for more samples, then it is more likely that the simulated results will be closer to the
bound. This example uses a limited number of simulations so it doesn't take too long to run. For real-
world system design, you should run additional simulations.

Define the number of samples, numSamples, over which to run the simulation.

numSamples = 1e4;

Run the simulation.

[actualMaxR,actualMaxQB,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs_B,...
    numSamples,noiseStandardDeviation,T);

48 Code Generation

48-154



You can see that the upper bound on R compared to the measured simulation results of the maximum
value of R over all runs is within an order of magnitude.

upperBoundR

upperBoundR = 24.4949

max(actualMaxR)

ans = 9.6720

You can see that the upper bound on C = Q′B compared to the measured simulation results of the
maximum value of C = Q′B over all runs is also within an order of magnitude.

upperBoundQB

upperBoundQB = 24.4949

max(actualMaxQB)

ans = 4.4764

Finally, see that the estimated lower bound of min(svd(A)) compared to the measured simulation
results of min(svd(A)) over all runs is also within an order of magnitude.

estimatedSingularValueLowerBound

estimatedSingularValueLowerBound = 0.0389

actualSmallestSingularValue = min(singularValues,[],'all')  

actualSmallestSingularValue = 0.0443

Plot the distribution of the singular values over all simulation runs. The distributions of the largest
singular values correspond to the signals that determine the rank of the matrix. The distributions of
the smallest singular values correspond to the noise. The derivation of the estimated bound of the
smallest singular value makes use of the random nature of the noise.

clf
fixed.example.plot.singularValueDistribution(m,n,rankA,noiseStandardDeviation,...
    singularValues,estimatedSingularValueLowerBound,"complex");

 Algorithms to Determine Fixed-Point Types for Complex Least-Squares Matrix Solve AX=B

48-155



Zoom in to the smallest singular value to see that the estimated bound is close to it.

xlim([estimatedSingularValueLowerBound*0.9, max(singularValues(n,:))]);
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Estimate the largest value of the solution, X, and compare it to the largest value of X found during the
simulation runs. The estimation is within an order of magnitude of the actual value, which is sufficient
for estimating a fixed-point data type, because it is between 3 and 4 bits.

This example uses a limited number of simulation runs. With additional simulation runs, the actual
largest value of X will approach the estimated largest value of X.

estimated_largest_X = fixed.complexMatrixSolveUpperBoundX(m,n,max_abs_B,noiseStandardDeviation)

estimated_largest_X = 629.3194

actual_largest_X = max(abs(X_values),[],'all')

actual_largest_X = 70.2644

Plot the distribution of X values and compare it to the estimated upper bound for X.

clf
fixed.example.plot.xValueDistribution(m,n,rankA,noiseStandardDeviation,...
    X_values,estimated_largest_X,"complex normally distributed random");
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Supporting Functions

The runSimulations function creates a series of random matrices A and B of a given size and rank,
quantizes them according to the computed types, computes the QR decomposition of A, and solves
the equation AX = B. It returns the maximum values of R = Q′A and C = Q′B, the singular values of
A, and the values of X so their distributions can be plotted and compared to the bounds.

function [actualMaxR,actualMaxQB,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs_B,...
        numSamples,noiseStandardDeviation,T)
    precisionBits = T.A.FractionLength;
    A_WordLength = T.A.WordLength;
    B_WordLength = T.B.WordLength;
    actualMaxR = zeros(1,numSamples);
    actualMaxQB = zeros(1,numSamples);
    singularValues = zeros(n,numSamples);
    X_values = zeros(n,numSamples);
    for j = 1:numSamples    
        A = (max_abs_A/sqrt(2))*fixed.example.complexRandomLowRankMatrix(m,n,rankA);
        % Adding normally distributed random noise makes A non-singular.
        A = A + fixed.example.complexNormalRandomArray(0,noiseStandardDeviation,m,n);
        A = quantizenumeric(A,1,A_WordLength,precisionBits);
        B = fixed.example.complexUniformRandomArray(-max_abs_B,max_abs_B,m,p);
        B = quantizenumeric(B,1,B_WordLength,precisionBits);
        [Q,R] = qr(A,0);
        C = Q'*B;
        X = R\C;
        actualMaxR(j) = max(abs(R(:)));
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        actualMaxQB(j) = max(abs(C(:)));
        singularValues(:,j) = svd(A);
        X_values(:,j) = X;
    end
end
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Determine Fixed-Point Types for Complex Least-Squares Matrix
Solve AX=B

This example shows how to use the fixed.complexQRMatrixSolveFixedpointTypes function to
analytically determine fixed-point types for the solution of the complex least-squares matrix equation
AX = B, where A is an m-by-n matrix with m ≥ n, B is m-by-p, and X is n-by-p.

Fixed-point types for the solution of the matrix equation AX = B are well-bounded if the number of
rows, m, of A are much greater than the number of columns, n (i.e. m ≫ n), and A is full rank. If A is
not inherently full rank, then it can be made so by adding random noise. Random noise naturally
occurs in physical systems, such as thermal noise in radar or communications systems. If m = n, then
the dynamic range of the system can be unbounded, for example in the scalar equation x = a/b and
a, b ∈ [− 1, 1], then x can be arbitrarily large if b is close to 0.

Define System Parameters

Define the matrix attributes and system parameters for this example.

m is the number of rows in matrices A and B. In a problem such as beamforming or direction finding,
m corresponds to the number of samples that are integrated over.

m = 300;

n is the number of columns in matrix A and rows in matrix X. In a least-squares problem, m is greater
than n, and usually m is much larger than n. In a problem such as beamforming or direction finding, n
corresponds to the number of sensors.

n = 10;

p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system
with p right-hand sides.

p = 1;

In this example, set the rank of matrix A to be less than the number of columns. In a problem such as
beamforming or direction finding, rank(A) corresponds to the number of signals impinging on the
sensor array.

rankA = 3;

precisionBits defines the number of bits of precision required for the matrix solve. Set this value
according to system requirements.

precisionBits = 24;

In this example, complex-valued matrices A and B are constructed such that the magnitude of the real
and imaginary parts of their elements is less than or equal to one, so the maximum possible absolute
value of any element is |1 + 1i | = 2. Your own system requirements will define what those values
are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can
use the upperbound function to determine the upper bounds of the fixed-point types of A and B.

max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = sqrt(2);  
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max_abs_B is an upper bound on the maximum magnitude element of B.

max_abs_B = sqrt(2);

Thermal noise standard deviation is the square root of thermal noise power, which is a system
parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set
thermalNoiseStandardDeviation to the equivalent of −50dB noise power.

thermalNoiseStandardDeviation = sqrt(10^(-50/10))

thermalNoiseStandardDeviation = 0.0032

The quantization noise standard deviation is a function of the required number of bits of precision.
Use fixed.complexQuantizationNoiseStandardDeviation to compute this. See that it is less
than thermalNoiseStandardDeviation.

quantizationNoiseStandardDeviation = fixed.complexQuantizationNoiseStandardDeviation(precisionBits)

quantizationNoiseStandardDeviation = 2.4333e-08

Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer
signals of interest than number of columns of matrix A), and the measured system matrix A has
additive thermal noise that is larger than the quantization noise. The additive noise makes the
measured matrix A have full rank.

Set σnoise = σthermal noise.

noiseStandardDeviation = thermalNoiseStandardDeviation;

Use fixed.complexQRMatrixSolveFixedpointTypes to compute fixed-point types.

T = fixed.complexQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
    precisionBits,noiseStandardDeviation)

T = struct with fields:
    A: [0x0 embedded.fi]
    B: [0x0 embedded.fi]
    X: [0x0 embedded.fi]

T.A is the type computed for transforming A to R = Q′A in-place so that it does not overflow.

T.A

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 32
        FractionLength: 24

T.B is the type computed for transforming B to C = Q′B in-place so that it does not overflow.

T.B
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ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 32
        FractionLength: 24

T.X is the type computed for the solution X = A\B so that there is a low probability that it overflows.

T.X

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 37
        FractionLength: 24

Use the Specified Types to Solve the Matrix Equation AX=B

Create random matrices A and B such that B is in the range of A, and rankA=rank(A). Add random
measurement noise to A which will make it become full rank, but it will also affect the solution so that
B is only close to the range of A.

rng('default');
[A,B] = fixed.example.complexRandomLeastSquaresMatrices(m,n,p,rankA);
A = A + fixed.example.complexNormalRandomArray(0,noiseStandardDeviation,m,n);

Cast the inputs to the types determined by fixed.complexQRMatrixSolveFixedpointTypes.
Quantizing to fixed-point is equivalent to adding random noise.

A = cast(A,'like',T.A);
B = cast(B,'like',T.B);

Accelerate the fixed.qrMatrixSolve function by using fiaccel to generate a MATLAB
executable (MEX) function.

fiaccel fixed.qrMatrixSolve -args {A,B,T.X} -o qrComplexMatrixSolve_mex

Specify the output type T.X and compute fixed-point X = A\B using the QR method.

X = qrComplexMatrixSolve_mex(A,B,T.X);

Compute the relative error to verify the accuracy of the output.

relative_error = norm(double(A*X - B))/norm(double(B))

relative_error = 0.0056

Suppress mlint warnings in this file.
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Algorithms to Determine Fixed-Point Types for Real Q-less QR
Matrix Solve A'AX=B

This example shows the algorithms that the fixed.realQlessQRMatrixSolveFixedpointTypes
function uses to analytically determine fixed-point types for the solution of the real matrix equation
A′AX = B, where A is an m-by-n matrix with m > n, B is n-by-p, and X is n-by-p.

Overview

You can solve the fixed-point matrix equation A′AX = B using QR decomposition. Using a sequence of
orthogonal transformations, QR decomposition transforms matrix A in-place to upper triangular R,
where QR = A is the economy-size QR decomposition. This reduces the equation to an upper-
triangular system of equations R′RX = B. To solve for X, compute X = R\(R′\B) through forward- and
backward-substitution of R into B.

You can determine appropriate fixed-point types for the matrix equation A′AX = B by selecting the
fraction length based on the number of bits of precision defined by your requirements. The
fixed.realQlessQRMatrixSolveFixedpointTypes function analytically computes the following
upper bounds on R, and X to determine the number of integer bits required to avoid overflow [1,2,3].

The upper bound for the magnitude of the elements of R = Q′A is

max(|R(: ) | ) ≤ mmax(| A(: ) | ).

The upper bound for the magnitude of the elements of X = (A′A)\B is

max(| X(: ) | ) ≤ nmax(|B(: ) | )
min(svd(A))2

.

Since computing svd(A) is more computationally expensive than solving the system of equations, the
fixed.realQlessQRMatrixSolveFixedpointTypes function estimates a lower bound of
min(svd(A)).

Fixed-point types for the solution of the matrix equation (A′A)X = B are generally well-bounded if the
number of rows, m, of A are much greater than the number of columns, n (i.e. m ≫ n), and A is full
rank. If A is not inherently full rank, then it can be made so by adding random noise. Random noise
naturally occurs in physical systems, such as thermal noise in radar or communications systems. If
m = n, then the dynamic range of the system can be unbounded, for example in the scalar equation
x = a2/b and a, b ∈ [− 1, 1], then x can be arbitrarily large if b is close to 0.

Proofs of the Bounds

Properties and Definitions of Vector and Matrix Norms

The proofs of the bounds use the following properties and definitions of matrix and vector norms,
where Q is an orthogonal matrix, and v is a vector of length m [6].

| | Av | |2 ≤ | | A | |2 | |v | |2
| |Q | |2 = 1
||v | |∞ = max(|v(: ) | )

| |v | |∞ ≤ | |v | |2 ≤ m | |v | |∞
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If A is an m-by-n matrix and QR = A is the economy-size QR decomposition of A, where Q is
orthogonal and m-by-n and R is upper-triangular and n-by-n, then the singular values of R are equal
to the singular values of A. If A is nonsingular, then

| |R−1 | |2 = | |(R′)−1 | |2 = 1
min(svd(R)) = 1

min(svd(A))

Upper Bound for R = Q'A

The upper bound for the magnitude of the elements of R is

max(|R(: ) | ) ≤ mmax(| A(: ) | ).

Proof of Upper Bound for R = Q'A

The jth column of R is equal to R(: , j) = Q′A(: , j), so

max(|R(: , j) | ) = | |R(: , j) | |∞
≤ | |R(: , j) | |2
= ||Q′A(: , j) | |2
≤ | |Q′ | |2 | | A(: , j) | |2
= || A(: , j) | |2
≤ m | | A(: , j) | |∞
= mmax(| A(: , j) | )
≤ mmax(| A(: ) | ) .

Since max(|R(: , j) | ) ≤ mmax(| A(: ) | ) for all 1 ≤ j, then

max(|R(: ) | ) ≤ mmax(| A(: ) | ) .

Upper Bound for X = (A'A)\B

The upper bound for the magnitude of the elements of X = (A′A)\B is

max(| X(: ) | ) ≤ nmax(|B(: ) | )
min(svd(A))2

.

Proof of Upper Bound for X = (A'A)\B

If A is not full rank, then min(svd(A)) = 0, and if B is not equal to zero, then
nmax(|B(: ) | )/min(svd(A))2 = ∞and so the inequality is true.

If A′Ax = b and QR = A is the economy-size QR decomposition of A, then A′Ax = R′Q′QRx = R′Rx = b.
If A is full rank then x = R−1 ⋅ ((R′)−1b). Let x = X(: , j) be the jth column of X, and b = B(: , j) be the j
th column of B. Then
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max(|x(: ) | ) = | |x | |∞
≤ | |x | |2
= ||R−1 ⋅ ((R′)−1b) | |2
≤ | |R−1 | |2 | | (R′)−1 | |2 | |b | |2
= 1/min(svd(A))2 ⋅ | |b | |2

= ||b | |2/min(svd(A))2

≤ n | |b | |∞/min(svd(A))2

= nmax(|b(: ) | )/min(svd(A))2 .

Since max(|x(: ) | ) ≤ nmax(|b(: ) | )/min(svd(A))2 for all rows and columns of B and X, then

max(| X(: ) | ) ≤ nmax(|B(: ) | )
min(svd(A))2

.

Lower Bound for min(svd(A))

You can estimate a lower bound s of min(svd(A))for real-valued A using the following formula,

s = σN 2γ−1 ps Γ(m− n + 1)Γ(n/2)
2m− nΓ m + 1

2 Γ m− n + 1
2

, m− n + 1
2

where σN is the standard deviation of random noise added to the elements of A, 1− ps is the
probability that s ≤ min(svd(A)), Γ is the gamma function, and γ−1is the inverse incomplete gamma
function gammaincinv.

The proof is found in [1]. It is derived by integrating the formula in Lemma 3.3 from [3] and
rearranging terms.

Since s ≤ min(svd(A)) with probability 1− ps, then you can bound the magnitude of the elements of X
without computing svd(A),

max(| X(: ) | ) ≤ nmax(|B(: ) | )
min(svd(A))2

≤ nmax(|B(: ) | )
s2  with probability 1− ps.

You can compute s using the fixed.realSingularValueLowerBound function which uses a
default probability of 5 standard deviations below the mean,
ps = (1 + erf(− 5/ 2))/2 ≈ 2 . 8665 ⋅ 10−7, so the probability that the estimated bound for the smallest
singular value s is less than the actual smallest singular value of A is 1− ps ≈ 0 . 9999997.

Example

This example runs a simulation with many random matrices and compares the analytical bounds with
the actual singular values of A and the actual largest elements of R = Q′A, and X = (A′A)\B.

Define System Parameters

Define the matrix attributes and system parameters for this example.
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m is the number of rows in matrix A. In a problem such as beamforming or direction finding, m
corresponds to the number of samples that are integrated over.

m = 300;

n is the number of columns in matrix A and rows in matrices B and X. In a least-squares problem, m is
greater than n, and usually m is much larger than n. In a problem such as beamforming or direction
finding, n corresponds to the number of sensors.

n = 10;

p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system
with p right-hand sides.

p = 1;

In this example, set the rank of matrix A to be less than the number of columns. In a problem such as
beamforming or direction finding, rank(A) corresponds to the number of signals impinging on the
sensor array.

rankA = 3;

precisionBits defines the number of bits of precision required for the matrix solve. Set this value
according to system requirements.

precisionBits = 24;

In this example, real-valued matrices A and B are constructed such that the magnitude of their
elements is less than or equal to one. Your own system requirements will define what those values
are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can
use the upperbound function to determine the upper bounds of the fixed-point types of A and B.

max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = 1;  

max_abs_B is an upper bound on the maximum magnitude element of B.

max_abs_B = 1;

Thermal noise standard deviation is the square root of thermal noise power, which is a system
parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set
thermalNoiseStandardDeviation to the equivalent of −50dB noise power.

thermalNoiseStandardDeviation = sqrt(10^(-50/10))

thermalNoiseStandardDeviation = 0.0032

The standard deviation of the noise from quantizing a real signal is 2−precisionBits/ 12 [4,5]. Use
fixed.realQuantizationNoiseStandardDeviation to compute this. See that it is less than
thermalNoiseStandardDeviation.

quantizationNoiseStandardDeviation = fixed.realQuantizationNoiseStandardDeviation(precisionBits)

quantizationNoiseStandardDeviation = 1.7206e-08
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Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer
signals of interest than number of columns of matrix A), and the measured system matrix A has
additive thermal noise that is larger than the quantization noise. The additive noise makes the
measured matrix A have full rank.

Set σnoise = σthermal noise.

noiseStandardDeviation = thermalNoiseStandardDeviation;

Use fixed.realQlessQRMatrixSolveFixedpointTypes to compute fixed-point types.

T = fixed.realQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
    precisionBits,noiseStandardDeviation)

T = struct with fields:
    A: [0x0 embedded.fi]
    B: [0x0 embedded.fi]
    X: [0x0 embedded.fi]

T.A is the type computed for transforming A to R in-place so that it does not overflow.

T.A

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 31
        FractionLength: 24

T.B is the type computed for B so that it does not overflow.

T.B

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 27
        FractionLength: 24

T.X is the type computed for the solution X = (A′A)\B so that there is a low probability that it
overflows.

T.X

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
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            WordLength: 40
        FractionLength: 24

Upper Bound for R

The upper bound for R is computed using the formula max(|R(: ) | ) ≤ mmax(| A(: ) | ), where m is the
number of rows of matrix A. This upper bound is used to select a fixed-point type with the required
number of bits of precision to avoid an overflow in the upper bound.

upperBoundR = sqrt(m)*max_abs_A

upperBoundR = 17.3205

Lower Bound for min(svd(A)) for Real A

A lower bound for min(svd(A)) is estimated by the fixed.realSingularValueLowerBound
function using a probability that the estimate s is not greater than the actual smallest singular value.
The default probability is 5 standard deviations below the mean. You can change this probability by
specifying it as the last input parameter to the fixed.realSingularValueLowerBound function.

estimatedSingularValueLowerBound = fixed.realSingularValueLowerBound(m,n,noiseStandardDeviation)

estimatedSingularValueLowerBound = 0.0371

Simulate and Compare to the Computed Bounds

The bounds are within an order of magnitude of the simulated results. This is sufficient because the
number of bits translates to a logarithmic scale relative to the range of values. Being within a factor
of 10 is between 3 and 4 bits. This is a good starting point for specifying a fixed-point type. If you run
the simulation for more samples, then it is more likely that the simulated results will be closer to the
bound. This example uses a limited number of simulations so it doesn't take too long to run. For real-
world system design, you should run additional simulations.

Define the number of samples, numSamples, over which to run the simulation.

numSamples = 1e4;

Run the simulation.

[actualMaxR,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs_B,numSamples,...
    noiseStandardDeviation,T);

You can see that the upper bound on R compared to the measured simulation results of the maximum
value of R over all runs is within an order of magnitude.

upperBoundR

upperBoundR = 17.3205

max(actualMaxR)

ans = 8.1682

Finally, see that the estimated lower bound of min(svd(A)) compared to the measured simulation
results of min(svd(A)) over all runs is also within an order of magnitude.

estimatedSingularValueLowerBound

estimatedSingularValueLowerBound = 0.0371
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actualSmallestSingularValue = min(singularValues,[],'all')

actualSmallestSingularValue = 0.0421

Plot the distribution of the singular values over all simulation runs. The distributions of the largest
singular values correspond to the signals that determine the rank of the matrix. The distributions of
the smallest singular values correspond to the noise. The derivation of the estimated bound of the
smallest singular value makes use of the random nature of the noise.

clf
fixed.example.plot.singularValueDistribution(m,n,rankA,...
    noiseStandardDeviation,singularValues,...
    estimatedSingularValueLowerBound,"real");

Zoom in to the smallest singular value to see that the estimated bound is close to it.

xlim([estimatedSingularValueLowerBound*0.9, max(singularValues(n,:))]);
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Estimate the largest value of the solution, X, and compare it to the largest value of X found during the
simulation runs. The estimation is within an order of magnitude of the actual value, which is sufficient
for estimating a fixed-point data type, because it is between 3 and 4 bits.

This example uses a limited number of simulation runs. With additional simulation runs, the actual
largest value of X will approach the estimated largest value of X.

estimated_largest_X = fixed.realQlessQRMatrixSolveUpperBoundX(m,n,max_abs_B,noiseStandardDeviation)

estimated_largest_X = 7.2565e+03

actual_largest_X = max(abs(X_values),[],'all')

actual_largest_X = 582.6761

Plot the distribution of X values and compare it to the estimated upper bound for X.

clf
fixed.example.plot.xValueDistribution(m,n,rankA,noiseStandardDeviation,...
    X_values,estimated_largest_X,"real normally distributed random");
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Supporting Functions

The runSimulations function creates a series of random matrices A and B of a given size and rank,
quantizes them according to the computed types, computes the QR decomposition of A, and solves
the equation A′AX = B. It returns the maximum values of R = Q′A, the singular values of A, and the
values of X so their distributions can be plotted and compared to the bounds.

function [actualMaxR,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs_B,...
        numSamples,noiseStandardDeviation,T)
    precisionBits = T.A.FractionLength;
    A_WordLength = T.A.WordLength;
    B_WordLength = T.B.WordLength;
    actualMaxR = zeros(1,numSamples);
    singularValues = zeros(n,numSamples);
    X_values = zeros(n,numSamples);
    for j = 1:numSamples
        A = max_abs_A*fixed.example.realRandomLowRankMatrix(m,n,rankA);
        % Adding random noise makes A non-singular.
        A = A + fixed.example.realNormalRandomArray(0,noiseStandardDeviation,m,n);
        A = quantizenumeric(A,1,A_WordLength,precisionBits);
        B = fixed.example.realUniformRandomArray(-max_abs_B,max_abs_B,n,p);
        B = quantizenumeric(B,1,B_WordLength,precisionBits);
        [~,R] = qr(A,0);
        X = R\(R'\B);
        actualMaxR(j) = max(abs(R(:)));
        singularValues(:,j) = svd(A);
        X_values(:,j) = X;
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    end
end
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Determine Fixed-Point Types for Real Q-less QR Matrix Solve
A'AX=B

This example shows how to use the fixed.realQlessQRMatrixSolveFixedpointTypes function
to analytically determine fixed-point types for the solution of the real least-squares matrix equation
A′AX = B, where A is an m-by-n matrix with m ≥ n, B is n-by-p, and X is n-by-p.

Fixed-point types for the solution of the matrix equation A′AX = B are well-bounded if the number of
rows, m, of A are much greater than the number of columns, n (i.e. m ≫ n), and A is full rank. If A is
not inherently full rank, then it can be made so by adding random noise. Random noise naturally
occurs in physical systems, such as thermal noise in radar or communications systems. If m = n, then
the dynamic range of the system can be unbounded, for example in the scalar equation x = a/b and
a, b ∈ [− 1, 1], then x can be arbitrarily large if b is close to 0.

Define System Parameters

Define the matrix attributes and system parameters for this example.

m is the number of rows in matrix A. In a problem such as beamforming or direction finding, m
corresponds to the number of samples that are integrated over.

m = 300;

n is the number of columns in matrix A and rows in matrices B and X. In a least-squares problem, m is
greater than n, and usually m is much larger than n. In a problem such as beamforming or direction
finding, n corresponds to the number of sensors.

n = 10;

p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system
with p right-hand sides.

p = 1;

In this example, set the rank of matrix A to be less than the number of columns. In a problem such as
beamforming or direction finding, rank(A) corresponds to the number of signals impinging on the
sensor array.

rankA = 3;

precisionBits defines the number of bits of precision required for the matrix solve. Set this value
according to system requirements.

precisionBits = 24;

In this example, real-valued matrices A and B are constructed such that the magnitude of their
elements is less than or equal to one. Your own system requirements will define what those values
are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can
use the upperbound function to determine the upper bounds of the fixed-point types of A and B.

max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = 1;

max_abs_B is an upper bound on the maximum magnitude element of B.
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max_abs_B = 1;

Thermal noise standard deviation is the square root of thermal noise power, which is a system
parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set
thermalNoiseStandardDeviation to the equivalent of −50dB noise power.

thermalNoiseStandardDeviation = sqrt(10^(-50/10))

thermalNoiseStandardDeviation = 0.0032

The quantization noise standard deviation is a function of the required number of bits of precision.
Use fixed.realQuantizationNoiseStandardDeviation to compute this. See that it is less than
thermalNoiseStandardDeviation.

quantizationNoiseStandardDeviation = fixed.realQuantizationNoiseStandardDeviation(precisionBits)

quantizationNoiseStandardDeviation = 1.7206e-08

Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer
signals of interest than number of columns of matrix A), and the measured system matrix A has
additive thermal noise that is larger than the quantization noise. The additive noise makes the
measured matrix A have full rank.

Set σnoise = σthermal noise.

noiseStandardDeviation = thermalNoiseStandardDeviation;

Use fixed.realQlessQRMatrixSolveFixedpointTypes to compute fixed-point types.

T = fixed.realQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
    precisionBits,noiseStandardDeviation)

T = struct with fields:
    A: [0x0 embedded.fi]
    B: [0x0 embedded.fi]
    X: [0x0 embedded.fi]

T.A is the type computed for transforming A to R = Q′A in-place so that it does not overflow.

T.A

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 31
        FractionLength: 24

T.B is the type computed for B so that it does not overflow.

T.B

ans = 
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[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 27
        FractionLength: 24

T.X is the type computed for the solution X = (A′A)\B so that there is a low probability that it
overflows.

T.X

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 40
        FractionLength: 24

Use the Specified Types to Solve the Matrix Equation A'AX=B

Create random matrices A and B such that rankA=rank(A). Add random measurement noise to A
which will make it become full rank.

rng('default');
[A,B] = fixed.example.realRandomQlessQRMatrices(m,n,p,rankA);
A = A + fixed.example.realNormalRandomArray(0,noiseStandardDeviation,m,n);

Cast the inputs to the types determined by fixed.realQlessQRMatrixSolveFixedpointTypes.
Quantizing to fixed-point is equivalent to adding random noise [4,5].

A = cast(A,'like',T.A);
B = cast(B,'like',T.B);

Accelerate the fixed.qlessQRMatrixSolve function by using fiaccel to generate a MATLAB
executable (MEX) function.

fiaccel fixed.qlessQRMatrixSolve -args {A,B,T.X} -o qlessQRMatrixSolve_mex

Specify output type T.X and compute fixed-point X = (A′A)\B using the QR method.

X = qlessQRMatrixSolve_mex(A,B,T.X);

Compute the relative error to verify the accuracy of the ouput.

relative_error = norm(double(A'*A*X - B))/norm(double(B))

relative_error = 0.0561

Suppress mlint warnings in this file.
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Algorithms to Determine Fixed-Point Types for Real Least-
Squares Matrix Solve AX=B

This example shows the algorithms that the fixed.realQRMatrixSolveFixedpointTypes
function uses to analytically determine fixed-point types for the solution of the real least-squares
matrix equation AX = B, where A is an m-by-n matrix with m ≥ n, B is m-by-p, and X is n-by-p.

Overview

You can solve the fixed-point least-squares matrix equation AX = B using QR decomposition. Using a
sequence of orthogonal transformations, QR decomposition transforms matrix A in-place to upper
triangular R, and transforms matrix B in-place to C = Q′B, where QR = A is the economy-size QR
decomposition. This reduces the equation to an upper-triangular system of equations RX = C. To
solve for X, compute X = R\C through back-substitution of R into C.

You can determine appropriate fixed-point types for the least-squares matrix equation AX = B by
selecting the fraction length based on the number of bits of precision defined by your requirements.
The fixed.realQRMatrixSolveFixedpointTypes function analytically computes the following
upper bounds on R, C = Q′B, and X to determine the number of integer bits required to avoid
overflow [1,2,3].

The upper bound for the magnitude of the elements of R is

max(|R(: ) | ) ≤ mmax(| A(: ) | ).

The upper bound for the magnitude of the elements of C = Q′B is

max(|C(: ) | ) ≤ mmax(|B(: ) | ).

The upper bound for the magnitude of the elements of X = A\B is

max(| X(: ) | ) ≤ mmax(|B(: ) | )
min(svd(A)) .

Since computing svd(A) is more computationally expensive than solving the system of equations, the
fixed.realQRMatrixSolveFixedpointTypes function estimates a lower bound of min(svd(A)).

Fixed-point types for the solution of the matrix equation AX = B are generally well-bounded if the
number of rows, m, of A are much greater than the number of columns, n (i.e. m ≫ n), and A is full
rank. If A is not inherently full rank, then it can be made so by adding random noise. Random noise
naturally occurs in physical systems, such as thermal noise in radar or communications systems. If
m = n, then the dynamic range of the system can be unbounded, for example in the scalar equation
x = a/b and a, b ∈ [− 1, 1], then x can be arbitrarily large if b is close to 0.

Proofs of the Bounds

Properties and Definitions of Vector and Matrix Norms

The proofs of the bounds use the following properties and definitions of matrix and vector norms,
where Q is an orthogonal matrix, and v is a vector of length m [6].
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| | Av | |2 ≤ | | A | |2 | |v | |2
| |Q | |2 = 1
||v | |∞ = max(|v(: ) | )

| |v | |∞ ≤ | |v | |2 ≤ m | |v | |∞

If A is an m-by-n matrix and QR = A is the economy-size QR decomposition of A, where Q is
orthogonal and m-by-n and R is upper-triangular and n-by-n, then the singular values of R are equal
to the singular values of A. If A is nonsingular, then

| |R−1 | |2 = | |(R′)−1 | |2 = 1
min(svd(R)) = 1

min(svd(A))

Upper Bound for R = Q'A

The upper bound for the magnitude of the elements of R is

max(|R(: ) | ) ≤ mmax(| A(: ) | ).

Proof of Upper Bound for R = Q'A

The jth column of R is equal to R(: , j) = Q′A(: , j), so

max(|R(: , j) | ) = | |R(: , j) | |∞
≤ | |R(: , j) | |2
= ||Q′A(: , j) | |2
≤ | |Q′ | |2 | | A(: , j) | |2
= || A(: , j) | |2
≤ m | | A(: , j) | |∞
= mmax(| A(: , j) | )
≤ mmax(| A(: ) | ) .

Since max(|R(: , j) | ) ≤ mmax(| A(: ) | ) for all 1 ≤ j, then

max(|R(: ) | ) ≤ mmax(| A(: ) | ) .

Upper Bound for C = Q'B

The upper bound for the magnitude of the elements of C = Q′B is

max(|C(: ) | ) ≤ mmax(|B(: ) | ).

Proof of Upper Bound for C = Q'B

The proof of the upper bound for C = Q′B is the same as the proof of the upper bound for R = Q′A by
substituting C for R and B for A.

Upper Bound for X = A\B

The upper bound for the magnitude of the elements of X = A\B is
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max(| X(: ) | ) ≤ mmax(|B(: ) | )
min(svd(A)) .

Proof of Upper Bound for X = A\B

If A is not full rank, then min(svd(A)) = 0, and if B is not equal to zero, then
mmax(|B(: ) | )/min(svd(A)) = ∞ and so the inequality is true.

If A is full rank, then x = R−1(Q′b). Let x = X(: , j) be the jth column of X, and b = B(: , j) be the jth
column of B. Then

max(|x(: ) | ) = | |x | |∞
≤ | |x | |2
= ||R−1 ⋅ (Q′b) | |2
≤ | |R−1 | |2 | |Q′ | |2 | |b | |2
= 1/min(svd(A)) ⋅ 1 ⋅ | |b | |2
= ||b | |2/min(svd(A))

≤ m | |b | |∞/min(svd(A))

= mmax(|b(: ) | )/min(svd(A)) .

Since max(|x(: ) | ) ≤ mmax(|b(: ) | )/min(svd(A)) for all rows and columns of B and X, then

max(| X(: ) | ) ≤ mmax(|B(: ) | )
min(svd(A)) .

Lower Bound for min(svd(A))

You can estimate a lower bound s of min(svd(A))for real-valued A using the following formula,

s = σN 2γ−1 ps Γ(m− n + 1)Γ(n/2)
2m− nΓ m + 1

2 Γ m− n + 1
2

, m− n + 1
2

where σN is the standard deviation of random noise added to the elements of A, 1− ps is the
probability that s ≤ min(svd(A)), Γ is the gamma function, and γ−1is the inverse incomplete gamma
function gammaincinv.

The proof is found in [1]. It is derived by integrating the formula in Lemma 3.3 from [3] and
rearranging terms.

Since s ≤ min(svd(A)) with probability 1− ps, then you can bound the magnitude of the elements of X
without computing svd(A),

max(| X(: ) | ) ≤ mmax(|B(: ) | )
min(svd(A)) ≤ mmax(|B(: ) | )

s  with probability 1− ps.

You can compute s using the fixed.realSingularValueLowerBound function which uses a
default probability of 5 standard deviations below the mean ps = (1 + erf(− 5/ 2))/2 ≈ 2 . 8665 ⋅ 10−7,
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so the probability that the estimated bound for the smallest singular value s is less than the actual
smallest singular value of A is 1− ps ≈ 0 . 9999997.

Example

This example runs a simulation with many random matrices and compares the analytical bounds with
the actual singular values of A and the actual largest elements of R = Q′A, C = Q′B, and X = A\B.

Define System Parameters

Define the matrix attributes and system parameters for this example.

m is the number of rows in matrices A and B. In a problem such as beamforming or direction finding,
m corresponds to the number of samples that are integrated over.

m = 300;

n is the number of columns in matrix A and rows in matrix X. In a least-squares problem, m is greater
than n, and usually m is much larger than n. In a problem such as beamforming or direction finding, n
corresponds to the number of sensors.

n = 10;

p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system
with p right-hand sides.

p = 1;

In this example, set the rank of matrix A to be less than the number of columns. In a problem such as
beamforming or direction finding, rank(A) corresponds to the number of signals impinging on the
sensor array.

rankA = 3;

precisionBits defines the number of bits of precision required for the matrix solve. Set this value
according to system requirements.

precisionBits = 24;

In this example, real-valued matrices A and B are constructed such that the magnitude of their
elements is less than or equal to one. Your own system requirements will define what those values
are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can
use the upperbound function to determine the upper bounds of the fixed-point types of A and B.

max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = 1;

max_abs_B is an upper bound on the maximum magnitude element of B.

max_abs_B = 1;

Thermal noise standard deviation is the square root of thermal noise power, which is a system
parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set
thermalNoiseStandardDeviation to the equivalent of −50dB noise power.

thermalNoiseStandardDeviation = sqrt(10^(-50/10))
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thermalNoiseStandardDeviation = 0.0032

The standard deviation of the noise from quantizing the elements of a real signal is 2−precisionBits/ 12
[4,5]. Use the fixed.realQuantizationNoiseStandardDeviation function to compute this. See
that it is less than thermalNoiseStandardDeviation.

quantizationNoiseStandardDeviation = fixed.realQuantizationNoiseStandardDeviation(precisionBits)

quantizationNoiseStandardDeviation = 1.7206e-08

Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer
signals of interest than number of columns of matrix A), and the measured system matrix A has
additive thermal noise that is larger than the quantization noise. The additive noise makes the
measured matrix A have full rank.

Set σnoise = σthermal noise.

noiseStandardDeviation = thermalNoiseStandardDeviation;

Use fixed.realQRMatrixSolveFixedpointTypes to compute fixed-point types.

T = fixed.realQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
    precisionBits,noiseStandardDeviation)

T = struct with fields:
    A: [0x0 embedded.fi]
    B: [0x0 embedded.fi]
    X: [0x0 embedded.fi]

T.A is the type computed for transforming A to R in-place so that it does not overflow.

T.A

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 31
        FractionLength: 24

T.B is the type computed for transforming B to Q′B in-place so that it does not overflow.

T.B

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 31
        FractionLength: 24

T.X is the type computed for the solution X = A\B so that there is a low probability that it overflows.
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T.X

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 36
        FractionLength: 24

Upper Bounds for R and C=Q'B

The upper bounds for R and C = Q′B are computed using the following formulas, where m is the
number of rows of matrices A and B.

max(|R(: ) | ) ≤ mmax(| A(: ) | )

max(|C(: ) | ) ≤ mmax(|B(: ) | )

These upper bounds are used to select a fixed-point type with the required number of bits of precision
to avoid overflows.

upperBoundR = sqrt(m)*max_abs_A

upperBoundR = 17.3205

upperBoundQB = sqrt(m)*max_abs_B

upperBoundQB = 17.3205

Lower Bound for min(svd(A)) for Real A

A lower bound for min(svd(A)) is estimated by the fixed.realSingularValueLowerBound
function using a probability that the estimate s is not greater than the actual smallest singular value.
The default probability is 5 standard deviations below the mean. You can change this probability by
specifying it as the last input parameter to the fixed.realSingularValueLowerBound function.

estimatedSingularValueLowerBound = fixed.realSingularValueLowerBound(m,n,noiseStandardDeviation)

estimatedSingularValueLowerBound = 0.0371

Simulate and Compare to the Computed Bounds

The bounds are within an order of magnitude of the simulated results. This is sufficient because the
number of bits translates to a logarithmic scale relative to the range of values. Being within a factor
of 10 is between 3 and 4 bits. This is a good starting point for specifying a fixed-point type. If you run
the simulation for more samples, then it is more likely that the simulated results will be closer to the
bound. This example uses a limited number of simulations so it doesn't take too long to run. For real-
world system design, you should run additional simulations.

Define the number of samples, numSamples, over which to run the simulation.

numSamples = 1e4;

Run the simulation.
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[actualMaxR,actualMaxQB,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs_B,...
    numSamples,noiseStandardDeviation,T);

You can see that the upper bound on R compared to the measured simulation results of the maximum
value of R over all runs is within an order of magnitude.

upperBoundR

upperBoundR = 17.3205

max(actualMaxR)

ans = 8.3029

You can see that the upper bound on C = Q′B compared to the measured simulation results of the
maximum value of C = Q′B over all runs is also within an order of magnitude.

upperBoundQB

upperBoundQB = 17.3205

max(actualMaxQB)

ans = 2.5707

Finally, see that the estimated lower bound of min(svd(A)) compared to the measured simulation
results of min(svd(A)) over all runs is also within an order of magnitude.

estimatedSingularValueLowerBound

estimatedSingularValueLowerBound = 0.0371

actualSmallestSingularValue = min(singularValues,[],'all')

actualSmallestSingularValue = 0.0420

Plot the distribution of the singular values over all simulation runs. The distributions of the largest
singular values correspond to the signals that determine the rank of the matrix. The distributions of
the smallest singular values correspond to the noise. The derivation of the estimated bound of the
smallest singular value makes use of the random nature of the noise.

clf
fixed.example.plot.singularValueDistribution(m,n,rankA,noiseStandardDeviation,...
    singularValues,estimatedSingularValueLowerBound,"real");
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Zoom in to smallest singular value to see that the estimated bound is close to it.

xlim([estimatedSingularValueLowerBound*0.9, max(singularValues(n,:))]);
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Estimate the largest value of the solution, X, and compare it to the largest value of X found during the
simulation runs. The estimation is within an order of magnitude of the actual value, which is sufficient
for estimating a fixed-point data type, because it is between 3 and 4 bits.

This example uses a limited number of simulation runs. With additional simulation runs, the actual
largest value of X will approach the estimated largest value of X.

estimated_largest_X = fixed.realMatrixSolveUpperBoundX(m,n,max_abs_B,noiseStandardDeviation)

estimated_largest_X = 466.5772

actual_largest_X = max(abs(X_values),[],'all')

actual_largest_X = 44.8056

Plot the distribution of X values and compare it to the estimated upper bound for X.

clf
fixed.example.plot.xValueDistribution(m,n,rankA,noiseStandardDeviation,...
    X_values,estimated_largest_X,"real normally distributed random");

48 Code Generation

48-186



Supporting Functions

The runSimulations function creates a series of random matrices A and B of a given size and rank,
quantizes them according to the computed types, computes the QR decomposition of A, and solves
the equation AX = B. It returns the maximum values of R = Q′A and C = Q′B, the singular values of
A, and the values of X so their distributions can be plotted and compared to the bounds.

function [actualMaxR,actualMaxQB,singularValues,X_values] = runSimulations(m,n,p,rankA,max_abs_A,max_abs_B,...
        numSamples,noiseStandardDeviation,T)
    precisionBits = T.A.FractionLength;
    A_WordLength = T.A.WordLength;
    B_WordLength = T.B.WordLength;
    actualMaxR = zeros(1,numSamples);
    actualMaxQB = zeros(1,numSamples);
    singularValues = zeros(n,numSamples);
    X_values = zeros(n,numSamples);
    for j = 1:numSamples
        A = max_abs_A*fixed.example.realRandomLowRankMatrix(m,n,rankA);
        % Adding normally distributed random noise makes A non-singular.
        A = A + fixed.example.realNormalRandomArray(0,noiseStandardDeviation,m,n);
        A = quantizenumeric(A,1,A_WordLength,precisionBits);
        B = fixed.example.realUniformRandomArray(-max_abs_B,max_abs_B,m,p);
        B = quantizenumeric(B,1,B_WordLength,precisionBits);
        [Q,R] = qr(A,0);
        C = Q'*B;
        X = R\C;
        actualMaxR(j) = max(abs(R(:)));
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        actualMaxQB(j) = max(abs(C(:)));
        singularValues(:,j) = svd(A);
        X_values(:,j) = X;
    end
end
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Determine Fixed-Point Types for Real Least-Squares Matrix
Solve AX=B

This example shows how to use the fixed.realQRMatrixSolveFixedpointTypes function to
analytically determine fixed-point types for the solution of the real least-squares matrix equation
AX = B, where A is an m-by-n matrix with m ≥ n, B is m-by-p, and X is n-by-p.

Fixed-point types for the solution of the matrix equation AX = B are well-bounded if the number of
rows, m, of A are much greater than the number of columns, n (i.e. m ≫ n), and A is full rank. If A is
not inherently full rank, then it can be made so by adding random noise. Random noise naturally
occurs in physical systems, such as thermal noise in radar or communications systems. If m = n, then
the dynamic range of the system can be unbounded, for example in the scalar equation x = a/b and
a, b ∈ [− 1, 1], then x can be arbitrarily large if b is close to 0.

Define System Parameters

Define the matrix attributes and system parameters for this example.

m is the number of rows in matrices A and B. In a problem such as beamforming or direction finding,
m corresponds to the number of samples that are integrated over.

m = 300;

n is the number of columns in matrix A and rows in matrix X. In a least-squares problem, m is greater
than n, and usually m is much larger than n. In a problem such as beamforming or direction finding, n
corresponds to the number of sensors.

n = 10;

p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system
with p right-hand sides.

p = 1;

In this example, set the rank of matrix A to be less than the number of columns. In a problem such as
beamforming or direction finding, rank(A) corresponds to the number of signals impinging on the
sensor array.

rankA = 3;

precisionBits defines the number of bits of precision required for the matrix solve. Set this value
according to system requirements.

precisionBits = 24;

In this example, real-valued matrices A and B are constructed such that the magnitude of their
elements is less than or equal to one. Your own system requirements will define what those values
are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can
use the upperbound function to determine the upper bounds of the fixed-point types of A and B.

max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = 1;

max_abs_B is an upper bound on the maximum magnitude element of B.
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max_abs_B = 1;

Thermal noise standard deviation is the square root of thermal noise power, which is a system
parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set
thermalNoiseStandardDeviation to the equivalent of −50dB noise power.

thermalNoiseStandardDeviation = sqrt(10^(-50/10))

thermalNoiseStandardDeviation = 0.0032

The quantization noise standard deviation is a function of the required number of bits of precision.
Use fixed.realQuantizationNoiseStandardDeviation to compute this. See that it is less than
thermalNoiseStandardDeviation.

quantizationNoiseStandardDeviation = fixed.realQuantizationNoiseStandardDeviation(precisionBits)

quantizationNoiseStandardDeviation = 1.7206e-08

Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer
signals of interest than number of columns of matrix A), and the measured system matrix A has
additive thermal noise that is larger than the quantization noise. The additive noise makes the
measured matrix A have full rank.

Set σnoise = σthermal noise.

noiseStandardDeviation = thermalNoiseStandardDeviation;

Use fixed.realQRMatrixSolveFixedpointTypes to compute fixed-point types.

T = fixed.realQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
    precisionBits,noiseStandardDeviation)

T = struct with fields:
    A: [0x0 embedded.fi]
    B: [0x0 embedded.fi]
    X: [0x0 embedded.fi]

T.A is the type computed for transforming A to R = Q′A in-place so that it does not overflow.

T.A

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 31
        FractionLength: 24

T.B is the type computed for transforming B to C = Q′B in-place so that it does not overflow.

T.B

ans = 
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[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 31
        FractionLength: 24

T.X is the type computed for the solution X = A\B so that there is a low probability that it overflows.

T.X

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 36
        FractionLength: 24

Use the Specified Types to Solve the Matrix Equation AX=B

Create random matrices A and B such that B is in the range of A, and rankA=rank(A). Add random
measurement noise to A which will make it become full rank, but it will also affect the solution so that
B is only close to the range of A.

rng('default');
[A,B] = fixed.example.realRandomLeastSquaresMatrices(m,n,p,rankA);
A = A + fixed.example.realNormalRandomArray(0,noiseStandardDeviation,m,n);

Cast the inputs to the types determined by fixed.realQRMatrixSolveFixedpointTypes.
Quantizing to fixed-point is equivalent to adding random noise [4,5].

A = cast(A,'like',T.A);
B = cast(B,'like',T.B);

Accelerate the fixed.qrMatrixSolve function by using fiaccel to generate a MATLAB
executable (MEX) function.

fiaccel fixed.qrMatrixSolve -args {A,B,T.X} -o qrRealMatrixSolve_mex

Specify output type T.X and compute fixed-point X = A\B using the QR method.

X = qrRealMatrixSolve_mex(A,B,T.X);

Compute the relative error to verify the accuracy of the output.

relative_error = norm(double(A*X - B))/norm(double(B))

relative_error = 0.0063

Suppress mlint warnings in this file.
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%#ok<*NASGU>
%#ok<*ASGLU>

See Also
Functions
fixed.realQRMatrixSolveFixedpointTypes | fixed.qrMatrixSolve

Blocks
Real Burst Matrix Solve Using QR Decomposition | Real Partial-Systolic Matrix Solve Using QR
Decomposition

Related Examples
• “Algorithms to Determine Fixed-Point Types for Real Least-Squares Matrix Solve AX=B” on page

48-178
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Compute Forgetting Factor Required for Streaming Input Data
This example shows how to use the fixed.forgettingFactor and
fixed.forgettingFactorInverse functions.

The growth in the QR decomposition can be seen by looking at the magnitude of the first element
R(1, 1)of the upper-triangular factor R, which is equal to the Euclidean norm of the first column of
matrix A,

|R(1, 1) | = | | A(: , 1) | |2 .

To see this, create matrix A as a column of ones of length n and compute R of the economy-size QR
decomposition.

n = 1e4;
A = ones(n,1);

Then |R(1, 1) | = | | A(: , 1) | |2 = ∑
i = 1

n
12 = n.

R = fixed.qlessQR(A)

R = 100.0000

norm(A)

ans = 100

sqrt(n)

ans = 100

The diagonal elements of the upper-triangular factor R of the QR decomposition may be positive,
negative, or zero, but fixed.qlessQR and fixed.qrAB always return the diagonal elements of R as
non-negative.

In a real-time application, such as when data is streaming continuously from a radar array, you can
update the QR decomposition with an exponential forgetting factor α where 0 < α < 1. Use the
fixed.forgettingFactor function to compute a forgetting factor α that acts as if the matrix were
being integrated over m rows to maintain a gain of about m. The relationship between α and m is
α = e−1/(2m).

m = 16;
alpha = fixed.forgettingFactor(m);
R_alpha = fixed.qlessQR(A,alpha)

R_alpha = 3.9377

sqrt(m)

ans = 4

If you are working with a system and have been given a forgetting factor α, and want to know the
effective number of rows m that you are integrating over, then you can use the
fixed.forgettingFactorInverse function. The relationship between m and α is m = −1

2log(α) .
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fixed.forgettingFactorInverse(alpha)

ans = 16

See Also
Functions
fixed.forgettingFactor | fixed.forgettingFactorInverse | fixed.qlessQR |
fixed.qlessQRMatrixSolve | fixed.qlessQRUpdate

Blocks
Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor | Complex Partial-Systolic
Matrix Solve Using Q-less QR Decomposition with Forgetting Factor
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Estimate Standard Deviation of Quantization Noise of
Complex-Valued Signal

Quantizing a complex signal to p bits of precision can be modeled as a linear system that adds

normally distributed noise with a standard deviation of ϛnoise = 2−p

6  [1,2].

Compute the theoretical quantization noise standard deviation with p bits of precision using the
fixed.complexQuantizationNoiseStandardDeviation function.

p = 14;
theoreticalQuantizationNoiseStandardDeviation = fixed.complexQuantizationNoiseStandardDeviation(p);

The returned value is ϛnoise = 2−p

6 .

Create a complex signal with n samples.

rng('default');
n = 1e6;
x = complex(rand(1,n),rand(1,n));

Quantize the signal with p bits of precision.

wordLength = 16;
x_quantized = quantizenumeric(x,1,wordLength,p);

Compute the quantization noise by taking the difference between the quantized signal and the
original signal.

quantizationNoise = x_quantized - x;

Compute the measured quantization noise standard deviation.

measuredQuantizationNoiseStandardDeviation = std(quantizationNoise)

measuredQuantizationNoiseStandardDeviation = 2.4902e-05

Compare the actual quantization noise standard deviation to the theoretical and see that they are
close for large values of n.

theoreticalQuantizationNoiseStandardDeviation

theoreticalQuantizationNoiseStandardDeviation = 2.4917e-05

References

1 Bernard Widrow. “A Study of Rough Amplitude Quantization by Means of Nyquist Sampling
Theory”. In: IRE Transactions on Circuit Theory 3.4 (Dec. 1956), pp. 266–276.
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2 Bernard Widrow and István Kollár. Quantization Noise – Roundoff Error in Digital Computation,
Signal Processing, Control, and Communications. Cambridge, UK: Cambridge University Press,
2008.

See Also
fixed.complexQuantizationNoiseStandardDeviation
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Estimate Standard Deviation of Quantization Noise of Real-
Valued Signal

Quantizing a real signal to p bits of precision can be modeled as a linear system that adds normally

distributed noise with a standard deviation of ϛnoise = 2−p

12 [1,2].

Compute the theoretical quantization noise standard deviation with p bits of precision using the
fixed.realQuantizationNoiseStandardDeviation function.

p = 14;
theoreticalQuantizationNoiseStandardDeviation = fixed.realQuantizationNoiseStandardDeviation(p);

The returned value is ϛnoise = 2−p

12.

Create a real signal with n samples.

rng('default');
n = 1e6;
x = rand(1,n);

Quantize the signal with p bits of precision.

wordLength = 16;
x_quantized = quantizenumeric(x,1,wordLength,p);

Compute the quantization noise by taking the difference between the quantized signal and the
original signal.

quantizationNoise = x_quantized - x;

Compute the measured quantization noise standard deviation.

measuredQuantizationNoiseStandardDeviation = std(quantizationNoise)

measuredQuantizationNoiseStandardDeviation = 1.7607e-05

Compare the actual quantization noise standard deviation to the theoretical and see that they are
close for large values of n.

theoreticalQuantizationNoiseStandardDeviation

theoreticalQuantizationNoiseStandardDeviation = 1.7619e-05

References

1 Bernard Widrow. “A Study of Rough Amplitude Quantization by Means of Nyquist Sampling
Theory”. In: IRE Transactions on Circuit Theory 3.4 (Dec. 1956), pp. 266–276.
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2 Bernard Widrow and István Kollár. Quantization Noise – Roundoff Error in Digital Computation,
Signal Processing, Control, and Communications. Cambridge, UK: Cambridge University Press,
2008.

See Also
fixed.realQuantizationNoiseStandardDeviation
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Implement Hardware-Efficient Real Partial-Systolic Q-less QR
with Forgetting Factor

This example shows how to use the hardware-efficient Real Partial-Systolic Q-less QR Decomposition
with Forgetting Factor block.

Q-less QR Decomposition with Forgetting Factor

The Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor block implements the
following recursion to compute the upper-triangular factor R of continuously streaming n-by-1 row
vectors A(k,:) using forgetting factor . It's as if matrix A is infinitely tall. The forgetting factor in the
range  keeps it from integrating without bound.

Define System Parameters

n is the length of the row vectors A(k,:) and the number of rows and columns in R.

n = 5;

m is the effective numbers of rows of A to integrate over.

m = 100;

Use the fixed.forgettingFactor function to compute the forgetting factor as a function of the
number of rows that you are integrating over.

forgettingFactor = fixed.forgettingFactor(m)

forgettingFactor =
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    0.9950

precisionBits defines the number of bits of precision required for the QR Decomposition. Set this
value according to system requirements.

precisionBits = 24;

In this example, real-valued matrix A is constructed such that the magnitude of its elements are less
than or equal to one. Your own system requirements will define what those values are. If you don't
know what they are, and A is a fixed-point input to the system, then you can use the upperbound
function to determine the upper bounds of the fixed-point types of A.

max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = 1;

Select Fixed-Point Types

Use the fixed.qlessqrFixedpointTypes function to compute fixed-point types.

T = fixed.qlessqrFixedpointTypes(m,max_abs_A,precisionBits)

T = 

  struct with fields:

    A: [0x0 embedded.fi]

T.A is the fixed-point type computed for transforming A to R in-place so that it does not overflow.

T.A

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 31
        FractionLength: 24

Define Simulation Parameters

Create random matrix A to contain a specified number of inputs.

numInputs is the number of input rows A(k,:) for this example.

numInputs = 500;
rng('default')
A = fixed.example.realUniformRandomArray(-1,1,numInputs,n);

Cast the inputs to the types determined by fixed.qlessqrFixedpointTypes.

A = cast(A,'like',T.A);
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Cast the forgetting factor to a fixed-point type with the same word length as A and best-precision
scaling.

forgettingFactor = fi(forgettingFactor,1,T.A.WordLength);

Select a stop time for the simulation that is long enough to process all the inputs from A.

stopTime = 2*numInputs*T.A.WordLength;

Open the Model

model = 'RealPartialSystolicQlessQRForgettingFactorModel';
open_system(model);

Set Variables in the Model Workspace

Use the helper function setModelWorkspace to add the variables defined above to the model
workspace.

fixed.example.setModelWorkspace(model,'A',A,'n',n,...
    'forgettingFactor',forgettingFactor,...
    'regularizationParameter',0,...
    'stopTime',stopTime);

Simulate the Model

out = sim(model);

Verify the Accuracy of the Output

Define matrix  as follows
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Then using the formula for the computation of the  th output , and the fact that
, you can show that

So to verify the output, the difference between  and  should be small.

Choose the last output of the simulation.

R = double(out.R(:,:,end))

R =

    5.2822    0.0429   -0.1900    0.4328   -0.0822
         0    5.5459    0.0530    0.0010   -0.6132
         0         0    5.4749    0.0189   -0.1018
         0         0         0    5.6960   -0.1255
         0         0         0         0    5.5661

Verify that R is upper triangular.

isequal(R,triu(R))

ans =

  logical

   1

Verify that the diagonal is greater than or equal to zero.

diag(R)

ans =

    5.2822
    5.5459
    5.4749
    5.6960
    5.5661

Synchronize the last output R with the input by finding the number of inputs that produced it.

A = double(A);
alpha = double(forgettingFactor);
relative_errors = nan(1,n);
for k = 1:numInputs
    A_k = alpha.^(k:-1:1)' .* A(1:k,:);
    relative_errors(k) = norm(A_k'*A_k - R'*R)/norm(A_k'*A_k);
end

k is the number of inputs A(k,:) that produced the last R.
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k = find(relative_errors==min(relative_errors),1,'last')

k =

   497

Verify that

with a small relative error.

A_k =  alpha.^(k:-1:1)' .* A(1:k,:);
relative_error = norm(A_k'*A_k - R'*R)/norm(A_k'*A_k)

relative_error =

   8.0991e-06

Suppress mlint warnings in this file.

%#ok<*NOPTS>

See Also
Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor
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Implement Hardware-Efficient Complex Partial-Systolic Q-less
QR with Forgetting Factor

This example shows how to use the hardware-efficient Complex Partial-Systolic Q-less QR
Decomposition with Forgetting Factor block.

Q-less QR Decomposition with Forgetting Factor

The Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor block implements the
following recursion to compute the upper-triangular factor R of continuously streaming n-by-1 row
vectors A(k,:) using forgetting factor . It's as if matrix A is infinitely tall. The forgetting factor in the
range  keeps it from integrating without bound.

Define System Parameters

n is the length of the row vectors A(k,:) and the number of rows and columns in R.

n = 5;

m is the effective numbers of rows of A to integrate over.

m = 100;

Use the fixed.forgettingFactor function to compute the forgetting factor as a function of the
number of rows that you are integrating over.

forgettingFactor = fixed.forgettingFactor(m)

forgettingFactor =
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    0.9950

precisionBits defines the number of bits of precision required for the QR Decomposition. Set this
value according to system requirements.

precisionBits = 24;

In this example, complex-valued matrix A is constructed such that the magnitude of the real and
imaginary parts of its elements is less than or equal to one, so the maximum possible absolute value
of any element is . Your own system requirements will define what those values are. If
you don't know what they are, and A is a fixed-point input to the system, then you can use the
upperbound function to determine the upper bounds of the fixed-point types of A.

max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = sqrt(2);

Select Fixed-Point Types

Use the fixed.qlessqrFixedpointTypes function to compute fixed-point types.

T = fixed.qlessqrFixedpointTypes(m,max_abs_A,precisionBits)

T = 

  struct with fields:

    A: [0x0 embedded.fi]

T.A is the fixed-point type computed for transforming A to R in-place so that it does not overflow.

T.A

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 31
        FractionLength: 24

Define Simulation Parameters

Create random matrix A to contain a specified number of inputs.

numInputs is the number of input rows A(k,:) for this example.

numInputs = 500;
rng('default')
A = fixed.example.complexUniformRandomArray(-1,1,numInputs,n);

Cast the inputs to the types determined by fixed.qlessqrFixedpointTypes.

A = cast(A,'like',T.A);
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Cast the forgetting factor to a fixed-point type with the same word length as A and best-precision
scaling.

forgettingFactor = fi(forgettingFactor,1,T.A.WordLength);

Select a stop time for the simulation that is long enough to process all the inputs from A.

stopTime = 4*numInputs*T.A.WordLength;

Open the Model

model = 'ComplexPartialSystolicQlessQRForgettingFactorModel';
open_system(model);

Set Variables in the Model Workspace

Use the helper function setModelWorkspace to add the variables defined above to the model
workspace.

fixed.example.setModelWorkspace(model,'A',A,'n',n,...
    'forgettingFactor',forgettingFactor,...
    'regularizationParameter',0,...
    'stopTime',stopTime);

Simulate the Model

out = sim(model);

Verify the Accuracy of the Output

Define matrix  as follows
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Then using the formula for the computation of the  th output , and the fact that
, you can show that

So to verify the output, the difference between  and  should be small.

Choose the last output of the simulation.

R = double(out.R(:,:,end))

R =

  Columns 1 through 4

   7.8315 + 0.0000i   0.2537 + 0.1037i  -0.1812 + 0.1835i   0.7054 + 0.2411i
   0.0000 + 0.0000i   7.7917 + 0.0000i  -0.2939 - 0.6734i  -0.2813 - 0.2824i
   0.0000 + 0.0000i   0.0000 + 0.0000i   8.2110 + 0.0000i  -0.2445 - 0.0531i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   8.0730 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i

  Column 5

  -0.2351 - 0.1305i
  -0.4660 - 0.6805i
  -0.2956 + 0.5699i
   0.2053 - 0.0133i
   8.0363 + 0.0000i

Verify that R is upper triangular.

isequal(R,triu(R))

ans =

  logical

   1

Verify that the diagonal is greater than or equal to zero.

diag(R)

ans =

    7.8315
    7.7917
    8.2110
    8.0730
    8.0363

Synchronize the last output R with the input by finding the number of inputs that produced it.
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A = double(A);
alpha = double(forgettingFactor);
relative_errors = nan(1,n);
for k = 1:numInputs
    A_k = alpha.^(k:-1:1)' .* A(1:k,:);
    relative_errors(k) = norm(A_k'*A_k - R'*R)/norm(A_k'*A_k);
end

k is the number of inputs A(k,:) that produced the last R.

k = find(relative_errors==min(relative_errors),1,'last')

k =

   497

Verify that

with a small relative error.

A_k =  alpha.^(k:-1:1)' .* A(1:k,:);
relative_error = norm(A_k'*A_k - R'*R)/norm(A_k'*A_k)

relative_error =

   6.8769e-06

Suppress mlint warnings in this file.

%#ok<*NOPTS>

See Also
Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor
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Implement Hardware-Efficient Real Partial-Systolic Matrix
Solve Using Q-less QR Decomposition with Forgetting Factor

This example shows how to use the hardware-efficient Real Partial-Systolic Matrix Solve Using Q-less
QR Decomposition with Forgetting Factor block.

Q-less QR Decomposition with Forgetting Factor

The Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor block
implements the following recursion to compute the upper-triangular factor R of continuously
streaming n-by-1 row vectors A(k,:) using forgetting factor . It's as if matrix A is infinitely tall. The
forgetting factor in the range  keeps it from integrating without bound.

Forward and Backward Substitution

When an upper triangular factor is ready, then forward and backward substitution are computed with
the current input B to produce output X.

Define System Parameters

n is the length of the row vectors A(k,:), the number of rows in B, and the number of rows and
columns in R.

n = 5;

p is the number of columns in B

p = 1;

m is the effective numbers of rows of A to integrate over.
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m = 100;

Use the fixed.forgettingFactor function to compute the forgetting factor as a function of the
number of rows that you are integrating over.

forgettingFactor = fixed.forgettingFactor(m)

forgettingFactor =

    0.9950

precisionBits defines the number of bits of precision required for the QR Decomposition. Set this
value according to system requirements.

precisionBits = 24;

In this example, real-valued matrices A and B are constructed such that the magnitude of their
elements are less than or equal to one. Your own system requirements will define what those values
are. If you don't know what they are, and A and B are fixed-point input to the system, then you can
use the upperbound function to determine the upper bounds of the fixed-point types of A and B.

max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = 1;

max_abs_B is an upper bound on the maximum magnitude element of B.

max_abs_B = 1;

Select Fixed-Point Types

Use the fixed.realQlessQRMatrixSolveFixedpointTypes function to compute fixed-point
types.

T = fixed.realQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,precisionBits);

T.A is the fixed-point type computed for transforming A to R in-place so that it does not overflow.

T.A

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 31
        FractionLength: 24

T.B is the type computed for B so that it does not overflow.

T.B

ans = 
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[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 27
        FractionLength: 24

T.X is the type computed for the output X so that there is a low probability of overflow.

T.X

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 76
        FractionLength: 24

Define Simulation Parameters

Create random matrix A to contain a specified number of inputs, and n-by-p random matrix B.

numInputs is the number of input rows A(k,:) for this example.

numInputs = 500;
rng('default')
[A,B] = fixed.example.realRandomQlessQRMatrices(numInputs,n,p);

Cast the inputs to the types determined by fixed.realQlessQRMatrixSolveFixedpointTypes

A = cast(A,'like',T.A);
B = cast(B,'like',T.B);

Use the fixed.extractNumericType function to extract a numerictype object to use as an input
parameter to the block.

OutputType = fixed.extractNumericType(T.X)

OutputType =

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 76
        FractionLength: 24

Cast the forgetting factor to a fixed-point type with the same word length as A and best-precision
scaling.

forgettingFactor = fi(forgettingFactor,1,T.A.WordLength);

Select a stop time for the simulation that is long enough to process all the inputs from A.

stopTime = (2*numInputs + n)*T.A.WordLength;
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Open the Model

model = 'RealPartialSystolicMatrixSolveQlessQRForgettingFactorModel';
open_system(model);

Set Variables in the Model Workspace

Use the helper function setModelWorkspace to add the variables defined above to the model
workspace.

fixed.example.setModelWorkspace(model,'A',A,'B',B,'n',n,'p',p,...
    'forgettingFactor',forgettingFactor,'OutputType',OutputType,...
    'regularizationParameter',0,...
    'stopTime',stopTime);

Simulate the Model

out = sim(model);

Verify the Accuracy of the Output

Define matrix  as follows

Then using the formula for the computation of the  th output , and the fact that
, you can show that

So to verify the output, the difference between  and  should be small.

Choose the last output of the simulation.

X = double(out.X(:,:,end));
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Synchronize the last output X with the input by finding the number of inputs that produced it.

A = double(A);
B = double(B);
alpha = double(forgettingFactor);
relative_errors = nan(1,numInputs);
for k = 1:numInputs
    A_k = alpha.^(k:-1:1)' .* A(1:k,:);
    relative_errors(k) = norm(A_k'*A_k*X - B)/norm(B);
end

k is the number of inputs A(k,:) that produced the last X.

k = find(relative_errors==min(relative_errors))

k =

   485

Verify that

with a small relative error.

A_k =  alpha.^(k:-1:1)' .* A(1:k,:);
relative_error = norm(A_k'*A_k*X - B)/norm(B)

relative_error =

   8.4151e-04

Suppress mlint warnings in this file.

%#ok<*NOPTS>

See Also
Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor
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Implement Hardware-Efficient Complex Partial-Systolic Matrix
Solve Using Q-less QR Decomposition with Forgetting Factor

This example shows how to use the hardware-efficient Complex Partial-Systolic Matrix Solve Using Q-
less QR Decomposition with Forgetting Factor block.

Q-less QR Decomposition with Forgetting Factor

The Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor
block implements the following recursion to compute the upper-triangular factor R of continuously
streaming n-by-1 row vectors A(k,:) using forgetting factor . It's as if matrix A is infinitely tall. The
forgetting factor in the range  keeps it from integrating without bound.

Forward and Backward Substitution

When an upper triangular factor is ready, then forward and backward substitution are computed with
the current input B to produce output X.

Define System Parameters

n is the length of the row vectors A(k,:), the number of rows in B, and the number of rows and
columns in R.

n = 5;

p is the number of columns in B

p = 1;

m is the effective numbers of rows of A to integrate over.
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m = 100;

Use the fixed.forgettingFactor function to compute the forgetting factor as a function of the
number of rows that you are integrating over.

forgettingFactor = fixed.forgettingFactor(m)

forgettingFactor =

    0.9950

precisionBits defines the number of bits of precision required for the QR Decomposition. Set this
value according to system requirements.

precisionBits = 24;

In this example, complex-valued matrices A and B are constructed such that the magnitude of their
real and imaginary parts of their elements is less than or equal to one, so the maximum possible
absolute value of any element is . Your own system requirements will define what those
values are. If you don't know what they are, and A and B are fixed-point input to the system, then you
can use the upperbound function to determine the upper bounds of the fixed-point types of A and B.

max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = sqrt(2);

max_abs_B is an upper bound on the maximum magnitude element of B.

max_abs_B = sqrt(2);

Select Fixed-Point Types

Use the fixed.complexQlessQRMatrixSolveFixedpointTypes function to compute fixed-point
types.

T = fixed.complexQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,precisionBits);

T.A is the fixed-point type computed for transforming A to R in-place so that it does not overflow.

T.A

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 31
        FractionLength: 24

T.B is the type computed for B so that it does not overflow.

T.B

ans = 
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[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 27
        FractionLength: 24

T.X is the type computed for the output X so that there is a low probability of overflow.

T.X

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 75
        FractionLength: 24

Define Simulation Parameters

Create random matrix A to contain a specified number of inputs, and n-by-p random matrix B.

numInputs is the number of input rows A(k,:) for this example.

numInputs = 500;
rng('default')
[A,B] = fixed.example.complexRandomQlessQRMatrices(numInputs,n,p);

Cast the inputs to the types determined by
fixed.complexQlessQRMatrixSolveFixedpointTypes.

A = cast(A,'like',T.A);
B = cast(B,'like',T.B);

Use the fixed.extractNumericType function to extract a numerictype object to use as an input
parameter to the block.

OutputType = fixed.extractNumericType(T.X)

OutputType =

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 75
        FractionLength: 24

Cast the forgetting factor to a fixed-point type with the same word length as A and best-precision
scaling.

forgettingFactor = fi(forgettingFactor,1,T.A.WordLength);

Select a stop time for the simulation that is long enough to process all the inputs from A.
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stopTime = 2*(2*numInputs + n)*T.A.WordLength;

Open the Model

model = 'ComplexPartialSystolicSolveQlessQRForgettingFactorModel';
open_system(model);

Set Variables in the Model Workspace

Use the helper function setModelWorkspace to add the variables defined above to the model
workspace.

fixed.example.setModelWorkspace(model,'A',A,'B',B,'n',n,'p',p,...
    'forgettingFactor',forgettingFactor,'OutputType',OutputType,...
    'regularizationParameter',0,...
    'stopTime',stopTime);

Simulate the Model

out = sim(model);

Verify the Accuracy of the Output

Define matrix  as follows

Then using the formula for the computation of the  th output , and the fact that
, you can show that

So to verify the output, the difference between  and  should be small.
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Choose the last output of the simulation.

X = double(out.X(:,:,end));

Synchronize the last output X with the input by finding the number of inputs that produced it.

A = double(A);
B = double(B);
alpha = double(forgettingFactor);
relative_errors = nan(1,numInputs);
for k = 1:numInputs
    A_k = alpha.^(k:-1:1)' .* A(1:k,:);
    relative_errors(k) = norm(A_k'*A_k*X - B)/norm(B);
end

k is the number of inputs A(k,:) that produced the last X.

k = find(relative_errors==min(relative_errors))

k =

   493

Verify that

with a small relative error.

A_k =  alpha.^(k:-1:1)' .* A(1:k,:);
relative_error = norm(A_k'*A_k*X - B)/norm(B)

relative_error =

   4.1169e-05

Suppress mlint warnings in this file.

%#ok<*NOPTS>

See Also
Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor
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Implement Hardware-Efficient Complex Burst Matrix Solve
Using QR Decomposition with Tikhonov Regularization

This example shows how to use the Complex Burst Matrix Solve Using QR Decomposition block to
solve the regularized least-squares matrix equation

where A is an m-by-n matrix with m >= n, B is m-by-p, X is n-by-p,  eye(n),  zeros(n,p), and
 is a regularization parameter.

The least-squares solution is

but is computed without squares or inverses.

Define Matrix Dimensions

Specify the number of rows in matrices A and B, the number of columns in matrix A, and the number
of columns in matrix B.

m = 100; % Number of rows in matrices A and B
n = 10;  % Number of columns in matrix A
p = 1;   % Number of columns in matrix B

Define Tikhonov Regularization Parameter

Small, positive values of the regularization parameter can improve the conditioning of the problem
and reduce the variance of the estimates. While biased, the reduced variance of the estimate often
results in a smaller mean squared error when compared to least-squares estimates.

regularizationParameter = 0.01;

Generate Random Least-Squares Matrices

For this example, use the helper function complexRandomLeastSquaresMatrices to generate
random matrices A and B for the least-squares problem AX=B. The matrices are generated such that
the real and imaginary parts of the elements of A and B are between -1 and +1, and A has rank r.

rng('default')
r = 3;  % Rank of A
[A,B] = fixed.example.complexRandomLeastSquaresMatrices(m,n,p,r);

Select Fixed-Point Data Types

Use the helper function complexQRMatrixSolveFixedpointTypes to select fixed-point data types
for input matrices A and B, and output X such that there is a low probability of overflow during the
computation.

The real and imaginary parts of the elements of A and B are between -1 and 1, so the maximum
possible absolute value of any element is sqrt(2).
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max_abs_A = sqrt(2);  % Upper bound on max(abs(A(:))
max_abs_B = sqrt(2);  % Upper bound on max(abs(B(:))
precisionBits = 32;   % Number of bits of precision
T = fixed.complexQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
    precisionBits,[],[],regularizationParameter);
A = cast(A,'like',T.A);
B = cast(B,'like',T.B);
OutputType = fixed.extractNumericType(T.X);

Open the Model
model = 'ComplexBurstQRMatrixSolveModel';
open_system(model);

The Data Handler subsystem in this model takes complex matrices A and B as inputs. The ready port
triggers the Data Handler. After sending a true validIn signal, there may be some delay before
ready is set to false. When the Data Handler detects the leading edge of the ready signal, the block
sets validIn to true and sends the next row of A and B. This protocol allows data to be sent
whenever a leading edge of the ready signal is detected, ensuring that all data is processed.

Set Variables in the Model Workspace

Use the helper function setModelWorkspace to add the variables defined above to the model
workspace. These variables correspond to the block parameters for the Complex Burst Matrix Solve
Using QR Decomposition block.

numSamples = 1; % Number of sample matrices
fixed.example.setModelWorkspace(model,'A',A,'B',B,'m',m,'n',n,'p',p,...
    'regularizationParameter',regularizationParameter,...
    'numSamples',numSamples,'OutputType',OutputType);

Simulate the Model
out = sim(model);

Construct the Solution from the Output Data

The Complex Burst Matrix Solve Using QR Decomposition block outputs data one row at a time.
When a result row is output, the block sets validOut to true. The rows of X are output in the order
they are computed, last row first, so you must reconstruct the data to interpret the results. To
reconstruct the matrix X from the output data, use the helper function
matrixSolveModelOutputToArray.

X = fixed.example.matrixSolveModelOutputToArray(out.X,n,p,numSamples);
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Verify the Accuracy of the Output

Verify that the relative error between the fixed-point output and builtin MATLAB in double-precision
floating-point is small.

A_lambda = double([regularizationParameter*eye(n);A]);
B_0 = [zeros(n,p);double(B)];
X_double = A_lambda\B_0;
relativeError = norm(X_double - double(X))/norm(X_double)

relativeError =

   2.7722e-05

Suppress mlint warnings in this file.

%#ok<*NOPTS>
%#ok<*NASGU>
%#ok<*ASGLU>

See Also
Complex Burst Matrix Solve Using QR Decomposition
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Implement Hardware-Efficient Complex Burst Matrix Solve
Using Q-less QR Decomposition with Tikhonov Regularization

This example shows how to use the Complex Burst Matrix Solve Using QR Decomposition block to
solve the regularized least-squares matrix equation

where A is an m-by-n matrix with m  n, B is n-by-p, X is n-by-p, , and  is a regularization
parameter.

Define System Parameters

Define the matrix attributes and system parameters for this example.

m is the number of rows in matrix A. In a problem such as beamforming or direction finding, m
corresponds to the number of samples that are integrated over.

m = 100;

n is the number of columns in matrix A and rows in matrices B and X. In a least-squares problem, m is
greater than n, and usually m is much larger than n. In a problem such as beamforming or direction
finding, n corresponds to the number of sensors.

n = 10;

p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system
with p right-hand sides.

p = 1;

In this example, set the rank of matrix A to be less than the number of columns. In a problem such as
beamforming or direction finding,  corresponds to the number of signals impinging on the
sensor array.

rankA = 3;

precisionBits defines the number of bits of precision required for the matrix solve. Set this value
according to system requirements.

precisionBits = 32;

Small, positive values of the regularization parameter can improve the conditioning of the problem
and reduce the variance of the estimates. While biased, the reduced variance of the estimate often
results in a smaller mean squared error when compared to least-squares estimates.

regularizationParameter = 0.01;

In this example, complex-valued matrices A and B are constructed such that the magnitude of the real
and imaginary parts of their elements is less than or equal to one, so the maximum possible absolute
value of any element is . Your own system requirements will define what those values
are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can
use the upperbound function to determine the upper bounds of the fixed-point types of A and B.
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max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = sqrt(2);

max_abs_B is an upper bound on the maximum magnitude element of B.

max_abs_B = sqrt(2);

Thermal noise standard deviation is the square root of thermal noise power, which is a system
parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set
thermalNoiseStandardDeviation to the equivalent of -50 dB noise power.

thermalNoiseStandardDeviation = sqrt(10^(-50/10))

thermalNoiseStandardDeviation =

    0.0032

The quantization noise standard deviation is a function of the required number of bits of precision.
Use fixed.complexQuantizationNoiseStandardDeviation to compute this. See that it is less
than thermalNoiseStandardDeviation.

quantizationNoiseStandardDeviation = fixed.complexQuantizationNoiseStandardDeviation(precisionBits)

quantizationNoiseStandardDeviation =

   9.5053e-11

Compute Fixed-Point Types

In this example, assume that the designed system matrix  does not have full rank (there are fewer
signals of interest than number of columns of matrix ), and the measured system matrix  has
additive thermal noise that is larger than the quantization noise. The additive noise makes the
measured matrix  have full rank.

Set .

noiseStandardDeviation = thermalNoiseStandardDeviation;

Use the fixed.complexQlessQRMatrixSolveFixedpointTypes function to compute fixed-point
types.

T = fixed.complexQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
    precisionBits,noiseStandardDeviation,[],regularizationParameter)

T = 

  struct with fields:

    A: [0x0 embedded.fi]
    B: [0x0 embedded.fi]
    X: [0x0 embedded.fi]
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T.A is the type computed for transforming  to  in-place so that it does not
overflow.

T.A

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 39
        FractionLength: 32

T.B is the type computed for B so that it does not overflow.

T.B

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 35
        FractionLength: 32

T.X is the type computed for the solution  so that there is a low
probability that it overflows.

T.X

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 50
        FractionLength: 32

Use the Specified Types to Solve the Matrix Equation

Create random matrices A and B such that rankA=rank(A). Add random measurement noise to A
which will make it become full rank.

rng('default');
[A,B] = fixed.example.complexRandomQlessQRMatrices(m,n,p,rankA);
A = A + fixed.example.complexNormalRandomArray(0,noiseStandardDeviation,m,n);
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Cast the inputs to the types determined by
fixed.complexQlessQRMatrixSolveFixedpointTypes. Quantizing to fixed-point is equivalent
to adding random noise.

A = cast(A,'like',T.A);
B = cast(B,'like',T.B);
OutputType = fixed.extractNumericType(T.X);

Open the Model

model = 'ComplexBurstQlessQRMatrixSolveModel';
open_system(model);

Set Variables in the Model Workspace

Use the helper function setModelWorkspace to add the variables defined above to the model
workspace. These variables correspond to the block parameters for the Complex Burst Matrix Solve
Using QR Decomposition block.

numSamples = 1; % Number of sample matrices
fixed.example.setModelWorkspace(model,'A',A,'B',B,'m',m,'n',n,'p',p,...
    'regularizationParameter',regularizationParameter,...
    'numSamples',numSamples,'OutputType',OutputType);

Simulate the Model

out = sim(model);

Construct the Solution from the Output Data

The Complex Burst Matrix Solve Using Q-less QR Decomposition block outputs data one row at a
time. When a result row is output, the block sets validOut to true. The rows of X are output in the
order they are computed, last row first, so you must reconstruct the data to interpret the results. To
reconstruct the matrix X from the output data, use the helper function
matrixSolveModelOutputToArray.

X = fixed.example.matrixSolveModelOutputToArray(out.X,n,p);

Verify the Accuracy of the Output

Verify that the relative error between the fixed-point output and builtin MATLAB in double-precision
floating-point is small.

 Implement Hardware-Efficient Complex Burst Matrix Solve Using Q-less QR Decomposition with Tikhonov Regularization

48-225



A_lambda = double([regularizationParameter*eye(n);A]);
X_double = (A_lambda'*A_lambda)\double(B);
relativeError = norm(X_double - double(X))/norm(X_double)

relativeError =

   1.1475e-05

Suppress mlint warnings in this file.

%#ok<*NASGU>
%#ok<*ASGLU>
%#ok<*NOPTS>

See Also
Complex Burst Matrix Solve Using Q-less QR Decomposition
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Implement Hardware-Efficient Complex Partial-Systolic Matrix
Solve Using QR Decomposition with Tikhonov Regularization

This example shows how to use the Complex Partial-Systolic Matrix Solve Using QR Decomposition
block to solve the regularized least-squares matrix equation

where A is an m-by-n matrix with m >= n, B is m-by-p, X is n-by-p,  eye(n),  zeros(n,p), and
 is a regularization parameter.

The least-squares solution is

but is computed without squares or inverses.

Define Matrix Dimensions

Specify the number of rows in matrices A and B, the number of columns in matrix A, and the number
of columns in matrix B.

m = 100; % Number of rows in matrices A and B
n = 10;  % Number of columns in matrix A
p = 1;   % Number of columns in matrix B

Define Tikhonov Regularization Parameter

Small, positive values of the regularization parameter can improve the conditioning of the problem
and reduce the variance of the estimates. While biased, the reduced variance of the estimate often
results in a smaller mean squared error when compared to least-squares estimates.

regularizationParameter = 0.01;

Generate Random Least-Squares Matrices

For this example, use the helper function complexRandomLeastSquaresMatrices to generate
random matrices A and B for the least-squares problem AX=B. The matrices are generated such that
the real and imaginary parts of the elements of A and B are between -1 and +1, and A has rank r.

rng('default')
r = 3;  % Rank of A
[A,B] = fixed.example.complexRandomLeastSquaresMatrices(m,n,p,r);

Select Fixed-Point Data Types

Use the helper function complexQRMatrixSolveFixedpointTypes to select fixed-point data types
for input matrices A and B, and output X such that there is a low probability of overflow during the
computation.

The real and imaginary parts of the elements of A and B are between -1 and 1, so the maximum
possible absolute value of any element is sqrt(2).
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max_abs_A = sqrt(2);  % Upper bound on max(abs(A(:))
max_abs_B = sqrt(2);  % Upper bound on max(abs(B(:))
precisionBits = 32;   % Number of bits of precision
T = fixed.complexQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
    precisionBits,[],[],regularizationParameter);
A = cast(A,'like',T.A);
B = cast(B,'like',T.B);
OutputType = fixed.extractNumericType(T.X);

Open the Model
model = 'ComplexPartialSystolicQRMatrixSolveModel';
open_system(model);

The Data Handler subsystem in this model takes complex matrices A and B as inputs. The ready port
triggers the Data Handler. After sending a true validIn signal, there may be some delay before
ready is set to false. When the Data Handler detects the leading edge of the ready signal, the block
sets validIn to true and sends the next row of A and B. This protocol allows data to be sent
whenever a leading edge of the ready signal is detected, ensuring that all data is processed.

Set Variables in the Model Workspace

Use the helper function setModelWorkspace to add the variables defined above to the model
workspace. These variables correspond to the block parameters for the Complex Partial-Systolic
Matrix Solve Using QR Decomposition block.

numSamples = 1; % Number of sample matrices
fixed.example.setModelWorkspace(model,'A',A,'B',B,'m',m,'n',n,'p',p,...
    'regularizationParameter',regularizationParameter,...
    'numSamples',numSamples,'OutputType',OutputType);

Simulate the Model
out = sim(model);

Construct the Solution from the Output Data

The Complex Partial-Systolic Matrix Solve Using QR Decomposition block outputs data one row at a
time. When a result row is output, the block sets validOut to true. The rows of X are output in the
order they are computed, last row first, so you must reconstruct the data to interpret the results. To
reconstruct the matrix X from the output data, use the helper function
matrixSolveModelOutputToArray.
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X = fixed.example.matrixSolveModelOutputToArray(out.X,n,p,numSamples);

Verify the Accuracy of the Output

Verify that the relative error between the fixed-point output and builtin MATLAB in double-precision
floating-point is small.

A_lambda = double([regularizationParameter*eye(n);A]);
B_0 = [zeros(n,p);double(B)];
X_double = A_lambda\B_0;
relativeError = norm(X_double - double(X))/norm(X_double)

relativeError =

   1.3921e-05

Suppress mlint warnings in this file.

%#ok<*NOPTS>
%#ok<*NASGU>
%#ok<*ASGLU>

See Also
Complex Partial-Systolic Matrix Solve Using QR Decomposition
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Implement Hardware-Efficient Complex Partial-Systolic Matrix
Solve Using Q-less QR Decomposition with Tikhonov
Regularization

This example shows how to use the Complex Partial-Systolic Matrix Solve Using QR Decomposition
block to solve the regularized least-squares matrix equation

where A is an m-by-n matrix with m  n, B is n-by-p, X is n-by-p, , and  is a regularization
parameter.

Define System Parameters

Define the matrix attributes and system parameters for this example.

m is the number of rows in matrix A. In a problem such as beamforming or direction finding, m
corresponds to the number of samples that are integrated over.

m = 100;

n is the number of columns in matrix A and rows in matrices B and X. In a least-squares problem, m is
greater than n, and usually m is much larger than n. In a problem such as beamforming or direction
finding, n corresponds to the number of sensors.

n = 10;

p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system
with p right-hand sides.

p = 1;

In this example, set the rank of matrix A to be less than the number of columns. In a problem such as
beamforming or direction finding,  corresponds to the number of signals impinging on the
sensor array.

rankA = 3;

precisionBits defines the number of bits of precision required for the matrix solve. Set this value
according to system requirements.

precisionBits = 32;

Small, positive values of the regularization parameter can improve the conditioning of the problem
and reduce the variance of the estimates. While biased, the reduced variance of the estimate often
results in a smaller mean squared error when compared to least-squares estimates.

regularizationParameter = 0.01;

In this example, complex-valued matrices A and B are constructed such that the magnitude of the real
and imaginary parts of their elements is less than or equal to one, so the maximum possible absolute
value of any element is . Your own system requirements will define what those values
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are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can
use the upperbound function to determine the upper bounds of the fixed-point types of A and B.

max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = sqrt(2);

max_abs_B is an upper bound on the maximum magnitude element of B.

max_abs_B = sqrt(2);

Thermal noise standard deviation is the square root of thermal noise power, which is a system
parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set
thermalNoiseStandardDeviation to the equivalent of -50 dB noise power.

thermalNoiseStandardDeviation = sqrt(10^(-50/10))

thermalNoiseStandardDeviation =

    0.0032

The quantization noise standard deviation is a function of the required number of bits of precision.
Use fixed.complexQuantizationNoiseStandardDeviation to compute this. See that it is less
than thermalNoiseStandardDeviation.

quantizationNoiseStandardDeviation = fixed.complexQuantizationNoiseStandardDeviation(precisionBits)

quantizationNoiseStandardDeviation =

   9.5053e-11

Compute Fixed-Point Types

In this example, assume that the designed system matrix  does not have full rank (there are fewer
signals of interest than number of columns of matrix ), and the measured system matrix  has
additive thermal noise that is larger than the quantization noise. The additive noise makes the
measured matrix  have full rank.

Set .

noiseStandardDeviation = thermalNoiseStandardDeviation;

Use the fixed.complexQlessQRMatrixSolveFixedpointTypes function to compute fixed-point
types.

T = fixed.complexQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
    precisionBits,noiseStandardDeviation,[],regularizationParameter)

T = 

  struct with fields:

    A: [0x0 embedded.fi]
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    B: [0x0 embedded.fi]
    X: [0x0 embedded.fi]

T.A is the type computed for transforming  to  in-place so that it does not
overflow.

T.A

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 39
        FractionLength: 32

T.B is the type computed for B so that it does not overflow.

T.B

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 35
        FractionLength: 32

T.X is the type computed for the solution  so that there is a low
probability that it overflows.

T.X

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 50
        FractionLength: 32

Use the Specified Types to Solve the Matrix Equation

Create random matrices A and B such that rankA=rank(A). Add random measurement noise to A
which will make it become full rank.
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rng('default');
[A,B] = fixed.example.complexRandomQlessQRMatrices(m,n,p,rankA);
A = A + fixed.example.complexNormalRandomArray(0,noiseStandardDeviation,m,n);

Cast the inputs to the types determined by
fixed.complexQlessQRMatrixSolveFixedpointTypes. Quantizing to fixed-point is equivalent
to adding random noise.

A = cast(A,'like',T.A);
B = cast(B,'like',T.B);
OutputType = fixed.extractNumericType(T.X);

Open the Model
model = 'ComplexPartialSystolicQlessQRMatrixSolveModel';
open_system(model);

Set Variables in the Model Workspace

Use the helper function setModelWorkspace to add the variables defined above to the model
workspace. These variables correspond to the block parameters for the Complex Burst Matrix Solve
Using QR Decomposition block.

numSamples = 1; % Number of sample matrices
fixed.example.setModelWorkspace(model,'A',A,'B',B,'m',m,'n',n,'p',p,...
    'regularizationParameter',regularizationParameter,...
    'numSamples',numSamples,'OutputType',OutputType);

Simulate the Model
out = sim(model);

Construct the Solution from the Output Data

The Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition block outputs matrix X at
each time step. When a valid result matrix is output, the block sets validOut to true.

X = out.X;

Verify the Accuracy of the Output

Verify that the relative error between the fixed-point output and builtin MATLAB in double-precision
floating-point is small.
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A_lambda = double([regularizationParameter*eye(n);A]);
X_double = (A_lambda'*A_lambda)\double(B);
relativeError = norm(X_double - double(X))/norm(X_double)

relativeError =

   5.1465e-06

Suppress mlint warnings in this file.

%#ok<*NASGU>
%#ok<*ASGLU>
%#ok<*NOPTS>

See Also
Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition
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Implement Hardware-Efficient Real Burst Matrix Solve Using
QR Decomposition with Tikhonov Regularization

This example shows how to use the Real Burst Matrix Solve Using QR Decomposition block to solve
the regularized least-squares matrix equation

where A is an m-by-n matrix with m >= n, B is m-by-p, X is n-by-p,  eye(n),  zeros(n,p), and
 is a regularization parameter.

The least-squares solution is

but is computed without squares or inverses.

Define Matrix Dimensions

Specify the number of rows in matrices A and B, the number of columns in matrix A, and the number
of columns in matrix B.

m = 100; % Number of rows in matrices A and B
n = 10;  % Number of columns in matrix A
p = 1;   % Number of columns in matrix B

Define Tikhonov Regularization Parameter

Small, positive values of the regularization parameter can improve the conditioning of the problem
and reduce the variance of the estimates. While biased, the reduced variance of the estimate often
results in a smaller mean squared error when compared to least-squares estimates.

regularizationParameter = 0.01;

Generate Random Least-Squares Matrices

For this example, use the helper function realRandomLeastSquaresMatrices to generate random
matrices A and B for the least-squares problem AX=B. The matrices are generated such that the
elements of A and B are between -1 and +1, and A has rank r.

rng('default')
r = 3;  % Rank of A
[A,B] = fixed.example.realRandomLeastSquaresMatrices(m,n,p,r);

Select Fixed-Point Data Types

Use the helper function realQRMatrixSolveFixedpointTypes to select fixed-point data types for
input matrices A and B, and output X such that there is a low probability of overflow during the
computation.

max_abs_A = 1;  % Upper bound on max(abs(A(:))
max_abs_B = 1;  % Upper bound on max(abs(B(:))
precisionBits = 32;   % Number of bits of precision
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T = fixed.realQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
    precisionBits,[],[],regularizationParameter);
A = cast(A,'like',T.A);
B = cast(B,'like',T.B);
OutputType = fixed.extractNumericType(T.X);

Open the Model

model = 'RealBurstQRMatrixSolveModel';
open_system(model);

The Data Handler subsystem in this model takes real matrices A and B as inputs. The ready port
triggers the Data Handler. After sending a true validIn signal, there may be some delay before
ready is set to false. When the Data Handler detects the leading edge of the ready signal, the block
sets validIn to true and sends the next row of A and B. This protocol allows data to be sent
whenever a leading edge of the ready signal is detected, ensuring that all data is processed.

Set Variables in the Model Workspace

Use the helper function setModelWorkspace to add the variables defined above to the model
workspace. These variables correspond to the block parameters for the Real Burst Matrix Solve Using
QR Decomposition block.

numSamples = 1; % Number of sample matrices
fixed.example.setModelWorkspace(model,'A',A,'B',B,'m',m,'n',n,'p',p,...
    'regularizationParameter',regularizationParameter,...
    'numSamples',numSamples,'OutputType',OutputType);

Simulate the Model

out = sim(model);

Construct the Solution from the Output Data

The Real Burst Matrix Solve Using QR Decomposition block outputs data one row at a time. When a
result row is output, the block sets validOut to true. The rows of X are output in the order they are
computed, last row first, so you must reconstruct the data to interpret the results. To reconstruct the
matrix X from the output data, use the helper function matrixSolveModelOutputToArray.

X = fixed.example.matrixSolveModelOutputToArray(out.X,n,p,numSamples);
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Verify the Accuracy of the Output

Verify that the relative error between the fixed-point output and builtin MATLAB in double-precision
floating-point is small.

A_lambda = double([regularizationParameter*eye(n);A]);
B_0 = [zeros(n,p);double(B)];
X_double = A_lambda\B_0;
relativeError = norm(X_double - double(X))/norm(X_double)

relativeError =

   1.0202e-05

Suppress mlint warnings in this file.

%#ok<*NOPTS>
%#ok<*NASGU>
%#ok<*ASGLU>

See Also
Real Burst Matrix Solve Using QR Decomposition
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Implement Hardware-Efficient Real Burst Matrix Solve Using Q-
less QR Decomposition with Tikhonov Regularization

This example shows how to use the Real Burst Matrix Solve Using QR Decomposition block to solve
the regularized least-squares matrix equation

where A is an m-by-n matrix with m  n, B is n-by-p, X is n-by-p, , and  is a regularization
parameter.

Define System Parameters

Define the matrix attributes and system parameters for this example.

m is the number of rows in matrix A. In a problem such as beamforming or direction finding, m
corresponds to the number of samples that are integrated over.

m = 100;

n is the number of columns in matrix A and rows in matrices B and X. In a least-squares problem, m is
greater than n, and usually m is much larger than n. In a problem such as beamforming or direction
finding, n corresponds to the number of sensors.

n = 10;

p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system
with p right-hand sides.

p = 1;

In this example, set the rank of matrix A to be less than the number of columns. In a problem such as
beamforming or direction finding,  corresponds to the number of signals impinging on the
sensor array.

rankA = 3;

precisionBits defines the number of bits of precision required for the matrix solve. Set this value
according to system requirements.

precisionBits = 32;

Small, positive values of the regularization parameter can improve the conditioning of the problem
and reduce the variance of the estimates. While biased, the reduced variance of the estimate often
results in a smaller mean squared error when compared to least-squares estimates.

regularizationParameter = 0.01;

In this example, real-valued matrices A and B are constructed such that the magnitude of their
elements is less than or equal to one. Your own system requirements will define what those values
are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can
use the upperbound function to determine the upper bounds of the fixed-point types of A and B.
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max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = 1;

max_abs_B is an upper bound on the maximum magnitude element of B.

max_abs_B = 1;

Thermal noise standard deviation is the square root of thermal noise power, which is a system
parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set
thermalNoiseStandardDeviation to the equivalent of -50 dB noise power.

thermalNoiseStandardDeviation = sqrt(10^(-50/10))

thermalNoiseStandardDeviation =

    0.0032

The quantization noise standard deviation is a function of the required number of bits of precision.
Use fixed.realQuantizationNoiseStandardDeviation to compute this. See that it is less than
thermalNoiseStandardDeviation.

quantizationNoiseStandardDeviation = fixed.realQuantizationNoiseStandardDeviation(precisionBits)

quantizationNoiseStandardDeviation =

   6.7212e-11

Compute Fixed-Point Types

In this example, assume that the designed system matrix  does not have full rank (there are fewer
signals of interest than number of columns of matrix ), and the measured system matrix  has
additive thermal noise that is larger than the quantization noise. The additive noise makes the
measured matrix  have full rank.

Set .

noiseStandardDeviation = thermalNoiseStandardDeviation;

Use the fixed.realQlessQRMatrixSolveFixedpointTypes function to compute fixed-point
types.

T = fixed.realQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
    precisionBits,noiseStandardDeviation,[],regularizationParameter)

T = 

  struct with fields:

    A: [0x0 embedded.fi]
    B: [0x0 embedded.fi]
    X: [0x0 embedded.fi]
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T.A is the type computed for transforming  to  in-place so that it does not
overflow.

T.A

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 39
        FractionLength: 32

T.B is the type computed for B so that it does not overflow.

T.B

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 35
        FractionLength: 32

T.X is the type computed for the solution  so that there is a low
probability that it overflows.

T.X

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 50
        FractionLength: 32

Use the Specified Types to Solve the Matrix Equation

Create random matrices A and B such that rankA=rank(A). Add random measurement noise to A
which will make it become full rank.

rng('default');
[A,B] = fixed.example.realRandomQlessQRMatrices(m,n,p,rankA);
A = A + fixed.example.realNormalRandomArray(0,noiseStandardDeviation,m,n);

Cast the inputs to the types determined by fixed.realQlessQRMatrixSolveFixedpointTypes.
Quantizing to fixed-point is equivalent to adding random noise.
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A = cast(A,'like',T.A);
B = cast(B,'like',T.B);
OutputType = fixed.extractNumericType(T.X);

Open the Model

model = 'RealBurstQlessQRMatrixSolveModel';
open_system(model);

Set Variables in the Model Workspace

Use the helper function setModelWorkspace to add the variables defined above to the model
workspace. These variables correspond to the block parameters for the Real Burst Matrix Solve Using
QR Decomposition block.

numSamples = 1; % Number of sample matrices
fixed.example.setModelWorkspace(model,'A',A,'B',B,'m',m,'n',n,'p',p,...
    'regularizationParameter',regularizationParameter,...
    'numSamples',numSamples,'OutputType',OutputType);

Simulate the Model

out = sim(model);

Construct the Solution from the Output Data

The Real Burst Matrix Solve Using Q-less QR Decomposition block outputs data one row at a time.
When a result row is output, the block sets validOut to true. The rows of X are output in the order
they are computed, last row first, so you must reconstruct the data to interpret the results. To
reconstruct the matrix X from the output data, use the helper function
matrixSolveModelOutputToArray.

X = fixed.example.matrixSolveModelOutputToArray(out.X,n,p);

Verify the Accuracy of the Output

Verify that the relative error between the fixed-point output and builtin MATLAB in double-precision
floating-point is small.
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A_lambda = double([regularizationParameter*eye(n);A]);
X_double = (A_lambda'*A_lambda)\double(B);
relativeError = norm(X_double - double(X))/norm(X_double)

relativeError =

   4.8612e-06

Suppress mlint warnings in this file.

%#ok<*NASGU>
%#ok<*ASGLU>
%#ok<*NOPTS>

See Also
Real Burst Matrix Solve Using Q-less QR Decomposition
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Implement Hardware-Efficient Real Partial-Systolic Matrix
Solve Using QR Decomposition with Tikhonov Regularization

This example shows how to use the Real Partial-Systolic Matrix Solve Using QR Decomposition block
to solve the regularized least-squares matrix equation

where A is an m-by-n matrix with m >= n, B is m-by-p, X is n-by-p,  eye(n),  zeros(n,p), and
 is a regularization parameter.

The least-squares solution is

but is computed without squares or inverses.

Define Matrix Dimensions

Specify the number of rows in matrices A and B, the number of columns in matrix A, and the number
of columns in matrix B.

m = 300; % Number of rows in matrices A and B
n = 10;  % Number of columns in matrix A
p = 1;   % Number of columns in matrix B

Define Tikhonov Regularization Parameter

Small, positive values of the regularization parameter can improve the conditioning of the problem
and reduce the variance of the estimates. While biased, the reduced variance of the estimate often
results in a smaller mean squared error when compared to least-squares estimates.

regularizationParameter = 0.01;

Generate Random Least-Squares Matrices

For this example, use the helper function realRandomLeastSquaresMatrices to generate random
matrices A and B for the least-squares problem AX=B. The matrices are generated such that the
elements of A and B are between -1 and +1, and A has rank r.

rng('default')
r = 3;  % Rank of A
[A,B] = fixed.example.realRandomLeastSquaresMatrices(m,n,p,r);

Select Fixed-Point Data Types

Use the helper function realQRMatrixSolveFixedpointTypes to select fixed-point data types for
input matrices A and B, and output X such that there is a low probability of overflow during the
computation.

max_abs_A = 1;  % Upper bound on max(abs(A(:))
max_abs_B = 1;  % Upper bound on max(abs(B(:))
precisionBits = 32;   % Number of bits of precision
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T = fixed.realQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
    precisionBits,[],[],regularizationParameter);
A = cast(A,'like',T.A);
B = cast(B,'like',T.B);
OutputType = fixed.extractNumericType(T.X);

Open the Model

model = 'RealPartialSystolicQRMatrixSolveModel';
open_system(model);

The Data Handler subsystem in this model takes real matrices A and B as inputs. The ready port
triggers the Data Handler. After sending a true validIn signal, there may be some delay before
ready is set to false. When the Data Handler detects the leading edge of the ready signal, the block
sets validIn to true and sends the next row of A and B. This protocol allows data to be sent
whenever a leading edge of the ready signal is detected, ensuring that all data is processed.

Set Variables in the Model Workspace

Use the helper function setModelWorkspace to add the variables defined above to the model
workspace. These variables correspond to the block parameters for the Real Partial-Systolic Matrix
Solve Using QR Decomposition block.

numSamples = 1; % Number of sample matrices
fixed.example.setModelWorkspace(model,'A',A,'B',B,'m',m,'n',n,'p',p,...
    'regularizationParameter',regularizationParameter,...
    'numSamples',numSamples,'OutputType',OutputType);

Simulate the Model

out = sim(model);

Construct the Solution from the Output Data

The Real Partial-Systolic Matrix Solve Using QR Decomposition block outputs data one row at a time.
When a result row is output, the block sets validOut to true. The rows of X are output in the order
they are computed, last row first, so you must reconstruct the data to interpret the results. To
reconstruct the matrix X from the output data, use the helper function
matrixSolveModelOutputToArray.

X = fixed.example.matrixSolveModelOutputToArray(out.X,n,p,numSamples);
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Verify the Accuracy of the Output

Verify that the relative error between the fixed-point output and builtin MATLAB in double-precision
floating-point is small.

A_lambda = double([regularizationParameter*eye(n);A]);
B_0 = [zeros(n,p);double(B)];
X_double = A_lambda\B_0;
relativeError = norm(X_double - double(X))/norm(X_double)

relativeError =

   2.5211e-05

Suppress mlint warnings in this file.

%#ok<*NOPTS>
%#ok<*NASGU>
%#ok<*ASGLU>

See Also
Real Partial-Systolic Matrix Solve Using QR Decomposition
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Implement Hardware-Efficient Real Partial-Systolic Matrix
Solve Using Q-less QR Decomposition with Tikhonov
Regularization

This example shows how to use the Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition
block to solve the regularized least-squares matrix equation

where A is an m-by-n matrix with m  n, B is n-by-p, X is n-by-p, , and  is a regularization
parameter.

Define System Parameters

Define the matrix attributes and system parameters for this example.

m is the number of rows in matrix A. In a problem such as beamforming or direction finding, m
corresponds to the number of samples that are integrated over.

m = 100;

n is the number of columns in matrix A and rows in matrices B and X. In a least-squares problem, m is
greater than n, and usually m is much larger than n. In a problem such as beamforming or direction
finding, n corresponds to the number of sensors.

n = 10;

p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system
with p right-hand sides.

p = 1;

In this example, set the rank of matrix A to be less than the number of columns. In a problem such as
beamforming or direction finding,  corresponds to the number of signals impinging on the
sensor array.

rankA = 3;

precisionBits defines the number of bits of precision required for the matrix solve. Set this value
according to system requirements.

precisionBits = 32;

Small, positive values of the regularization parameter can improve the conditioning of the problem
and reduce the variance of the estimates. While biased, the reduced variance of the estimate often
results in a smaller mean squared error when compared to least-squares estimates.

regularizationParameter = 0.01;

In this example, real-valued matrices A and B are constructed such that the magnitude of their
elements is less than or equal to one. Your own system requirements will define what those values
are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can
use the upperbound function to determine the upper bounds of the fixed-point types of A and B.
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max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = 1;

max_abs_B is an upper bound on the maximum magnitude element of B.

max_abs_B = 1;

Thermal noise standard deviation is the square root of thermal noise power, which is a system
parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set
thermalNoiseStandardDeviation to the equivalent of -50 dB noise power.

thermalNoiseStandardDeviation = sqrt(10^(-50/10))

thermalNoiseStandardDeviation =

    0.0032

The quantization noise standard deviation is a function of the required number of bits of precision.
Use fixed.realQuantizationNoiseStandardDeviation to compute this. See that it is less than
thermalNoiseStandardDeviation.

quantizationNoiseStandardDeviation = fixed.realQuantizationNoiseStandardDeviation(precisionBits)

quantizationNoiseStandardDeviation =

   6.7212e-11

Compute Fixed-Point Types

In this example, assume that the designed system matrix  does not have full rank (there are fewer
signals of interest than number of columns of matrix ), and the measured system matrix  has
additive thermal noise that is larger than the quantization noise. The additive noise makes the
measured matrix  have full rank.

Set .

noiseStandardDeviation = thermalNoiseStandardDeviation;

Use the fixed.realQlessQRMatrixSolveFixedpointTypes function to compute fixed-point
types.

T = fixed.realQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
    precisionBits,noiseStandardDeviation,[],regularizationParameter)

T = 

  struct with fields:

    A: [0x0 embedded.fi]
    B: [0x0 embedded.fi]
    X: [0x0 embedded.fi]
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T.A is the type computed for transforming  to  in-place so that it does not
overflow.

T.A

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 39
        FractionLength: 32

T.B is the type computed for B so that it does not overflow.

T.B

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 35
        FractionLength: 32

T.X is the type computed for the solution  so that there is a low
probability that it overflows.

T.X

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 50
        FractionLength: 32

Use the Specified Types to Solve the Matrix Equation

Create random matrices A and B such that rankA=rank(A). Add random measurement noise to A
which will make it become full rank.

rng('default');
[A,B] = fixed.example.realRandomQlessQRMatrices(m,n,p,rankA);
A = A + fixed.example.realNormalRandomArray(0,noiseStandardDeviation,m,n);

Cast the inputs to the types determined by fixed.realQlessQRMatrixSolveFixedpointTypes.
Quantizing to fixed-point is equivalent to adding random noise.
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A = cast(A,'like',T.A);
B = cast(B,'like',T.B);
OutputType = fixed.extractNumericType(T.X);

Open the Model
model = 'RealPartialSystolicQlessQRMatrixSolveModel';
open_system(model);

Set Variables in the Model Workspace

Use the helper function setModelWorkspace to add the variables defined above to the model
workspace. These variables correspond to the block parameters for the Real Partial-Systolic Matrix
Solve Using Q-less QR Decomposition block.

numSamples = 1; % Number of sample matrices
fixed.example.setModelWorkspace(model,'A',A,'B',B,'m',m,'n',n,'p',p,...
    'regularizationParameter',regularizationParameter,...
    'numSamples',numSamples,'OutputType',OutputType);

Simulate the Model
out = sim(model);

Construct the Solution from the Output Data

The Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition block outputs matrix X at each
time step. When a valid result matrix is output, the block sets validOut to true.

X = out.X;

Verify the Accuracy of the Output

Verify that the relative error between the fixed-point output and builtin MATLAB in double-precision
floating-point is small.

A_lambda = double([regularizationParameter*eye(n);A]);
X_double = (A_lambda'*A_lambda)\double(B);
relativeError = norm(X_double - double(X))/norm(X_double)

relativeError =
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   4.8612e-06

Suppress mlint warnings in this file.

%#ok<*NASGU>
%#ok<*ASGLU>
%#ok<*NOPTS>

See Also
Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition
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Determine Fixed-Point Types for Complex Least-Squares Matrix
Solve with Tikhonov Regularization

This example shows how to use the fixed.complexQRMatrixSolveFixedpointTypes function to
analytically determine fixed-point types for the solution of the complex least-squares matrix equation

λIn
A

X =
0n, p

B
,

where A is an m-by-n matrix with m ≥ n, B is m-by-p, X is n-by-p, In = eye(n), 0n, p = zeros(n, p), and λ
is a regularization parameter.

The least-squares solution is

XLS = (λ2In + ATA)−1ATB

but is computed without squares or inverses.

Define System Parameters

Define the matrix attributes and system parameters for this example.

m is the number of rows in matrices A and B. In a problem such as beamforming or direction finding,
m corresponds to the number of samples that are integrated over.

m = 300;

n is the number of columns in matrix A and rows in matrix X. In a least-squares problem, m is greater
than n, and usually m is much larger than n. In a problem such as beamforming or direction finding, n
corresponds to the number of sensors.

n = 10;

p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system
with p right-hand sides.

p = 1;

In this example, set the rank of matrix A to be less than the number of columns. In a problem such as
beamforming or direction finding, rank(A) corresponds to the number of signals impinging on the
sensor array.

rankA = 3;

precisionBits defines the number of bits of precision required for the matrix solve. Set this value
according to system requirements.

precisionBits = 32;

Small, positive values of the regularization parameter can improve the conditioning of the problem
and reduce the variance of the estimates. While biased, the reduced variance of the estimate often
results in a smaller mean squared error when compared to least-squares estimates.

regularizationParameter = 0.01;
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n this example, complex-valued matrices A and B are constructed such that the magnitude of the real
and imaginary parts of their elements is less than or equal to one, so the maximum possible absolute
value of any element is |1 + 1i | = 2. Your own system requirements will define what those values
are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can
use the upperbound function to determine the upper bounds of the fixed-point types of A and B.

max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = sqrt(2);  

max_abs_B is an upper bound on the maximum magnitude element of B.

max_abs_B = sqrt(2);

Thermal noise standard deviation is the square root of thermal noise power, which is a system
parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set
thermalNoiseStandardDeviation to the equivalent of −50dB noise power.

thermalNoiseStandardDeviation = sqrt(10^(-50/10))

thermalNoiseStandardDeviation = 0.0032

The quantization noise standard deviation is a function of the required number of bits of precision.
Use fixed.complexQuantizationNoiseStandardDeviation to compute this. See that it is less
than thermalNoiseStandardDeviation.

quantizationNoiseStandardDeviation = fixed.complexQuantizationNoiseStandardDeviation(precisionBits)

quantizationNoiseStandardDeviation = 9.5053e-11

Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer
signals of interest than number of columns of matrix A), and the measured system matrix A has
additive thermal noise that is larger than the quantization noise. The additive noise makes the
measured matrix A have full rank.

Set σnoise = σthermal noise.

noiseStandardDeviation = thermalNoiseStandardDeviation;

Use fixed.complexQRMatrixSolveFixedpointTypes to compute fixed-point types.

T = fixed.complexQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
    precisionBits,noiseStandardDeviation,[],regularizationParameter)

T = struct with fields:
    A: [0x0 embedded.fi]
    B: [0x0 embedded.fi]
    X: [0x0 embedded.fi]

T.A is the type computed for transforming 
λIn
A

 to R = QT λIn
A

 in-place so that it does not overflow.

T.A
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ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 40
        FractionLength: 32

T.B is the type computed for transforming 
0n, p

B
 to C = QT 0n, p

B
 in-place so that it does not overflow.

T.B

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 40
        FractionLength: 32

T.X is the type computed for the solution X =
λIn
A

\
0n, p

B
,so that there is a low probability that it

overflows.

T.X

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 44
        FractionLength: 32

Use the Specified Types to Solve the Matrix Equation

Create random matrices A and B such that B is in the range of A, and rankA=rank(A). Add random
measurement noise to A which will make it become full rank, but it will also affect the solution so that
B is only close to the range of A.

rng('default');
[A,B] = fixed.example.complexRandomLeastSquaresMatrices(m,n,p,rankA);
A = A + fixed.example.complexNormalRandomArray(0,noiseStandardDeviation,m,n);

Cast the inputs to the types determined by fixed.complexQRMatrixSolveFixedpointTypes.
Quantizing to fixed-point is equivalent to adding random noise [4,5].

A = cast(A,'like',T.A);
B = cast(B,'like',T.B);

Accelerate the fixed.qrMatrixSolve function by using fiaccel to generate a MATLAB
executable (MEX) function.

fiaccel fixed.qrMatrixSolve -args {A,B,T.X,regularizationParameter} -o qrMatrixSolve_mex
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Specify output type T.X and compute fixed-point X = A\B using the QR method.

X = qrMatrixSolve_mex(A,B,T.X,regularizationParameter);

Verify the Accuracy of the Output

Verify that the relative error between the fixed-point output and builtin MATLAB in double-precision
floating-point is small.

Xdouble =
λIn
A

\
0n, p

B

A_lambda = double([regularizationParameter*eye(n);A]);
B_0 = [zeros(n,p);double(B)];
X_double = A_lambda\B_0;
relativeError = norm(X_double - double(X))/norm(X_double)

relativeError = 5.2634e-06

Suppress mlint warnings in this file.

%#ok<*NASGU>
%#ok<*ASGLU>

See Also
fixed.complexQRMatrixSolveFixedpointTypes | Complex Burst Matrix Solve Using QR
Decomposition | Complex Partial-Systolic Matrix Solve Using QR Decomposition
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Determine Fixed-Point Types for Complex Q-less QR Matrix
Solve with Tikhonov Regularization

This example shows how to use the fixed.complexQlessQRMatrixSolveFixedpointTypes
function to analytically determine fixed-point types for the solution of the complex least-squares
matrix equation

λIn
A

H λIn
A

X = (λ2In + AHA)X = B

where A is an m-by-n matrix with m ≥ n, B is n-by-p, X is n-by-p, In = eye(n), and λ is a regularization
parameter.

Define System Parameters

Define the matrix attributes and system parameters for this example.

m is the number of rows in matrix A. In a problem such as beamforming or direction finding, m
corresponds to the number of samples that are integrated over.

m = 300;

n is the number of columns in matrix A and rows in matrices B and X. In a least-squares problem, m is
greater than n, and usually m is much larger than n. In a problem such as beamforming or direction
finding, n corresponds to the number of sensors.

n = 10;

p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system
with p right-hand sides.

p = 1;

In this example, set the rank of matrix A to be less than the number of columns. In a problem such as
beamforming or direction finding, rank(A) corresponds to the number of signals impinging on the
sensor array.

rankA = 3;

precisionBits defines the number of bits of precision required for the matrix solve. Set this value
according to system requirements.

precisionBits = 32;

Small, positive values of the regularization parameter can improve the conditioning of the problem
and reduce the variance of the estimates. While biased, the reduced variance of the estimate often
results in a smaller mean squared error when compared to least-squares estimates.

regularizationParameter = 0.01;

In this example, complex-valued matrices A and B are constructed such that the magnitude of the real
and imaginary parts of their elements is less than or equal to one, so the maximum possible absolute
value of any element is |1 + 1i | = 2. Your own system requirements will define what those values
are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can
use the upperbound function to determine the upper bounds of the fixed-point types of A and B.
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max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = sqrt(2);

max_abs_B is an upper bound on the maximum magnitude element of B.

max_abs_B = sqrt(2);

Thermal noise standard deviation is the square root of thermal noise power, which is a system
parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set
thermalNoiseStandardDeviation to the equivalent of −50dB noise power.

thermalNoiseStandardDeviation = sqrt(10^(-50/10))

thermalNoiseStandardDeviation = 0.0032

The quantization noise standard deviation is a function of the required number of bits of precision.
Use fixed.complexQuantizationNoiseStandardDeviation to compute this. See that it is less
than thermalNoiseStandardDeviation.

quantizationNoiseStandardDeviation = fixed.complexQuantizationNoiseStandardDeviation(precisionBits)

quantizationNoiseStandardDeviation = 9.5053e-11

Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer
signals of interest than number of columns of matrix A), and the measured system matrix A has
additive thermal noise that is larger than the quantization noise. The additive noise makes the
measured matrix A have full rank.

Set σnoise = σthermal noise.

noiseStandardDeviation = thermalNoiseStandardDeviation;

Use the fixed.complexQlessQRMatrixSolveFixedpointTypes function to compute fixed-point
types.

T = fixed.complexQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
    precisionBits,noiseStandardDeviation,[],regularizationParameter)

T = struct with fields:
    A: [0x0 embedded.fi]
    B: [0x0 embedded.fi]
    X: [0x0 embedded.fi]

T.A is the type computed for transforming 
λIn
A

 to R = QH λIn
A

 in-place so that it does not overflow.

T.A

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
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            WordLength: 40
        FractionLength: 32

T.B is the type computed for B so that it does not overflow.

T.B

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 35
        FractionLength: 32

T.X is the type computed for the solution X =
λIn
A

H λIn
A

\B so that there is a low probability that it

overflows.

T.X

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 48
        FractionLength: 32

Use the Specified Types to Solve the Matrix Equation

Create random matrices A and B such that rankA=rank(A). Add random measurement noise to A
which will make it become full rank.

rng('default');
[A,B] = fixed.example.complexRandomQlessQRMatrices(m,n,p,rankA);
A = A + fixed.example.complexNormalRandomArray(0,noiseStandardDeviation,m,n);

Cast the inputs to the types determined by
fixed.complexQlessQRMatrixSolveFixedpointTypes. Quantizing to fixed-point is equivalent
to adding random noise.

A = cast(A,'like',T.A);
B = cast(B,'like',T.B);

Accelerate the fixed.qlessQRMatrixSolve function by using fiaccel to generate a MATLAB
executable (MEX) function.

fiaccel +fixed/qlessQRMatrixSolve -args {A,B,T.X,[],regularizationParameter} -o qlessQRMatrixSolve_mex

Specify output type T.X and compute fixed-point X =
λIn
A

H λIn
A

\B using the QR method.

X = qlessQRMatrixSolve_mex(A,B,T.X,[],regularizationParameter);
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Verify the Accuracy of the Output

Verify that the relative error between the fixed-point output and builtin MATLAB in double-precision
floating-point is small.

Xdouble =
λIn
A

H λIn
A

\B

A_lambda = double([regularizationParameter*eye(n);A]);
X_double = (A_lambda'*A_lambda)\double(B);
relativeError = norm(X_double - double(X))/norm(X_double)

relativeError = 1.0591e-05

Suppress mlint warnings in this file.

%#ok<*NASGU>
%#ok<*ASGLU>

See Also
fixed.complexQlessQRMatrixSolveFixedpointTypes | Complex Burst Matrix Solve Using Q-
less QR Decomposition | Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition
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Determine Fixed-Point Types for Real Least-Squares Matrix
Solve with Tikhonov Regularization

This example shows how to use the fixed.realQRMatrixSolveFixedpointTypes function to
analytically determine fixed-point types for the solution of the real least-squares matrix equation

λIn
A

X =
0n, p

B
,

where A is an m-by-n matrix with m ≥ n, B is m-by-p, X is n-by-p, In = eye(n), 0n, p = zeros(n, p), and λ
is a regularization parameter.

The least-squares solution is

XLS = (λ2In + ATA)−1ATB

but is computed without squares or inverses.

Define System Parameters

Define the matrix attributes and system parameters for this example.

m is the number of rows in matrices A and B. In a problem such as beamforming or direction finding,
m corresponds to the number of samples that are integrated over.

m = 300;

n is the number of columns in matrix A and rows in matrix X. In a least-squares problem, m is greater
than n, and usually m is much larger than n. In a problem such as beamforming or direction finding, n
corresponds to the number of sensors.

n = 10;

p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system
with p right-hand sides.

p = 1;

In this example, set the rank of matrix A to be less than the number of columns. In a problem such as
beamforming or direction finding, rank(A) corresponds to the number of signals impinging on the
sensor array.

rankA = 3;

precisionBits defines the number of bits of precision required for the matrix solve. Set this value
according to system requirements.

precisionBits = 32;

Small, positive values of the regularization parameter can improve the conditioning of the problem
and reduce the variance of the estimates. While biased, the reduced variance of the estimate often
results in a smaller mean squared error when compared to least-squares estimates.

regularizationParameter = 0.01;
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In this example, real-valued matrices A and B are constructed such that the magnitude of their
elements is less than or equal to one. Your own system requirements will define what those values
are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can
use the upperbound function to determine the upper bounds of the fixed-point types of A and B.

max_abs_A is an upper bound on the maximum magnitude element of A.

max_abs_A = 1;

max_abs_B is an upper bound on the maximum magnitude element of B.

max_abs_B = 1;

Thermal noise standard deviation is the square root of thermal noise power, which is a system
parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set
thermalNoiseStandardDeviation to the equivalent of −50dB noise power.

thermalNoiseStandardDeviation = sqrt(10^(-50/10))

thermalNoiseStandardDeviation = 0.0032

The quantization noise standard deviation is a function of the required number of bits of precision.
Use fixed.realQuantizationNoiseStandardDeviation to compute this. See that it is less than
thermalNoiseStandardDeviation.

quantizationNoiseStandardDeviation = fixed.realQuantizationNoiseStandardDeviation(precisionBits)

quantizationNoiseStandardDeviation = 6.7212e-11

Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer
signals of interest than number of columns of matrix A), and the measured system matrix A has
additive thermal noise that is larger than the quantization noise. The additive noise makes the
measured matrix A have full rank.

Set σnoise = σthermal noise.

noiseStandardDeviation = thermalNoiseStandardDeviation;

Use fixed.realQRMatrixSolveFixedpointTypes to compute fixed-point types.

T = fixed.realQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
    precisionBits,noiseStandardDeviation,[],regularizationParameter)

T = struct with fields:
    A: [0x0 embedded.fi]
    B: [0x0 embedded.fi]
    X: [0x0 embedded.fi]

T.A is the type computed for transforming 
λIn
A

 to R = QT λIn
A

 in-place so that it does not overflow.

T.A

ans = 
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[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 39
        FractionLength: 32

T.B is the type computed for transforming 
0n, p

B
 to C = QT 0n, p

B
 in-place so that it does not overflow.

T.B

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 39
        FractionLength: 32

T.X is the type computed for the solution X =
λIn
A

\
0n, p

B
,so that there is a low probability that it

overflows.

T.X

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 44
        FractionLength: 32

Use the Specified Types to Solve the Matrix Equation

Create random matrices A and B such that B is in the range of A, and rankA=rank(A). Add random
measurement noise to A which will make it become full rank, but it will also affect the solution so that
B is only close to the range of A.

rng('default');
[A,B] = fixed.example.realRandomLeastSquaresMatrices(m,n,p,rankA);
A = A + fixed.example.realNormalRandomArray(0,noiseStandardDeviation,m,n);

Cast the inputs to the types determined by fixed.realQRMatrixSolveFixedpointTypes.
Quantizing to fixed-point is equivalent to adding random noise [4,5].

A = cast(A,'like',T.A);
B = cast(B,'like',T.B);

Accelerate the fixed.qrMatrixSolve function by using fiaccel to generate a MATLAB
executable (MEX) function.

fiaccel fixed.qrMatrixSolve -args {A,B,T.X,regularizationParameter} -o qrRealMatrixSolve_mex

Specify output type T.X and compute fixed-point X = A\B using the QR method.
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X = qrRealMatrixSolve_mex(A,B,T.X,regularizationParameter);

Verify the Accuracy of the Output

Verify that the relative error between the fixed-point output and builtin MATLAB in double-precision
floating-point is small.

Xdouble =
λIn
A

\
0n, p

B

A_lambda = double([regularizationParameter*eye(n);A]);
B_0 = [zeros(n,p);double(B)];
X_double = A_lambda\B_0;
relativeError = norm(X_double - double(X))/norm(X_double)

relativeError = 5.1152e-06

Suppress mlint warnings in this file.

%#ok<*NASGU>
%#ok<*ASGLU>

See Also
fixed.realQRMatrixSolveFixedpointTypes | Real Burst Matrix Solve Using QR Decomposition
| Real Partial-Systolic Matrix Solve Using QR Decomposition
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Determine Fixed-Point Types for Real Q-less QR Matrix Solve
with Tikhonov Regularization

This example shows how to use the fixed.realQlessQRMatrixSolveFixedpointTypes function
to analytically determine fixed-point types for the solution of the real least-squares matrix equation

λIn
A

T λIn
A

X = (λ2In + ATA)X = B

where A is an m-by-n matrix with m ≥ n, B is n-by-p, X is n-by-p, In = eye(n), and λ is a regularization
parameter.

Define System Parameters

Define the matrix attributes and system parameters for this example.

m is the number of rows in matrix A. In a problem such as beamforming or direction finding, m
corresponds to the number of samples that are integrated over.

m = 300;

n is the number of columns in matrix A and rows in matrices B and X. In a least-squares problem, m is
greater than n, and usually m is much larger than n. In a problem such as beamforming or direction
finding, n corresponds to the number of sensors.

n = 10;

p is the number of columns in matrices B and X. It corresponds to simultaneously solving a system
with p right-hand sides.

p = 1;

In this example, set the rank of matrix A to be less than the number of columns. In a problem such as
beamforming or direction finding, rank(A) corresponds to the number of signals impinging on the
sensor array.

rankA = 3;

precisionBits defines the number of bits of precision required for the matrix solve. Set this value
according to system requirements.

precisionBits = 32;

Small, positive values of the regularization parameter can improve the conditioning of the problem
and reduce the variance of the estimates. While biased, the reduced variance of the estimate often
results in a smaller mean squared error when compared to least-squares estimates.

regularizationParameter = 0.01;

In this example, real-valued matrices A and B are constructed such that the magnitude of their
elements is less than or equal to one. Your own system requirements will define what those values
are. If you don't know what they are, and A and B are fixed-point inputs to the system, then you can
use the upperbound function to determine the upper bounds of the fixed-point types of A and B.

max_abs_A is an upper bound on the maximum magnitude element of A.
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max_abs_A = 1;

max_abs_B is an upper bound on the maximum magnitude element of B.

max_abs_B = 1;

Thermal noise standard deviation is the square root of thermal noise power, which is a system
parameter. A well-designed system has the quantization level lower than the thermal noise. Here, set
thermalNoiseStandardDeviation to the equivalent of −50dB noise power.

thermalNoiseStandardDeviation = sqrt(10^(-50/10))

thermalNoiseStandardDeviation = 0.0032

The quantization noise standard deviation is a function of the required number of bits of precision.
Use fixed.realQuantizationNoiseStandardDeviation to compute this. See that it is less than
thermalNoiseStandardDeviation.

quantizationNoiseStandardDeviation = fixed.realQuantizationNoiseStandardDeviation(precisionBits)

quantizationNoiseStandardDeviation = 6.7212e-11

Compute Fixed-Point Types

In this example, assume that the designed system matrix A does not have full rank (there are fewer
signals of interest than number of columns of matrix A), and the measured system matrix A has
additive thermal noise that is larger than the quantization noise. The additive noise makes the
measured matrix A have full rank.

Set σnoise = σthermal noise.

noiseStandardDeviation = thermalNoiseStandardDeviation;

Use the fixed.realQlessQRMatrixSolveFixedpointTypes function to compute fixed-point
types.

T = fixed.realQlessQRMatrixSolveFixedpointTypes(m,n,max_abs_A,max_abs_B,...
    precisionBits,noiseStandardDeviation,[],regularizationParameter)

T = struct with fields:
    A: [0x0 embedded.fi]
    B: [0x0 embedded.fi]
    X: [0x0 embedded.fi]

T.A is the type computed for transforming 
λIn
A

 to R = QT λIn
A

 in-place so that it does not overflow.

T.A

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 39
        FractionLength: 32
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T.B is the type computed for B so that it does not overflow.

T.B

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 35
        FractionLength: 32

T.X is the type computed for the solution X =
λIn
A

T λIn
A

\B so that there is a low probability that it

overflows.

T.X

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 48
        FractionLength: 32

Use the Specified Types to Solve the Matrix Equation

Create random matrices A and B such that rankA=rank(A). Add random measurement noise to A
which will make it become full rank.

rng('default');
[A,B] = fixed.example.realRandomQlessQRMatrices(m,n,p,rankA);
A = A + fixed.example.realNormalRandomArray(0,noiseStandardDeviation,m,n);

Cast the inputs to the types determined by fixed.realQlessQRMatrixSolveFixedpointTypes.
Quantizing to fixed-point is equivalent to adding random noise.

A = cast(A,'like',T.A);
B = cast(B,'like',T.B);

Accelerate the fixed.qlessQRMatrixSolve function by using fiaccel to generate a MATLAB
executable (MEX) function.

fiaccel +fixed/qlessQRMatrixSolve -args {A,B,T.X,[],regularizationParameter} -o qlessQRMatrixSolve_mex

Specify output type T.X and compute fixed-point X =
λIn
A

T λIn
A

\B using the QR method.

X = qlessQRMatrixSolve_mex(A,B,T.X,[],regularizationParameter);

Verify the Accuracy of the Output

Verify that the relative error between the fixed-point output and builtin MATLAB in double-precision
floating-point is small.
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Xdouble =
λIn
A

T λIn
A

\B

A_lambda = double([regularizationParameter*eye(n);A]);
X_double = (A_lambda'*A_lambda)\double(B);
relativeError = norm(X_double - double(X))/norm(X_double)

relativeError = 1.0133e-05

Suppress mlint warnings in this file.

%#ok<*NASGU>
%#ok<*ASGLU>

See Also
fixed.realQlessQRMatrixSolveFixedpointTypes | Real Burst Matrix Solve Using Q-less QR
Decomposition | Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition
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Troubleshooting

• “Fixed-Point Versus Built-in Integer Types” on page 49-2
• “Negative Fraction Length” on page 49-3
• “Fraction Length Greater Than Word Length” on page 49-5
• “fi Constructor Does Not Follow globalfimath Rules” on page 49-7
• “Decide Which Workflow is Right for Your Application” on page 49-8
• “Tips for Making Generated Code More Efficient” on page 49-9
• “Know When a Function is Supported for Instrumentation and Acceleration” on page 49-11
• “Resolve Error: Function is not Supported for Fixed-Point Conversion” on page 49-12
• “Resolve Error: fi*non-fi” on page 49-14
• “Resolve Error: Data Type Mismatch” on page 49-15
• “Resolve Error: Mismatched fimath” on page 49-16
• “Why Does the Fixed-Point Converter App Not Propose Data Types for System Objects?”

on page 49-17
• “Slow Operations in the Fixed-Point Converter App” on page 49-18
• “Blocks That Do Not Support Fixed-Point Data Types” on page 49-19
• “Prevent the Fixed-Point Tool from Overriding Integer Data Types” on page 49-21
• “The Fixed-Point Tool did not Propose Data Types” on page 49-22
• “Fraction Lengths and Fixed-Point Numbers” on page 49-23
• “Why am I missing data type proposals for MATLAB Function block variables?” on page 49-24
• “Data Type Propagation Errors After Applying Proposed Data Types” on page 49-25
• “Resolve Range Analysis Issues” on page 49-27
• “Data Type Mismatch and Structure Initial Conditions” on page 49-28
• “Reconversion Using the Fixed-Point Tool” on page 49-30
• “Data Type Optimization Not Successful” on page 49-31
• “Compile-Time Recursion Limit Reached” on page 49-33
• “Output Variable Must Be Assigned Before Run-Time Recursive Call” on page 49-36
• “Unable to Determine That Every Element of Cell Array Is Assigned” on page 49-39
• “Nonconstant Index into varargin or varargout in a for-Loop” on page 49-43
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Fixed-Point Versus Built-in Integer Types
There are several distinct differences between fixed-point data types and the built-in integer types in
MATLAB. The most notable difference is that the built-in integer data types can only represent whole
numbers, while the fixed-point data types also contain information on the position of the binary point,
or the scaling of the number. This scaling allows the fixed-point data types to represent both integers
and non-integers.

There are also slight differences in how math is performed with these types. Fixed-point types allow
you to specify rules for math using the fimath object, including overflow and rounding modes.
However, the built-in types have their own internal rules for arithmetic operations. See “Integers” for
more information on how math is performed using built-in types.

See Also
fi | fimath
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Negative Fraction Length
A negative fraction length occurs when the input value of a fi object contains trailing zeros before
the decimal point. For example,

x = fi(16000,1,8)

produces a signed fixed-point number with a word length of 8 bits and best precision fraction length.

x = 

       16000

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 8
        FractionLength: -7

View the binary representation of x.

disp(bin(x))

01111101

There are seven implicit zeros at the end of this number before the binary point because the fraction
length of x is -7.

Convert from binary to decimal the binary representation of x with seven zero bits appended to the
end.

bin2dec('011111010000000')

ans =

       16000

The result is the real world value of x.

You can also find the real world value using the equation
Real World Value = Stored Integer Value  ×  2−Fraction Length.

Start by finding the stored integer of x.

Q = storedInteger(x)

Q =

  125

Use the stored integer to find the real world value of x.

real_world_value = double(Q) * 2^-x.FractionLength

real_world_value =

       16000

 Negative Fraction Length
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See Also
fi
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Fraction Length Greater Than Word Length
A fraction length greater than the word length of a fixed-point number occurs when the number has
an absolute value less than one and contains leading zeros.

x = fi(.0234,1,8)

x = 

    0.0234

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 8
        FractionLength: 12

View the binary representation of x.

disp(bin(x))

01100000

There are four implicit leading zeros after the binary point and before the binary representation of
the stored integer because the fraction length of x is four greater than the word length.

Convert from binary to decimal the binary representation of x with four leading zeros, and scale this
value according to the fraction length.

bin2dec('000001100000')*2^(-12)

ans =

    0.0234

The result is the real world value of x.

You can also find the real world value using the equation
Real World Value = Stored Integer Value  ×  2−Fraction Length.

Start by finding the stored integer of x.

Q = storedInteger(x)

Q =

   96

Use the stored integer to find the real world value of x.

real_world_value = double(Q) * 2^-x.FractionLength

real_world_value =

    0.0234

 Fraction Length Greater Than Word Length
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See Also
fi
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fi Constructor Does Not Follow globalfimath Rules

Issue
If no fimath properties are used in the argument of the fi constructor, then it always uses nearest
rounding and saturates on overflow for the creation of the fi object, regardless of any
globalfimath settings.

Possible Solutions
If this behavior is undesirable for your application, you can do one of the following:

Use the cast Function to Create a fi Object Using the globalfimathrules

G = globalfimath('RoundingMethod', 'Floor', 'OverflowAction','Wrap');
cast(x, 'like', fi([],1,16,10))

When you create a fi object using the cast function, the resulting fi object does not have a local
fimath.

Specify fimath Properties in the fi Constructor

fi(x,1,16,10,'RoundingMethod','Floor','OverflowAction','Wrap');

When you create a fi object with fimath properties in the constructor, the fi object does have a
local fimath.

See Also
fi | fimath | globalfimath
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Decide Which Workflow is Right for Your Application
There are two primary workflows available for converting MATLAB code to fixed-point code.

• Manual Workflow

The manual workflow provides the most control to optimize the fixed-point types, but requires a
greater understanding of fixed-point concepts.

For more information, see “Manual Fixed-Point Conversion Best Practices” on page 11-3.
• Automated Workflow

The Fixed-Point Converter app enables you to convert your MATLAB code to fixed-point code
without requiring extensive preexisting knowledge of fixed-point concepts. However, this workflow
provides less control over your data types.

For more information, see “Automated Fixed-Point Conversion Best Practices” on page 7-44.

 Manual Workflow Automated Workflow
Fully automated conversion  ✓

Less fixed-point expertise
required

 ✓

Quick turnaround time  ✓

Simulation range analysis ✓ ✓

Static range analysis  ✓

Iterative workflow ✓  
Portable design ✓ ✓

Greatest control and
optimization of data types

✓  

Data type proposal ✓ ✓

Histogram logging ✓ ✓

Code coverage  ✓

Automatic plotting of output
variables for comparison

 ✓

See Also

More About
• “Manual Fixed-Point Conversion in MATLAB”
• “Automated Fixed-Point Conversion in MATLAB”
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Tips for Making Generated Code More Efficient
In this section...
“fimath Settings for Efficient Code” on page 49-9
“Replace Functions With More Efficient Fixed-Point Implementations” on page 49-9

fimath Settings for Efficient Code
The default settings of the fimath object offer the smallest rounding error and prevent overflows.
However, they can result in extra logic in generated code. These default settings are:

• RoundingMethod: Nearest
• OverflowAction: Saturate
• ProductMode: FullPrecision
• SumMode: FullPrecision

For leaner code, it is recommended that you match the fimath settings to the settings of your
processor.

• The KeepLSB setting for ProductMode and SumMode models the behavior of integer operations in
the C language. KeepMSB for ProductMode models the behavior of many DSP devices.

• Different rounding methods require different amounts of overhead code. Setting the
RoundingMethod property to Floor, which is equivalent to two’s complement truncation,
provides the most efficient rounding implementation for most operations. For the divide function,
the most efficient RoundingMethod is Zero.

• The standard method for handling overflows is to wrap using modulo arithmetic. Other overflow
handling methods create costly logic. It is recommended that you set the OverflowAction
property to Wrap when possible.

Replace Functions With More Efficient Fixed-Point Implementations
CORDIC

The CORDIC-based algorithms are among the most hardware friendly because they require only
iterative shift-add operations. Replacing functions with one of the CORDIC implementations can make
your generated code more efficient. For a list of the CORDIC functions, and examples of them being
implemented, see “CORDIC Algorithms”.

Lookup tables

You can implement some functions more efficiently by using a lookup table approach. For an example,
see “Implement Fixed-Point Log2 Using Lookup Table” on page 53-152.

Division

Division is often not supported by hardware. When possible, it is best to avoid division operations.

When the denominator is a power of two, you can rewrite the division as a bit shift operation.

x/8

 Tips for Making Generated Code More Efficient
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can be rewritten as

bitsra(x,3)

Other times it is more efficient to implement division as a multiplication by a reciprocal.

x/5

can be rewritten as

x*0.2
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Know When a Function is Supported for Instrumentation and
Acceleration

There are several steps you can take to identify the features which could result in errors during
conversion.

• %#codegen and coder.screener

Add the %#codegen pragma to the top of the MATLAB file that is being converted to fixed point.
Adding this directive instructs the MATLAB Code Analyzer to help you diagnose and fix violations
that would result in errors during when you try to accelerate or instrument your code.

The coder.screener function takes your function as its input argument and warns you of
anything in your code that is not supported for codegen. Codegen support is essential for
minimum and maximum logging and data type proposals.

• Consult the table of supported functions

See “Language Support” for a table of features supported for code generation and fixed-point
conversion.

See Also

More About
• “Resolve Error: Function is not Supported for Fixed-Point Conversion” on page 49-12
• “Compilation Directive %#codegen” on page 14-7
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Resolve Error: Function is not Supported for Fixed-Point
Conversion

Issue
Some functions are not supported for fixed-point conversion and could result in errors during
conversion.

Possible Solutions
Isolate the Unsupported Functions

When you encounter a function that is not supported for conversion, you can temporarily leave that
part of the algorithm in floating point.

The following code returns an error because the log function is not supported for fixed-point inputs.

x = fi(rand(3),1,16,15);
y = log(x)

Cast the input, x, to a double, and then cast the output back to a fixed-point data type.

 y = fi(log(double(x)),1,16)

y = 

   -0.2050   -0.0906   -1.2783
   -0.0990   -0.4583   -0.6035
   -2.0637   -2.3275   -0.0435

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 13

This casting allows you to continue with your conversion until you can find a replacement.

Create a Replacement Function

You can replace the unsupported function with an alternative that is supported for fixed-point
conversion.

• Lookup Table Approximation — You can replace many functions that are not supported for fixed-
point conversion with a lookup table. For an example, see “Implement Fixed-Point Log2 Using
Lookup Table” on page 53-152.

• Polynomial Approximation — You can approximate the results of a function that is not supported
for fixed-point with a polynomial approximation. For an example, see “Calculate Fixed-Point
Arctangent” on page 53-68.

• User-Authored Function — You can write your own function that supports fixed-point inputs. For
example, using the mod function, which does support fixed-point inputs, you can write your own
version of the rem function, which does not support fixed-point inputs.
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See Also

More About
• “Know When a Function is Supported for Instrumentation and Acceleration” on page 49-11
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Resolve Error: fi*non-fi

Issue
When multiplying a fixed-point variable by a non-fixed-point variable, the variable that does not have
a fixed-point type can only be a constant

Possible Solutions
Before instrumenting your code, cast the non-fi variable to an acceptable fixed-point type.

Original Algorithm New Algorithm
function y = myProduct(x)
    y = 1;
    for n = 1:length(x)
        y(:) = y*x(n);
    end
end

function y = myProduct(x)
    y = ones(1,1, 'like', x(1)*x(1));
    for n = 1:length(x)
        y(:) = y*x(n);
    end
end

See Also
Functions
cast | ones | zeros
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Resolve Error: Data Type Mismatch

Issue
In this example, y uses the default fimath setting FullPrecision for the SumMode property. At
each iteration of the for-loop in the function mysum, the word length of y grows by one bit.

During simulation in MATLAB, there is no issue because data types can easily change in MATLAB.
However, a data type mismatch error occurs at build time because data types must remain static in C.

Possible Solutions
Rewrite the function to use subscripted assignment within the for-loop.

In this example, rewrite y = y + x(n) as y(:) = y + x(n), so that the value on the right is assigned in to
the data type of y. This assignment preserves the numerictype of y and avoids the type mismatch
error.

Original Algorithm New Algorithm
Function:

function y = mysum(x,T)  %#codegen  
     y = zeros(size(x), 'like', T.y);
    for n = 1:length(x)
        y = y + x(n);
    end
end

Function:

function y = mysum(x,T)  %#codegen  
     y = zeros(size(x), 'like', T.y);
    for n = 1:length(x)
        y(:) = y + x(n);
    end
end

Types Table:

function T = mytypes(dt)
    switch(dt)
        case 'fixed'
        F = fimath('RoundingMethod', 'Floor')
        T.x = fi([],1,16,11, F);
        T.y = fi([],1,16,6, F);
    end
end

Types Table:

function T = mytypes(dt)
    switch(dt)
        case 'fixed'
        F = fimath('RoundingMethod', 'Floor')
        T.x = fi([],1,16,11, F);
        T.y = fi([],1,16,6, F);
    end
end

See Also
subsasgn

More About
• “Compilation Directive %#codegen” on page 14-7
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Resolve Error: Mismatched fimath

Issue
If two fi object operands have an attached fimath, the fimaths must be equal.

Possible Solutions
Use the removefimath function to remove the fimath of one of the variables in just one instance.
By removing the fimath, you avoid the “mismatched fimath” error without permanently changing
the fimath of the variable.

Original Algorithm New Algorithm
Function:

function y = mysum(x,T)  %#codegen  
    y = zeros(size(x), 'like', T.y);
   for n = 1:length(x)
        y(:) = y + x(n);
   end
end

Function:

function y = mysum(x,T)  %#codegen  
    y = zeros(size(x), 'like', T.y);
   for n = 1:length(x)
          y(:) = removefimath(y) + x(n);
   end
end

Types Table:

function T = mytypes(dt)
    switch(dt)
        case 'fixed'
        T.x = fi([],1,16,0, 'RoundingMethod', 'Floor',...
         'OverflowAction','Wrap');
        T.y = fi([],1,16,0, 'RoundingMethod','Nearest');
    end
end

Types Table:

function T = mytypes(dt)
switch(dt)
    case 'fixed'
        T.x = fi([],1,16,0, 'RoundingMethod','Floor',...
         'OverflowAction','Wrap');
        T.y = fi([],1,16,0, 'RoundingMethod', 'Nearest');
 end
end

See Also
removefimath | fimath | fi
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Why Does the Fixed-Point Converter App Not Propose Data
Types for System Objects?

The Fixed-Point Converter app might not display simulation range data or data type proposals for a
System object because:

• The app displays range information for a subset of DSP System Toolbox System objects only. For a
list of supported System objects, see Converting System Objects to Fixed-Point Using the Fixed-
Point Converter App on page 7-69.

• The System object is not configured to use custom fixed-point settings.

If the system object is not configured correctly, the proposed data type column appears dimmed
and displays Full precision or Same as... to show the current property setting.

See Also

Related Examples
• “Convert dsp.FIRFilter Object to Fixed-Point Using the Fixed-Point Converter App” on page 7-70
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Slow Operations in the Fixed-Point Converter App
By default, the Fixed-Point Converter app screens your entry-point functions for code generation
readiness. For some large entry-point functions, or functions with many calls, screening can take a
long time. If the screening takes a long time, certain app or MATLAB operations can be slower than
expected or appear to be unresponsive.

To determine if slow operations are due to the code generation readiness screening, disable the
screening.
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Blocks That Do Not Support Fixed-Point Data Types
Issue
Some blocks do not support fixed-point data types and can result in an error during fixed-point
conversion.

The Simulink Block Data Type Support table summarizes characteristics of blocks in the Simulink
block library, including whether or not they support fixed-point data types. To view the table, at the
MATLAB command line, enter:

showblockdatatypetable

Possible Solutions
Isolate the Unsupported Block

If you encounter a block that is not supported for fixed-point conversion, you can isolate the
unsupported block by decoupling it with a Data Type Conversion block. This workaround is useful
when you do not intend to use the unsupported block on an embedded processor.

One example of this is using the Chirp Signal block, which does not support fixed-point outputs, to
generate a signal for simulation data.

The subsystem shown is designed for use on an embedded processor and must be converted to fixed
point. The Chirp Signal block creates simulation data. The Chirp Signal block supports only floating-
point double outputs. However, if you decouple the Chirp Signal from the rest of the model by
inserting a data type conversion block after the Chirp Signal block, you can use the Fixed-Point Tool
to continue converting the subsystem to fixed point.

Isolate Unsupported Blocks with the Fixed-Point Tool

During the preparation stage of conversion, the Fixed-Point Tool identifies any blocks or constructs in
your system under design that do not support fixed-point types. When the system under design
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contains unsupported constructs, the Fixed-Point Tool encapsulates any unsupported elements in a
subsystem containing the unsupported block surrounded by Data Type Conversion blocks. For more
information, see “Use the Fixed-Point Tool to Prepare a System for Conversion” on page 38-2.

Isolate Unsupported Blocks with fxpopt

By default, fxpopt isolates any unsupported blocks by encapsulating the unsupported block in a
subsystem surrounded by Data Type Conversion blocks. Isolated blocks are ignored by the optimizer.

Note When fxpopt isolates unsupported blocks, iterations of the optimization cannot be run in
parallel. To run iterations of the optimization in parallel, use the Fixed-Point Tool to isolate
unsupported blocks in the prepare stage, save the model, then run fxpopt with 'UseParallel'
enabled.

Lookup Table Block Implementation

Many blocks that are not supported by the Fixed-Point Tool can be approximated with a lookup table
block. Design an efficient fixed-point implementation of an unsupported block by using the Lookup
Table Optimizer. For an example, see “Convert Floating-Point Model to Fixed Point” on page 40-2.

User-Authored Blocks

You can create your own block which is supported by the Fixed-Point Tool from one of the blocks in
the User-Defined Functions Library.

See Also
Data Type Conversion

More About
• “Approximate Functions with Lookup Tables”
• “User-Defined MATLAB Functions” (HDL Coder)
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Prevent the Fixed-Point Tool from Overriding Integer Data
Types

When performing data type override (DTO) on a selected system, the Fixed-Point Tool overrides the
output data types of each block in the system. The only blocks that are never affected by DTO are
blocks with boolean or enumerated output data types, and blocks that are untouched by DTO by
design (for example, lookup table blocks). Depending on your application, you might want to preserve
the data type of certain signals, for example, blocks that represent indices.

To prevent the Fixed-Point Tool from overriding the data type of a specific block, set the
DataTypeOverride setting of the numeric type of the block to Off.

1 Open the Block Parameters dialog box by double-clicking the block.
2 Under the Signal Attributes tab, in the Output data type field, specify the desired data type

and set the et DataTypeOverride property to Off.

You can set this override to off at the command line by changing the Data Type Override setting of a
signal’s numerictype. In this example, the output data type of this block remains a built-in uint8
even after performing data type override.

Alternatively, you can prevent the Fixed-Point Tool from replacing the current data type by using the
Lock output data type setting against changes by the fixed-point tools parameter that is
available on many blocks.

See Also

More About
• “Best Practices for Fixed-Point Conversion Workflow” on page 42-5
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The Fixed-Point Tool did not Propose Data Types

Issue
In some cases, the Fixed-Point Tool does not propose data types for the system under design, or for
one or more blocks within the system.

Possible Solutions
Inadequate Range Information

The Fixed-Point Tool bases its data type proposition on range information collected through
simulation, derivation, and design ranges that you provide. Before proposing data types, you must
collect range information which the Fixed-Point Tool uses to propose data types.

To collect range information, in the Fixed-Point Tool, select the desired Range Collection Mode in
the Setup pane, and then click Collect Ranges.

Inherited Output Data Types

Blocks with inherited output data types use internal block rules to determine the output data type of
the block. To enable proposals for results that specify an inherited output data type, in the Fixed-
Point Tool, under Settings, set the Convert inherited types setting to Yes.

If this setting is set to No, the Fixed-Point Tool marks the proposal for these blocks as N/A.

See Also

More About
• “Collect Ranges” on page 42-20
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Fraction Lengths and Fixed-Point Numbers
In this section...
“Fraction Length Greater Than Word Length” on page 49-23
“Negative Fraction Length” on page 49-23

Fraction Length Greater Than Word Length
A fraction length greater than the word length of a fixed-point number occurs when the number has
an absolute value less than one and contains leading zeros.

In the following example, the fixed-point tool proposed a data type with a fraction length that is four
greater than the word length. A binary representation of this number consists of the binary point,
four implied leading zeros, followed by the binary representation of the stored integer: . X X X X 0 1 1
0 0 0 0 0, where the x’s represent the implied zeros.

Negative Fraction Length
A negative fraction length occurs when the number contains trailing zeros before the decimal point.

In the following example, the fixed-point tool proposed a data type with a negative fraction length. A
binary representation of this number consists of the binary representation of the stored integer,
followed by seven implied zeros, and then the binary point: 0 1 1 1 1 1 0 1 X X X X X X X ., where the
x’s represent the implied zeros.

See Also

More About
• “Fraction Length Greater Than Word Length” on page 49-5
• “Negative Fraction Length” on page 49-3
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Why am I missing data type proposals for MATLAB Function
block variables?

Fixed-Point Tool will not propose data types for variables in code inside a MATLAB Function block
that is not executed during simulation. If your MATLAB Function block contains dead code, the
variables will not appear in the Fixed-Point Tool.

• Update your input source so that all sections of your code are executed during simulation.
• This section of code may not be necessary. Delete the portion of code that is not exercised during

simulation.
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Data Type Propagation Errors After Applying Proposed Data
Types

Under certain conditions, the Fixed-Point Tool may propose a data type that is not compatible with
the model. The following topic outlines model configurations that may cause this issue, and how you
can resolve the issue.

Tip Before attempting to autoscale a model, always ensure that you can update diagram successfully
without data type override turned on.

Shared Data Type Groups
View Shared Data Type Groups

Organizing Fixed-Point Tool results into groups that must share the same data type can aid in the
debugging process.

To view the data type group that a result belongs to, add the DTGroup column to the spreadsheet.
Click the add column button . Select DTGroup in the menu.

Click the DTGroup column header to sort the results by this column.

Locked data type in a shared group

When an object is locked against changes by the Fixed-Point Tool, the Fixed-Point Tool does not
propose a new data type for the object. If one of the results in a group of results that must share the
same data type is locked, the Fixed-Point Tool proposes data types for all other objects in the group
except for the locked object. If the data type proposed for the group is not compatible with the locked
data type, a propagation error results.

To avoid incompatible data type proposals, perform one of the following.

• Lock all objects in the group against changes by the Fixed-Point Tool.
• Unlock the object in the group with the locked data type.

The ProposedDT column of the Fixed-Point Tool displays locked for all results that are locked
against changes by the Fixed-Point Tool.

Part of a Shared Data Type Group is Out of Scope

When results that are in a shared data type group share a data type from outside the scope of the
system under design, the Fixed-Point Tool is not able to propose a data type.

To get a data type proposal, perform one of the following.

• Ensure that objects inside the system under design do not share their output data type with an
object outside the selected system. One way to ensure that objects inside your system under
design do not share their data type with objects outside the system, is by inserting Data Type
Conversion blocks at the system boundaries.

• Ensure that all objects that must share a data type are within the scope of the system under
design.
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Model Reference Blocks

Systems that share data types across model reference boundaries may get data type propagation
errors.

To avoid data type propagation errors, consider the following.

• Do not use the same signal object across model reference boundaries.
• Insert Data Type Conversion blocks at model reference boundaries.

Block Constraints
Certain blocks have constraints on which data types it can support. For example, the Merge block
requires that all inputs use the same data type.

• Certain blocks in the Communications Toolbox, DSP System Toolbox, and Computer Vision Toolbox
libraries have data type constraints. The Fixed-Point Tool is not aware of this requirement and
does not use it for automatic data typing. Therefore, the tool might propose a data type that is
inconsistent with the block requirements. In this case, manually edit the proposed data type such
that it complies with block constraints.

Visit the individual block reference pages for more information on these constraints.

Internal Block Rules
Sum Blocks

Sum blocks have both an output data type as well as an accumulator data type. Under certain
conditions, when the accumulator data type is set to Inherit: Inherit via internal rule, a
data type propagation error can result.

To get a compatible data type proposal, perform one of the following.

• Change the accumulator data type to something other than Inherit: Inherit via internal
rule and repropose data types for your model to get compatible data type proposals.

• Lock the block against changes by the fixed-point tools.

See Also

More About
• “Models That Might Cause Data Type Propagation Errors” on page 42-7
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Resolve Range Analysis Issues

Issue
Different types of range analysis issues can occur in the Fixed-Point Tool depending on the specifics
of your model.

Possible Solutions
Replace Unsupported Blocks

If the model contains blocks that are not supported for fixed-point conversion, range analysis will fail
and the Fixed-Point Tool generates an error. Review the error message information and replace the
unsupported blocks. For more information, see “Model Compatibility with Range Analysis” on page
43-4.

Fix Design Range Conflicts

If the model contains conflicting design range information, the analysis cannot derive range data and
the Fixed-Point Tool generates an error. Examine the design ranges specified in the model to identify
inconsistent design specifications and modify them to be consistent. For more information, see
“Fixing Design Range Conflicts” on page 43-20.

Specify Additional Design Range Information

If there is insufficient design range information specified, the analysis cannot derive range data and
the Fixed-Point Tool highlights the results. Examine the model to determine which design range
information is missing. Specify additional range information or reconfigure the code so that the
Fixed-Point Tool can derive ranges for the model. For more information, see “Insufficient Design
Range Information” on page 43-14 and “Troubleshoot Range Analysis of System Objects” on page 43-
16.

See Also

More About
• “How Range Analysis Works” on page 43-2
• “Blocks That Do Not Support Fixed-Point Data Types” on page 49-19
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Data Type Mismatch and Structure Initial Conditions

Specify Bus Signal Initial Conditions Using Simulink.Parameter
Objects
This example shows how to replace a structure initial condition with a Simulink.Parameter object.
This approach allows the structure to maintain its tunability.

1 Double-click the Unit Delay block to view the block parameters. The Unit Delay block uses a
structure initial condition.

2 Define a Simulink.Parameter object at the MATLAB command line. Set the data type of the
parameter object to the bus object SensorData. Set the value of the parameter object to the
specified structure. To maintain tunability, set the StorageClass property to ExportedGlobal.

P = Simulink.Parameter;
P.DataType = 'Bus: SensorData';
P.Value = struct('Torque',5,'Speed',8);
P.StorageClass = 'ExportedGlobal';

3 In the Unit Delay block dialog box, set Initial condition to P, the Simulink.Parameter object
you defined. The structure defined in the Simulink.Parameter object remains tunable.

For more information on generating code for bus signals that use tunable initial condition structures,
see “Control Signal and State Initialization in the Generated Code”.

Data Type Mismatch and Masked Atomic Subsystems
A data type mismatch occurs when a structure initial condition drives a bus signal that you specified
using a masked atomic subsystem.

Change the subsystem to non atomic, or specify the structure parameter using a
Simulink.Parameter object (as described in “Specify Bus Signal Initial Conditions Using
Simulink.Parameter Objects” on page 49-28) to avoid the data type mismatch error.
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See Also

Related Examples
• “Bus Objects in the Fixed-Point Workflow” on page 46-2
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Reconversion Using the Fixed-Point Tool
After you simulate your model using embedded types and compare the floating point and fixed-point
behavior of your system, determine if the new behavior is satisfactory. If the behavior of the system
using the newly applied fixed-point data types is not acceptable, you can iterate through the process
of editing your proposal settings, proposing and applying data types, and comparing the results until
you find settings that work for your system. You do not need to perform the range collection step
again.

See Also

More About
• “Iterative Fixed-Point Conversion Using the Fixed-Point Tool” on page 42-9
• “Explore Multiple Floating-Point to Fixed-Point Conversions” on page 40-11
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Data Type Optimization Not Successful

Issue
You can use the fxpopt function or the Optimized Fixed-Point Conversion workflow in the
Fixed-Point Tool to optimize the data types of a model or subsystem. Sometimes, the optimization is
not successful. The following sections describe how to troubleshoot these cases.

Possible Solutions
Unable to Model Problem — No Constraints Specified

To determine if the behavior of a new fixed-point implementation is acceptable, the optimization
requires well-defined behavioral constraints. Use the addTolerance method of the
fxpOptimizationOptions class to specify numerical constraints for the optimized design.
Alternatively, use blocks from the Model Verification library. For more information, see “Specify
Behavioral Constraints” on page 42-18.

Unable to Model Problem — Model is not Supported

The model containing the system you want to optimize must have the following characteristics:

• All blocks in the model must support fixed-point data types.
• The design ranges specified on blocks in the model must be consistent with the simulation ranges.
• If the model contains a MATLAB Function block, it must use MATLAB language features supported

for fixed-point conversion. For more information, see “MATLAB Language Features Supported for
Automated Fixed-Point Conversion” on page 7-35.

• The data logging format of the model must be set to Dataset.

To configure this setting, in the Configuration Parameters, in the Data Import/Export pane, set
Format to Dataset.

• The model must have finite simulation stop time.

Data Type Conversion Blocks Were Ignored by Optimization

When the Input and output to have equal parameter of a Data Type Conversion block is set to
Stored Integer (SI), the Data Type Conversion block will be ignored by the optimization.

Unable to Find a Fixed-Point Implementation that Met the Tolerances

If the optimization cannot find a feasible solution, try these solutions:

• Relax signal tolerances.
• Allow larger word lengths to expand the search space.
• Consider using time windows when specifying signal tolerances. For more information, see

“Tolerance Computation”.
• Instead of specifying low-level tolerances on individual signals, consider specifying high-level

behavioral constraints using blocks from the “Model Verification” library. For more information,
see “Specify Behavioral Constraints” on page 42-18.
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Unable to Explore Results

When the optimization is not able to find a new valid result, the fxpopt function does not produce an
OptimizationResult output. Invalid results are most often the result of using a model that is not
supported for optimization. For more information, see “Unable to Model Problem — No Constraints
Specified Unable to Model Problem — Model is not Supported” on page 49-31.

When the optimization is successful, you can explore several different implementations of your design
that were found during the optimization process. Do not save the model until you are satisfied with
the new design. Saving the model disables you from continuing to explore the other implementations.

Resolve Error: The RowNames property must be a string array or a cell array, with each
name containing one or more characters

This error may occur if clear all is used during fixed-point conversion workflows in the Fixed-Point
Tool. clear all is currently not supported by fixed-point conversion workflows. Do not use clear
all in initialization functions (InitFcn), or at the MATLAB Command Window when using the Fixed-
Point Tool.

Derived Range Analysis Does Not Work for Accumulator Data Type

Only block output signals participate in derived range analysis. If a block has additional data type
controls, such as for the accumulator or intermediate results, ranges are not derived for these
elements. As a result, when optimization considers both simulation ranges and derived ranges, only
simulation range information is used to optimize accumulator data types. Therefore, the optimized
accumulator data type and output data type for a given block may differ. For more information, see
“How Range Analysis Works” on page 43-2.

See Also
Classes
fxpOptimizationOptions | OptimizationResult | OptimizationSolution

Functions
addTolerance | showTolerances | explore | fxpopt

More About
• “Optimize Fixed-Point Data Types for a System” on page 40-14
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Compile-Time Recursion Limit Reached

Issue
You see a message such as:

Compile-time recursion limit reached. Size or type of
input #1 of function 'foo' may change at every call.

Compile-time recursion limit reached. Value of input #1
of function 'foo' may change at every call.

Cause
With compile-time recursion, the code generator produces multiple versions of the recursive function
instead of producing a recursive function in the generated code. These versions are known as
function specializations. The code generator is unable to use compile-time recursion for a recursive
function in your MATLAB code because the number of function specializations exceeds the limit.

Solutions
To address the issue, try one of these solutions:

• “Force Run-Time Recursion” on page 49-33
• “Increase the Compile-Time Recursion Limit” on page 49-35

Force Run-Time Recursion
• For this message:

Compile-time recursion limit reached. Value of input #1
of function 'foo' may change at every call.

Use this solution:

“Force Run-Time Recursion by Treating the Input Value as Nonconstant” on page 49-33.
• For this message:

Compile-time recursion limit reached. Size or type of
input #1 of function 'foo' may change at every call.

In the code generation report, look at the function specializations. If you can see that the size of
an argument is changing for each function specialization, then try this solution:

“Force Run-Time Recursion by Making the Input Variable-Size” on page 49-34.

Force Run-Time Recursion by Treating the Input Value as Nonconstant

Consider this function:

function y = call_recfcn(n)
A = ones(1,n);
x = 100;
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y = recfcn(A,x);
end

function y = recfcn(A,x)
if size(A,2) == 1 || x == 1
    y = A(1);
else
    y = A(1)+recfcn(A(2:end),x-1);
end
end

The second input to recfcn has the constant value 100. The code generator determines that the
number of recursive calls is finite and tries to produce 100 copies of recfcn. This number of
specializations exceeds the compile-time recursion limit. To force run-time recursion, instruct the
code generator to treat the second input as a nonconstant value by using coder.ignoreConst.

function y = call_recfcn(n)
A = ones(1,n);
x = coder.ignoreConst(100);
y = recfcn(A,x);
end

function y = recfcn(A,x)
if size(A,2) == 1 || x == 1
    y = A(1);
else
    y = A(1)+recfcn(A(2:end),x-1);
end
end

If the code generator cannot determine that the number of recursive calls is finite, it produces a run-
time recursive function.

Force Run-Time Recursion by Making the Input Variable-Size

Consider this function:

function z = call_mysum(A)
%#codegen
z = mysum(A);
end

function y = mysum(A)
coder.inline('never');
if size(A,2) == 1
    y = A(1);
else
    y = A(1)+ mysum(A(2:end));
end
end

If the input to mysum is fixed-size, the code generator uses compile-time recursion. If A is large
enough, the number of function specializations exceeds the compile-time limit. To cause the code
generator to use run-time conversion, make the input to mysum variable-size by using
coder.varsize.
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function z = call_mysum(A)
%#codegen
B = A;
coder.varsize('B');
z = mysum(B);
end

function y = mysum(A)
coder.inline('never');
if size(A,2) == 1
    y = A(1);
else
    y = A(1)+ mysum(A(2:end));
end
end

Increase the Compile-Time Recursion Limit
The default compile-time recursion limit of 50 is large enough for most recursive functions that
require compile-time recursion. Usually, increasing the limit does not fix the issue. However, if you
can determine the number of recursive calls and you want compile-time recursion, increase the limit.
For example, consider this function:

function z = call_mysum()
%#codegen
B = 1:125;
z = mysum(B);
end

function y = mysum(A)
coder.inline('never');
if size(A,2) == 1
    y = A(1);
else
    y = A(1)+ mysum(A(2:end));
end
end

You can determine that the code generator produces 125 copies of the mysum function. In this case, if
you want compile-time recursion, increase the compile-time recursion limit to 125.

To increase the limit, in a code acceleration configuration object, increase the value of the
CompileTimeRecursionLimit configuration parameter.

See Also

More About
• “Code Generation for Recursive Functions” on page 14-14
• “Set Up C Code Compilation Options” on page 12-17
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Output Variable Must Be Assigned Before Run-Time Recursive
Call

Issue
You see this error message:

All outputs must be assigned before any run-time
recursive call. Output 'y' is not assigned here.

Cause
Run-time recursion produces a recursive function in the generated code. The code generator is
unable to use run-time recursion for a recursive function in your MATLAB code because an output is
not assigned before the first recursive call.

Solution
Rewrite the code so that it assigns the output before the recursive call.

Direct Recursion Example

In the following code, the statement y = A(1) assigns a value to the output y. This statement occurs
after the recursive call y = A(1)+ mysum(A(2:end)).

function z = call_mysum(A)
B = A;
coder.varsize('B');
z = mysum(B);
end

function y = mysum(A)
coder.inline('never');
if size(A,2) > 1
    y = A(1)+ mysum(A(2:end));
    
else
    y = A(1);
end
end

Rewrite the code so that assignment y = A(1) occurs in the if block and the recursive call occurs
in the else block.

function z = call_mysum(A)
B = A;
coder.varsize('B');
z = mysum(B);
end

function y = mysum(A)
coder.inline('never');

if size(A,2) == 1
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    y = A(1);
else
    y = A(1)+ mysum(A(2:end));
end
end

Alternatively, before the if block, add an assignment, for example, y = 0.

function z = call_mysum(A)
B = A;
coder.varsize('B');
z = mysum(B);
end

function y = mysum(A)
coder.inline('never');
y = 0;
if size(A,2) > 1
    y = A(1)+ mysum(A(2:end));
    
else
    y = A(1);
end
end

Indirect Recursion Example

In the following code, rec1 calls rec2 before the assignment y = 0.

function y = rec1(x)
%#codegen

if x >= 0
    y = rec2(x-1)+1;
else
    y = 0;
end
end

function y = rec2(x)
y = rec1(x-1)+2;
end

Rewrite this code so that in rec1, the assignment y = 0 occurs in the if block and the recursive call
occurs in the else block.

function y = rec1(x)
%#codegen

if x < 0
    y = 0;
else
    y = rec2(x-1)+1;
end
end

function y = rec2(x)
y = rec1(x-1)+2;
end
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See Also

More About
• “Code Generation for Recursive Functions” on page 14-14
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Unable to Determine That Every Element of Cell Array Is
Assigned

Issue
You see one of these messages:

Unable to determine that every element of 'y' is
assigned before this line.

Unable to determine that every element of 'y' is
assigned before exiting the function.

Unable to determine that every element of 'y' is
assigned before exiting the recursively called function.

Cause
For code generation, before you use a cell array element, you must assign a value to it. When you use
cell to create a variable-size cell array, for example, cell(1,n), MATLAB assigns an empty matrix
to each element. However, for code generation, the elements are unassigned. For code generation,
after you use cell to create a variable-size cell array, you must assign all elements of the cell array
before any use of the cell array.

The code generator analyzes your code to determine whether all elements are assigned before the
first use of the cell array. The code generator detects that all elements are assigned when the code
follows this pattern:

function z = CellVarSize1D(n, j)
%#codegen
x = cell(1,n);   
for i = 1:n
    x{i} = i;
end
z = x{j};
end

Here is the pattern for a multidimensional cell array:

function z = CellAssign3D(m,n,p)
%#codegen
x = cell(m,n,p);
for i = 1:m
    for j =1:n
        for k = 1:p
            x{i,j,k} = i+j+k;
        end
    end
end
z = x{m,n,p};
end
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If the code generator detects that some elements are not assigned, code generation fails. Sometimes,
even though your code assigns all elements of the cell array, code generation fails because the
analysis does not detect that all elements are assigned.

Here are examples where the code generator is unable to detect that elements are assigned:

• Elements are assigned in different loops

...
x = cell(1,n)
for i = 1:5
    x{i} = 5;
end
for i = 6:n
    x{i} = 7;
end 
...             

• The variable that defines the loop end value is not the same as the variable that defines the cell
dimension.

...
x = cell(1,n);
m = n;
for i = 1:m
    x{i} = 2;
end 
...                 

For more information, see “Definition of Variable-Size Cell Array by Using cell” on page 30-8.

Solution
Try one of these solutions:

• “Use recognized pattern for assigning elements” on page 49-40
• “Use repmat” on page 49-40
• “Use coder.nullcopy” on page 49-41

Use recognized pattern for assigning elements

If possible, rewrite your code to follow this pattern:

...
x = cell(1,n);   
for i = 1:n
    x{i} = i;
end
z = x{j};
...

Use repmat

Sometimes, you can use repmat to define the variable-size cell array.

Consider this code that defines a variable-size cell array. It assigns the value 1 to odd elements and
the value 2 to even elements.
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function z = repDefine(n, j)
%#codegen
c =cell(1,n);
for i = 1:2:n-1
    c{i} = 1;
end
for i = 2:2:n
    c{i} = 2;
end
z = c{j};

Code generation does not allow this code because:

• More than one loop assigns the elements.
• The loop counter does not increment by 1.

Rewrite the code to first use cell to create a 1-by-2 cell array whose first element is 1 and whose
second element is 2. Then, use repmat to create a variable-size cell array whose element values
alternate between 1 and 2.

function z = repVarSize(n, j)
%#codegen
c = cell(1,2);
c{1} = 1;
c{2} = 2;
c1= repmat(c,1,n);
z = c1{j};
end

You can pass an initially empty, variable-size cell array into or out of a function by using repmat. Use
the following pattern:

function x = emptyVarSizeCellArray
x = repmat({'abc'},0,0);
coder.varsize('x');
end

This code indicates that x is an empty, variable-size cell array of 1x3 characters that can be passed
into or out of functions.

Use coder.nullcopy

As a last resort, you can use coder.nullcopy to indicate that the code generator can allocate the
memory for your cell array without initializing the memory. For example:

function z = nulcpyCell(n, j)
%#codegen
c =cell(1,n);
c1 = coder.nullcopy(c);
for i = 1:4
    c1{i} = 1;
end
for i = 5:n
    c1{i} = 2;
end
z = c1{j};
end

 Unable to Determine That Every Element of Cell Array Is Assigned

49-41



Use coder.nullcopy with caution. If you access uninitialized memory, results are unpredictable.

See Also
cell | repmat | coder.nullcopy

More About
• “Cell Array Limitations for Code Generation” on page 30-7
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Nonconstant Index into varargin or varargout in a for-Loop

Issue
Your MATLAB code contains a for-loop that indexes into varargin or varargout. When you
generate code, you see this error message:

Non-constant expression or empty matrix. This expression
must be constant because its value determines the size
or class of some expression.

Cause
At code generation time, the code generator must be able to determine the value of an index into
varargin or varagout. When varargin or varagout are indexed in a for-loop, the code
generator determines the index value for each loop iteration by unrolling the loop. Loop unrolling
makes a copy of the loop body for each loop iteration. In each iteration, the code generator
determines the value of the index from the loop counter.

The code generator is unable to determine the value of an index into varargin or varagout when:

• The number of copies of the loop body exceeds the limit for loop unrolling.
• Heuristics fail to identify that loop unrolling is warranted for a particular for-loop. For example,

consider the following function:

function [x,y,z] = fcn(a,b,c)
%#codegen

[x,y,z] = subfcn(a,b,c);

function varargout = subfcn(varargin)
j = 0;
for i = 1:nargin
    j = j+1;
    varargout{j} = varargin{j};
end

The heuristics do not detect the relationship between the index j and the loop counter i.
Therefore, the code generator does not unroll the for-loop.

Solution
Use one of these solutions:

• “Force Loop Unrolling” on page 49-43
• “Rewrite the Code” on page 49-44

Force Loop Unrolling

Force loop unrolling by using coder.unroll. For example:

function [x,y,z] = fcn(a,b,c)
%#codegen
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[x,y,z] = subfcn(a,b,c);

function varargout = subfcn(varargin)
j = 0;

coder.unroll();
for i = 1:nargin
    j = j + 1;
    varargout{j} = varargin{j};
end

Rewrite the Code

Rewrite the code so that the code generator can detect the relationship between the index and the
loop counter. For example:

function [x,y,z] = fcn(a,b,c)
%#codegen
[x,y,z] = subfcn(a,b,c);

function varargout = subfcn(varargin)
for i = 1:nargin
    varargout{i} = varargin{i};
end

See Also
coder.unroll

More About
• “Code Generation for Variable Length Argument Lists” on page 17-2
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Single-Precision Conversion in Simulink

• “Getting Started with Single Precision Converter” on page 50-2
• “Convert a System to Single Precision” on page 50-5
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Getting Started with Single Precision Converter
The Single Precision Converter converts your model or a system in your model from double precision
to single precision. To open the Single Precision Converter, from the Simulink Apps tab, select
Single Precision Converter.

Select System Under Design
To begin, expand the System Under Design drop-down list and select the system to convert to
single precision.

Check Compatibility
To start the conversion, click Convert to Single.

The Single Precision Converter performs these checks:

• Check that all blocks in the selected system support single precision.

The Single Precision Converter displays a list of blocks that do not support single precision or are
locked against changes by the Fixed-Point Tools. To restart the conversion, replace the blocks that
support only double precision and unlock the blocks that are locked against changes by the Fixed-
Point Tools. Then click Convert to Single.

• Check that the system uses a library standard that supports single-precision designs.

To convert a system to single precision, the language standard must be set to C99 (ISO). If the
specified language standard is not set to C99, the Single Precision Converter changes the math
library.
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• Check that the solver settings are set to fixed step.

Convert

Following the compatibility check, the Single Precision Converter converts the system to single-
precision. The Converter makes these changes:

• Conversion of user-specified double-precision data types to single-precision data types (applies to
block settings, Stateflow chart settings, signal objects, and bus objects).

• When the system under design contains a MATLAB Function block, the converter creates a variant
subsystem containing a generated single-precision version of the MATLAB Function block and the
original MATLAB Function block.

• Output signals and intermediate settings using inherited data types that compile to double-
precision change to single-precision data types.

The converter does not change Boolean, built-in integer, or user-specified fixed-point data types.
When the conversion is finished, the converter displays a table summarizing the compiled and
proposed data types of the objects in the system under design.

Verify

Finally, the Single Precision Converter verifies that the model containing the converted system can
successfully update the diagram. If the model is not able to update the diagram due to data type
mismatch errors at the system boundaries, the Single Precision Converter displays a message.

To resolve the data type mismatch, insert Data Type Conversion blocks at the system boundaries. You
can also resolve the data type mismatch errors by changing the output data type of the blocks feeding
into the system to single or Inherit: Inherit via back propagation.
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See Also

Related Examples
• “Convert a System to Single Precision” on page 50-5
• “Specify Single-Precision Data Type for Embedded Application”
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Convert a System to Single Precision
This example shows how to convert a system to single precision using the Single Precision Converter.
This example converts a subsystem of a double-precision model to single precision. To convert a
subsystem in a model to single precision, surround the subsystem under design with Data Type
Conversion blocks before opening the Single Precision Converter.

1 Open the model. At the command line, enter

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))
ex_corner_detection_dbl

The model uses a combination of double-precision, Boolean, and built-in integer data types.
2 Open the Single Precision Converter. From the Simulink Apps tab, select Single Precision

Converter.
3 Under System Under Design, select the system or subsystem to convert to single precision. For

this example, select the Corner Detector subsystem. Click Convert to Single.

The converter first checks the system for compatibility with the conversion and changes any
model settings that are incompatible. The language standard of the model must be set to C99
(ISO), and the model must use a fixed-step solver.

The converter converts the system and lists all converted data types. The converter changes only
double-precision data types. It does not convert Boolean, fixed-point, or built-in integer types to
single precision.

When the system under design contains a MATLAB Function block, the converter creates a
variant subsystem containing a generated single-precision version of the MATLAB Function block
and the original MATLAB Function block.
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In the final stage of the conversion, the Converter verifies that the conversion was successful by
updating the model.

50 Single-Precision Conversion in Simulink

50-6



4 Return to the model and update the diagram. The blocks inside the Corner Detector subsystem
no longer use double-precision data types.
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See Also

More About
• “Getting Started with Single Precision Converter” on page 50-2
• “Specify Single-Precision Data Type for Embedded Application”
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Simulink Half Precision

• “The Half-Precision Data Type in Simulink” on page 51-2
• “Generate Native Half-Precision C Code from Simulink Models” on page 51-5
• “Half-Precision Field-Oriented Control Algorithm” on page 51-11
• “Image Quantization with Half-Precision Data Types” on page 51-14
• “Convert Single Precision Lookup Table to Half Precision” on page 51-15
• “Digit Classification with Half-Precision Data Types” on page 51-20
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The Half-Precision Data Type in Simulink
Signals and block outputs can specify a half-precision data type. The half-precision data type is
supported for simulation and code generation for parameters and a subset of blocks.

Math Operations in Half-Precision
In Simulink, half-precision inputs to blocks performing arithmetic operations, relational operations,
and binary operations are always cast to single precision, and the operation is performed in single
precision. If the output data type of the block is set to half, the output of the block is cast back to a
half-precision data type.

In MATLAB, however, some functions perform arithmetic operations with half-precision inputs by
emulating the half-precision floating-point math. For example, in MATLAB, the following code is
performed using half-precision floating-point arithmetic.

y = mod(half(u1), half(u2))

In Simulink, using the mod function of the Math Function block, the same operation would be
performed by casting the inputs to single precision and carrying out the operation in single-precision
floating-point math. The result of the arithmetic operations is then cast back to half precision.

y = half(mod(single(half(u1)), single(half(u2))))

Software Features Supported for Half Precision
• The half-precision data type is supported for simulation in Normal, Accelerator, and Rapid

Accelerator modes. The half-precision data type is also supported for SIL, PIL, and external
modes.

• Half precision is supported for C/C++ code generation for .ert targets.

In the generated code, half-precision variables are stored in a class emulating the bit pattern of
the value.

• For embedded hardware targets that natively support special types for half precision, native half-
precision C code generation is supported. For more information, see “Generate Native Half-
Precision C Code from Simulink Models” on page 51-5.

• HDL code generation using HDL Coder.

For more information, see “Getting Started with HDL Coder Native Floating-Point Support” (HDL
Coder).

• In Simulink, the half-precision data type only supports real values. Complex values cannot have a
half-precision data type.

Blocks Supported for Half Precision

To view the blocks that support half precision, at the command line, type:

showblockdatatypetable

Blocks that support half precision display an X in the column labeled Half.
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Generate Code for Half Precision Systems
You can generate C code targeting .ert targets for Simulink models using the half-precision data
type. Code generation for .ert targets requires an Embedded Coder® license.

Open the ex_half_arithmetic model. The model performs several arithmetic operations. All
parameter values and output data types specify a half-precision data type.

open_system('ex_half_arithmetic');

To generate C code for the model, press Ctrl+B. In the code generation report, open the
ex_half_arithmetic.c file. Half-precision variables are types in the generated code as real16_T.
For example, see the rtb_Gain variable.

In the generated code, half-precision variables are stored in a struct emulating the bit pattern of the
value.

Half-precision input variables to arithmetic operations are cast to single precision, and the arithmetic
operation is performed in single precision. If the output data type of the block is set to half, the
result of the operation is cast back to a half-precision data type. For example, see the code computing
the output of the Gain block.

See Also
half
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More About
• “Floating-Point Numbers” on page 35-20
• “Generate Native Half-Precision C Code from Simulink Models” on page 51-5
• “Half-Precision Field-Oriented Control Algorithm” on page 51-11
• “Image Quantization with Half-Precision Data Types” on page 51-14
• “Digit Classification with Half-Precision Data Types” on page 51-20
• “Convert Single Precision Lookup Table to Half Precision” on page 51-15
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Generate Native Half-Precision C Code from Simulink Models
Some embedded hardware targets natively support special types for half precision, such as
_Float16 and _fp16 data types for ARM compilers. You can generate native half-precision C code
for embedded hardware targets that natively support half precision floating-point data types. The
process to generate native half C code is as follows:

• Register a new hardware target device that natively supports half precision using the target
package.

• Set up the Simulink model for native half code generation with the new target hardware.
• Configure the Simulink model toolchain and set up the compiler for half precision.
• Generate native half type code.

Fixed-Point Designer includes preconfigured language implementations for Armclang and GCC
compilers. For other hardware targets, you can specify a custom language implementation based on
your hardware specifications.

Generate Native Half-Precision C Code for ARM Cortex-A with
Armclang Compiler
In this example, an ARM Cortex-A processor is used as the hardware target. The model is configured
to use this ARM target and the Armclang compiler toolchain. Refer to the ARM developer
documentation for detailed information on using the half-precision data type on this hardware. See
Arm Compiler armclang Reference Guide: Half-precision floating-point data types.

Register Target Hardware

Use the target.create function to create an ARM Cortex-A processor target that is compatible
with half precision.

arm_half = target.create('Processor', ...
'Manufacturer', "ARM Compatible", ...
'Name', 'ARM Cortex-A Half-Precision');

Add the language implementation. The 32-bit version of Clang for ARM has half precision enabled by
default. Use target.get to retrieve the target object from the internal database.

li = target.get('LanguageImplementation',"Clang ARM 32-bit");

Replace the default language implementation for ARM Cortex with Armclang.

arm_half.LanguageImplementations = li;

Use the target.add function to add the target object to the internal database.

target.add(arm_half);

Open Half-Precision Model

Open the model for which you want to generate native half-precision C code. The model should use
half-precision data types and be configured for code generation.

model = 'simpleHalfModel';
open_system(model);
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Set up Simulink Model with Target Hardware

Optionally, enable the model parameter “Inherit floating-point output type smaller than single
precision” to propagate half precision.

set_param(model,'InheritOutputTypeSmallerThanSingle','on');

Set the code generation target to the ARM target modified for half precision.

set_param(model, 'ProdEqTarget', 'on'); 
set_param(model, 'ProdHWDeviceType', 'ARM Compatible->ARM Cortex-A Half-Precision');

Set up Simulink Model with Armclang Compiler Toolchain

Register the Armclang compiler toolchain according to Setup and Configure Armclang Compiler
Toolchain for Code Generation.

Set up the Armclang compiler toolchain for code generation.

set_param(model,'SystemTargetFile','ert.tlc');
set_param(model,'GenCodeOnly','off');
set_param(model,'Toolchain','Armclang Compiler');
set_param(model,'BuildConfiguration','Specify');

Configure the Armclang compiler for custom C flags.

compilerOptions = get_param(model,'CustomToolchainOptions');
compilerIdx = find(strcmp(compilerOptions,'C Compiler'));

Add half-precision flags.

appendToCCompilerOptions = ' --target=arm-arm-none-eabi -mcpu=cortex-a75+fp16';
compilerOptions{ compilerIdx + 1 } = strcat( compilerOptions{ compilerIdx + 1 }, appendToCCompilerOptions );

Apply the custom toolchain options to the model.
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set_param(model, 'CustomToolchainOptions', compilerOptions );

You can confirm these settings in the Code Generation pane of the Configuration Parameters dialog
box.

Generate Code

Once the model has been set up for the ARM Cortex-A target hardware and the Armclang compiler
toolchain, you can generate C code. You can only run the model executable on an ARM target or
emulator.

Use the slbuild function to build a standalone executable for the model.

slbuild(model);

You can inspect the code generation report to confirm that the custom header and type definitions are
used.
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The generated code uses the native half-precision data type.

Register ARM Cortex-A with GCC Compiler
In this example, an ARM Cortex-A processor is used as the hardware target. The model is configured
to use this ARM target and the GCC compiler toolchain.

Use the target.create function to create an ARM Cortex-A processor target.

arm_half = target.create('Processor', ...
'Manufacturer', "ARM Compatible", ...
'Name', 'ARM Cortex-A Half-Precision');
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Add the language implementation. The 32-bit version of GCC for ARM has half precision enabled by
default. Use the target.get function to retrieve the target object from the internal database.

li = target.get('LanguageImplementation',"GNU GCC ARM 32-bit");

Replace the default language implementation for ARM Cortex with Armclang.

arm_half.LanguageImplementations = li;

Use the target.add function to add the target object to the internal database.

target.add(arm_half);

Register ARM Target Hardware with Custom Language Implementation
In this example, you create a new custom language implementation with half precision for a
compatible ARM target.

Use the target.create function to copy the ARM Compatible-ARM Cortex language
implementation.

languageImplementation = target.create('LanguageImplementation','Name','ARM with half',...
'Copy','ARM Compatible-ARM Cortex');

Specify custom half information and target specific headers, as given by your target hardware
documentation. For more information, see “Register New Hardware Devices”.

customHalf = target.create('FloatingPointDataType','Name','BCM2711 Half Type', ...
'TypeName','float16_T','LiteralSuffix','f16','Size',16, ...
'SystemIncludes',"arm_fp16.h,arm_neon.h");

languageImplementation.DataTypes.NonStandardDataTypes = customHalf;

Provide information about your target processor.

% Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC
pi4a72 = target.create('Processor','Manufacturer','Broadcom','Name','BCM2711');

Add the custom half precision language implementation.

pi4a72.LanguageImplementations = languageImplementation;

Use the target.add function to add the target object to the internal database.

target.add(pi4a72);

Register Other Hardware Targets for Half Precision
This example uses a Renesas® RH850 to show you how to set up non-ARM targets for half precision.

Use the target.create function to create the target processor.

prh850 = target.create('Processor', ...
'Manufacturer', 'Renesas', ...
'Name', 'Renesas-RH850 With Half', ...
'Copy', 'Renesas-RH850');
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Add the language implementation.

li = target.create('LanguageImplementation',...
'Name', 'Renesas-RH850 with Half', ...
'Copy', 'Renesas-RH850');

Provide additional information the custom half-precision implementation for this hardware.

customHalf = target.create('FloatingPointDataType', 'Name', 'Renesas Half Type');
customHalf.TypeName = '__fp16';
customHalf.Size = 16;
customHalf.LiteralSuffix = '';
customHalf.SystemIncludes = '';

Add the custom half-precision data type.

li.DataTypes.NonStandardDataTypes = customHalf;
prh850.LanguageImplementations = li;

Use the target.add function to add the target object to the internal database.

target.add(prh850);

See Also
target.FloatingPointDataType | target.add | target.create | target.get |
target.remove

Related Examples
• “The Half-Precision Data Type in Simulink” on page 51-2
• “Register New Hardware Devices”

External Websites
• Clang Language Extensions for Half-Precision Floating Point
• Arm Compiler armclang Reference Guide: Half-precision floating-point data types
• GCC Half-Precision Floating Point
• Reduce the Program Data Size with Ease! Introducing Half-Precision Floating-Point Feature in

Renesas Compiler Professional Edition

51 Simulink Half Precision

51-10

https://clang.llvm.org/docs/LanguageExtensions.html#half-precision-floating-point
https://developer.arm.com/documentation/100067/0612/Other-Compiler-specific-Features/Half-precision-floating-point-data-types
https://gcc.gnu.org/onlinedocs/gcc/Half-Precision.html
https://www.renesas.com/us/en/document/tnf/featured-tool-reduce-program-data-size-ease-introducing-half-precision-floating-point-feature
https://www.renesas.com/us/en/document/tnf/featured-tool-reduce-program-data-size-ease-introducing-half-precision-floating-point-feature


Half-Precision Field-Oriented Control Algorithm
This example shows how to implement a Field-Oriented Control (FOC) algorithm for a Permanent
Magnet Synchronous Machine (PMSM). The example shows both a single-precision floating-point
implementation and a half-precision floating-point implementation. When an algorithm contains large
or unknown dynamic ranges (for example integrators in feedback loops) or when the algorithm uses
operations that are difficult to design in fixed-point (for example, atan2), it can be advantageous to
use floating-point representations. The half-precision data type occupies only 16 bits of memory, but
its floating-point representation enables it to handle wider dynamic ranges than integer or fixed-point
data types of the same size.

Load the data required to simulate the model.

focModelData

Open the ex_foc_current model. This model uses the same source block for two versions of a field-
oriented control algorithm. The first version uses single-precision data types, while the second uses
half-precision data types.

model = 'ex_foc_current.slx';
open_system(model)

Simulate the model. You can see from the scope that the response of the single-precision
implementation is identical to the response of the half-precision implementation.
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sim(model)

ans = 

  Simulink.SimulationOutput:
           logTestBench: [1x1 Simulink.SimulationData.Dataset] 

     SimulationMetadata: [1x1 Simulink.SimulationMetadata] 
           ErrorMessage: [0x0 char] 
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Image Quantization with Half-Precision Data Types
This example shows the effects of quantization on images. The ex_imagequantization model,
computes the two-dimensional fourier transform of an image of a checkerboard. The original image is
displayed in the left-most column, and the result is displayed with fixed-point, half-precision, and
single-precision data types. You can see in the resulting images that, while the fixed-point data type
does not always produce an acceptable result, the half-precision data type, which uses the same
number of bits as the fixed-point data type, produces a result comparable to the single-precision
result.

model = 'ex_image_quantization.slx';
open_system(model);
sim(model)
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Convert Single Precision Lookup Table to Half Precision
This example shows how to convert a single-precision lookup table to use half precision. Half
precision is the storage type; the lookup table computations continue to be performed using single
precision. After the conversion, the examples halves the memory size of the Lookup Table blocks
while keeping the desired system performance.

Task 1: Simulate and Obtain Baseline

1. Open the airflow_calc subsystem of the sldemo_fuelsys example model. It contains the
Lookup Table blocks with the single precision table and breakpoint data to be converted to half
precision.

load_system('sldemo_fuelsys');
open_system('sldemo_fuelsys/fuel_rate_control/airflow_calc');

2. In MATLAB®, change your current folder to a writable folder.

3. Check that the table and breakpoints Pumping Constant and Ramp Rate Ki Lookup Table block
data types are set as single.

4. Select output signals for both Lookup Table blocks. Mark them for logging. Simulate the model in
normal mode and use the outputs of this run as a baseline.
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Task 2: Analyze and Convert Data to Half

1. Get the table and breakpoint variable data from the model workspace for the specified Lookup
Table block. For example, using the 'Pumping Constant' block:

mdlWks = get_param('sldemo_fuelsys','ModelWorkspace');
currentBlk = 'sldemo_fuelsys/fuel_rate_control/airflow_calc/Pumping Constant';

2. Analyze the table data and convert it to half precision if it can fit in the range of half precision type
[-65504, 65504]. In Simulation Data Inspector, simulate the model and compare the logged output of
the current block with the baseline. Verify that the output is within the specified absolute tolerance
and relative tolerance. For example, this code sets both tolerances to | 0.01 |.

expath = fullfile(matlabroot,'examples','fixedpoint','main');
addpath(expath); % Add the folder containing the supporting file to the path
numBytesSaved(1) = analyzeDataConvertToHalf(mdlWks, currentBlk, 'Table');

3. Repeat step 2 of Task 2 for data of each of the breakpoints of the current block. The breakpoints
data should remain monotonically increasing after converting from single to half precision.

numBytesSaved(2) = analyzeDataConvertToHalf(mdlWks, currentBlk, 'BreakpointsForDimension1');
numBytesSaved(3) = analyzeDataConvertToHalf(mdlWks, currentBlk, 'BreakpointsForDimension2');
totalBytesSaved = sum(numBytesSaved(1:3));

4. Repeat steps 2 and 3 of Task 2 for the remaining Lookup Table blocks in the same subsystem.
Then, examine the number of bytes saved for the table and breakpoints of the n-D Lookup Table
blocks.

currentBlk = 'sldemo_fuelsys/fuel_rate_control/airflow_calc/Ramp Rate Ki';
numBytesSaved(4) = analyzeDataConvertToHalf(mdlWks, currentBlk, 'Table');
numBytesSaved(5) = analyzeDataConvertToHalf(mdlWks, currentBlk, 'BreakpointsForDimension1');
numBytesSaved(6) = analyzeDataConvertToHalf(mdlWks, currentBlk, 'BreakpointsForDimension2'),

numBytesSaved =

   684    36    38    72    12    12

totalBytesSaved = totalBytesSaved + sum(numBytesSaved(4:6)),

totalBytesSaved =
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   854

Task 3: Simulate and Compare

1. Simulate the converted model with half precision table and breakpoints.

2. Compare the 'fuel', 'air_fuel_ratio', etc. signals with the baseline in the Scope block and in the
Simulation Data Inspector. Observe that the desired performance is still achieved.
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3. Save the model with a different name in the writable folder.

Task 4: Generate Code and Verify the Memory Optimization

1. Right-click the fuel_rate_control subsystem and select C/C++ Code > Build This Subsystem.
To generate code, click Build in the Build code for Subsystem dialog box.

2. When the build finishes processing, a code generation report displays.

3. Click the half_type.h and fuel_rate_control.c files. Notice the half precision (real16_T)
type definition, the real16_T type table, and breakpoint pointers in the
look2_ifbhlfthDfIf_linlca function call interface.
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4. Open the fuel_rate_control.h file and observe that 854 bytes have been saved by using half
precision as the storage type for table and breakpoints.

rmpath(expath);
close_system('sldemo_fuelsys',0);
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Digit Classification with Half-Precision Data Types
This example compares the results of a trained neural network classification model in Simulink® in
double precision and half precision. The model classifies images from the MNIST handwritten digit
dataset.

To begin, load the data for the model, and specify the size of the test data set.

load trainImage.mat
testSetMaxIdx = 10;

Simulate the Model with Double-Precision Types

This model uses numerictype objects to specify parameter, signal, and block output data types. To
simulate the model using double-precision data types, define the numerictype objects in the base
workspace and set the data type of the objects to 'double'. Simulate the model.

floatType = numerictype('double');
activationType = numerictype('double');

model = 'ex_imagerecog_half.slx';
open_system(model);
sim(model);

The double-precision simulation results in 100% classification accuracy.

[c, ~] = confusion(ttestsubset(:,1:testSetMaxIdx), ytest.Data(2:testSetMaxIdx+1,:)');
fprintf('Percentage Correct Classification   : %f%%\n', 100*(1-c));
fprintf('Percentage Incorrect Classification : %f%%\n', 100*c);

Percentage Correct Classification   : 100.000000%
Percentage Incorrect Classification : 0.000000%

Simulate the Model with Half-Precision Types

To simulate the model in half precision, redefine the numerictype objects and set their data type to
'half'. Simulate the model.

floatType = numerictype('half');
activationType = numerictype('single');
sim(model);

In this example, there is no loss of accuracy when using the half-precision data type. The half-
precision simulation also results in 100% classification accuracy.
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[c, ~] = confusion(ttestsubset(:,1:testSetMaxIdx), ytest.Data(2:testSetMaxIdx+1,:)');
fprintf('Running Simulation with half precision :\n');
fprintf('Percentage Correct Classification   : %f%%\n', 100*(1-c));
fprintf('Percentage Incorrect Classification : %f%%\n', 100*c);

Running Simulation with half precision :
Percentage Correct Classification   : 100.000000%
Percentage Incorrect Classification : 0.000000%
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Design Cost Estimation

• “Design Cost Model Metrics” on page 52-2
• “How to Collect Design Cost Metrics” on page 52-4
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Design Cost Model Metrics

In this section...
“Data Segment Estimate” on page 52-2
“Operator Count” on page 52-3

Learn about design cost metrics that return metric data on the cost of implementing your Simulink
design in embedded C code.

Data Segment Estimate
Metric ID: DataSegmentEstimate

Estimate the memory consumed by the data segment of generated code.

Description

Use this metric to estimate the amount of memory consumed, in bytes, by the data segment of code
generated for the specified model unit. A data segment is a part of an object file or the corresponding
address space of a program that holds initialized global variables and static local variables created
during code generation. The size of the data segment is determined by the size of the values in the
source code and does not change at run time.

To collect data for this metric:

• Use getMetrics with the metric identifier DataSegmentEstimate.

Collecting data for this metric requires a Fixed-Point Designer license.

Results

For this metric, instances of metric.Result return Value as an integer representing the total cost
of the design in bytes. For a detailed breakdown of results, use the generateReport function.

Capabilities and Limitations

The metric:

• Analyzes one or more design units in a project, where a design unit represents a standalone
Simulink or an entire model reference hierarchy.

• Metrics are collected only for designs that are code generation ready. If you collect metrics for a
model reference hierarchy, each design within the hierarchy, including the top-level model, must
be ready for code generation. Models that are not code generation ready will be ignored during
metric execution and produce an error. You can use the getArtifactErrors function to see
errors that occur during metric execution.

See Also

For an example of collecting metrics programmatically, see “How to Collect Design Cost Metrics” on
page 52-4.
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Operator Count
Metric ID: OperatorCount

Estimate the size of a design based on a weighted count of operators used in generated code. This
metric is an abstraction of the actual size of generated code and is returned as a unitless value.

Description

Use this metric to estimate the size of generated code for the specified design unit or model
reference hierarchy.

To collect data for this metric:

• Use getMetrics with the metric identifier OperatorCount.

Collecting data for this metric requires a Fixed-Point Designer license.

Results

For this metric, instances of metric.Result return Value as an integer representing the total cost
of the design. For a detailed breakdown of results, use the generateReport function.

Capabilities and Limitations

The metric:

• Analyzes one or more design units in a project, where a design unit represents a standalone
Simulink or an entire model reference hierarchy.

• Metrics are collected only for designs that are code generation ready. If you collect metrics for a
model reference hierarchy, each design within the hierarchy, including the top-level model, must
be ready for code generation. Models that are not code generation ready will be ignored during
metric execution and produce an error. You can use the getArtifactErrors function to see
errors that occur during metric execution.

See Also

For an example of collecting metrics programmatically, see “How to Collect Design Cost Metrics” on
page 52-4.

See Also
metric.Engine | metric.Result

Related Examples
• “How to Collect Design Cost Metrics” on page 52-4
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How to Collect Design Cost Metrics
In this section...
“Open Project” on page 52-4
“Collect Metric Results” on page 52-4
“Access High-Level Results Programmatically” on page 52-5
“Generate Report to Access Detailed Results” on page 52-6
“Operator Count” on page 52-6
“Data Segment Table” on page 52-8

Learn how to programmatically assess the cost of implementing your design in embedded C code.
Design cost metrics analyze your model and report detailed cost data that can be traced back to the
blocks in the Simulink model. You can use design cost metrics to:

• Estimate the program size based on a weighted count of operators in the generated code.
• Estimate the total size, in bytes, of all global variables and static local variables used during code

generation.

Design cost metrics analyze one or more design units in a project, where a design unit represents a
standalone Simulink, or an entire model reference hierarchy. After collecting metrics, you can
programmatically access high-level results or generate a report for detailed cost breakdown
information. By running a script that collects these metrics, you can automatically analyze the cost of
your design to, for example, assess the impact of different design alternatives before deploying to
hardware.

Open Project
To open the project that includes the models, in the MATLAB Command Window, enter this command.

dashboardCCProjectStart

This project contains models and requirements and test cases for the models. Some of the
requirements have traceability links to the models and test cases, which help to verify that the
functionality of a model meets the requirements.

Note To collect design cost metrics, all design files must be in a project. Your design must also be
ready for code generation, including all models contained in a model reference hierarchy. Models that
are not code generation ready will be ignored during metric execution and produce an error. You can
use the getArtifactErrors function to see errors that occur during metric execution.

Collect Metric Results
Create a metric.Engine object.

metric_engine = metric.Engine();

A metric.Engine object represents the metric engine that you can execute with the execute object
function to collect metric data on your design.
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If models in your project have changed, update the trace information for metric_engine to reflect
any pending artifact changes.

updateArtifacts(metric_engine)

Create an array of metric identifiers for the metrics you want to collect. For this example, create a list
of the metric identifiers used for design cost estimation.

metric_Ids = {'OperatorCount','DataSegmentEstimate'}

You can use the getAvailableMetricIds function to create a full list of all available metric
identifiers. For a list of design cost metrics and their identifiers, see “Design Cost Model Metrics” on
page 52-2. For additional model testing metrics, see “Model Testing Metrics” (Simulink Check).

Collect Results for One Design Unit

You can collect metric results for one design unit in the project, where a design unit represents a
standalone Simulink or an entire model reference hierarchy. When you collect and view results for a
design unit, the metrics return data only for the artifacts that trace to the specified design unit.

Collect the metric results for the db_DriverSwRequest model.

Create an array that identifies the path to the model file in the project and the name of the model.
unit = {fullfile(pwd,'models','db_DriverSwRequest.slx'),'db_DriverSwRequest'};

Execute the engine. Use 'ArtifactScope' to specify the unit for which you want to collect results.
The engine runs the metrics for only the artifacts that trace to the model that you specify. Collecting
results for the design cost metrics requires a Fixed-Point Designer license.

execute(metric_engine,metric_Ids,'ArtifactScope',unit)

Collect Results for Each Design Unit in Project

To collect the results for each design unit in the project, execute the engine without the argument for
ArtifactScope.

execute(metric_engine,metric_Ids)

The project contains db_Controller, which is the top-level model in a model reference hierarchy.
This model reference hierarchy represents one design unit.

Access High-Level Results Programmatically
To access the results programmatically, use the getMetrics function. The function returns the
metric.Result objects that contain the result data for the specified unit and metrics. For this
example, store the results for the OperatorCount and DataSegmentEstimate metrics in
corresponding arrays.
results_OperatorCount = getMetrics(metric_engine,'OperatorCount');
results_DataSegmentEstimate = getMetrics(metric_engine,'DataSegmentEstimate');

The OperatorCount metric returns a unitless estimate of the program size based on operator count.
Use the disp function to display the total cost of the design.
disp(['Unit:  ', results_OperatorCount.Artifacts.Name])
disp(['Total Cost:  ', num2str(results_OperatorCount.Value)])
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Unit:  db_Controller
Total Cost:  334

This result shows that for db_Controller, the total cost of the design is 334. This is a unitless value
based on a weighted count of operators in the generated code, and is an abstraction of the total
program size.

The metric DataSegmentEstimate returns the estimated size of the data segment of the program.
This value represents the total size, in bytes, of all global variables and static local variables used
during code generation. Use the disp function to display the total data segment size.

disp(['Unit:  ', results_DataSegmentEstimate.Artifacts.Name])
disp(['Data Segment Size (bytes):  ', num2str(results_DataSegmentEstimate.Value)])

Unit:  db_Controller
Data Segment Size (bytes):  151

This result shows that for db_Controller, the total data segment size estimate is 151 bytes.

Generate Report to Access Detailed Results
Generate a report that contains a detailed breakdown of design cost metric results. For this example,
specify the HTML file format, use pwd to provide the path to the current folder. Name the report
'MetricResultsReport.html'.
reportLocation = fullfile(pwd,'MetricResultsReport.html');
generateReport(metric_engine,'App','DesignCostEstimation','Type','html-file','Location',reportLocation);

Note Report generation requires that the metric collection be executed in the current session. To
recollect design cost metrics, first use the deleteMetrics function to delete the metric.Result.
Then, use the execute function to collect metrics.

Open the HTML report. The report is in the current folder, at the root of the project.

web("MetricResultsReport.html")

To open the table of contents and navigate to results for each unit, click the menu icon in the top-left
corner of the report. The report contains sections for each metric collected.

Operator Count
The Operator Count section of the report contains information on the cost of the design. The High
Level Statistics section gives the total cost of the design and a breakdown of the top five most
expensive blocks in the db_Controller model reference hierarchy.
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The Cost Breakdown Details section contains an image of each system, along with a table containing
the cost for all blocks within each system.
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For each block within the system, the Block Cost Table displays SelfCost and TotalCost. For most
blocks these cost metrics will be the same. However, for some blocks, the difference between
SelfCost and TotalCost can highlight important results in the design. For example, if a subsystem
contains two Lookup Table blocks with similar configuration, the blocks may share some utilities in
common. In this case, the TotalCost of one Lookup Table block is equal to the SelfCost plus the cost of
any shared utilities. For another example, a Subsystem block has a SelfCost of zero, and the TotalCost
is equal to the cost of everything contained within the subsystem.

Data Segment Table
The data segment table displays the following information:

• Identifier — Actual global or local static variable in the generated code.
• Size — Estimated size, in bytes, of the memory required by the variable.
• Parent — Name of the struct to which the Identifier belongs. This field is empty for standalone

variables.
• Source Location — List of the blocks that use this variable.

See Also
“Design Cost Model Metrics” on page 52-2 | “Model Testing Metrics” (Simulink Check) |
metric.Engine | execute | generateReport | getAvailableMetricIds | updateArtifacts
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Writing Fixed-Point S-Functions
This appendix discusses the API for user-written fixed-point S-functions, which enables you to write
Simulink C S-functions that directly handle fixed-point data types. Note that the API also provides
support for standard floating-point and integer data types. You can find the files and examples
associated with this API in the following locations:

• matlabroot/simulink/include/
• matlabroot/toolbox/simulink/fixedandfloat/fxpdemos/
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Data Type Support
In this section...
“Supported Data Types” on page A-2
“The Treatment of Integers” on page A-2
“Data Type Override” on page A-3

Supported Data Types
The API for user-written fixed-point S-functions provides support for a variety of Simulink and Fixed-
Point Designer data types, including

• Built-in Simulink data types

• single
• double
• uint8
• int8
• uint16
• int16
• uint32
• int32

• Fixed-point Simulink data types, such as

• sfix16_En15
• ufix32_En16
• ufix128
• sfix37_S3_B5

• Data types resulting from a data type override with Scaled double, such as

• flts16
• flts16_En15
• fltu32_S3_B5

For more information, see “Fixed-Point Data Type and Scaling Notation” on page 35-13.

The Treatment of Integers
The API treats integers as fixed-point numbers with trivial scaling. In [Slope Bias] representation,
fixed-point numbers are represented as

real-world value = (slope  × integer) + bias.

In the trivial case, slope  =  1 and bias  =  0.

In terms of binary-point-only scaling, the binary point is to the right of the least significant bit for
trivial scaling, meaning that the fraction length is zero:
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real-world value = integer × 2-fraction length = integer ×  20.

In either case, trivial scaling means that the real-world value is equal to the stored integer value:

real-world value = integer.

All integers, including Simulink built-in integers such as uint8, are treated as fixed-point numbers
with trivial scaling by this API. However, Simulink built-in integers are different in that their use does
not cause a Fixed-Point Designer software license to be checked out.

Data Type Override
The Fixed-Point Tool enables you to perform various data type overrides on fixed-point signals in your
simulations. This API can handle signals whose data types have been overridden in this way:

• A signal that has been overridden with Single is treated as a Simulink built-in single.
• A signal that has been overridden with Double is treated as a Simulink built-in double.
• A signal that has been overridden with Scaled double is treated as being of data type

ScaledDouble.

ScaledDouble signals are a hybrid between floating-point and fixed-point signals, in that they are
stored as doubles with the scaling, sign, and word length information retained. The value is stored
as a floating-point double, but as with a fixed-point number, the distinction between the stored
integer value and the real-world value remains. The scaling information is applied to the stored
integer double to obtain the real-world value. By storing the value in a double, overflow and
precision issues are almost always eliminated. Refer to any individual API function reference page at
the end of this appendix to learn how that function treats ScaledDouble signals.

For more information about the Fixed-Point Tool and data type override, see Fixed-Point Tool.
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Structure of the S-Function
The following diagram shows the basic structure of an S-function that directly handles fixed-point
data types.

The callouts in the diagram alert you to the fact that you must include fixedpoint.h and
fixedpoint.c at the appropriate places in the S-function. The other elements of the S-function
displayed in the diagram follow the standard requirements for S-functions.

To learn how to create a MEX-file for your user-written fixed-point S-function, see “Create MEX-Files”
on page A-16.
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Storage Containers
In this section...
“Introduction” on page A-5
“Storage Containers in Simulation” on page A-5
“Storage Containers in Code Generation” on page A-7

Introduction
While coding with the API for user-written fixed-point S-functions, it is important to keep in mind the
difference between storage container size, storage container word length, and signal word length.
The sections that follow discuss the containers used by the API to store signals in simulation and code
generation.

Storage Containers in Simulation
In simulation, signals are stored in one of several types of containers of a specific size.

Storage Container Categories

During simulation, fixed-point signals are held in one of the types of storage containers, as shown in
the following table. In many cases, signals are represented in containers with more bits than their
specified word length.

Fixed-Point Storage Containers

Container Category Signal
Word Length

Container Word
Length

Container Size

FXP_STORAGE_INT8 (signed)
FXP_STORAGE_UINT8 (unsigned)

1 to 8 bits 8 bits 1 byte

FXP_STORAGE_INT16 (signed)
FXP_STORAGE_UINT16 (unsigned)

9 to 16 bits 16 bits 2 bytes

FXP_STORAGE_INT32 (signed)
FXP_STORAGE_UINT32 (unsigned)

17 to 32 bits 32 bits 4 bytes

FXP_STORAGE_OTHER_SINGLE_WORD 33 to word length
of long data type

Length of long
data type

Length of long data type

FXP_STORAGE_MULTIWORD Greater than the
word length of
long data type to
128 bits

Multiples of length
of long data type
to 128 bits

Multiples of length of
long data type to 128 bits

When the number of bits in the signal word length is less than the size of the container, the word
length bits are always stored in the least significant bits of the container. The remaining container
bits must be sign extended:

• If the data type is unsigned, the sign extension bits must be cleared to zero.
• If the data type is signed, the sign extension bits must be set to one for strictly negative numbers,

and cleared to zero otherwise.
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For example, a signal of data type sfix6_En4 is held in a FXP_STORAGE_INT8 container. The signal
is held in the six least significant bits. The remaining two bits are set to zero when the signal is
positive or zero, and to one when it is negative.

A signal of data type ufix6_En4 is held in a FXP_STORAGE_UINT8 container. The signal is held in
the six least significant bits. The remaining two bits are always cleared to zero.

The signal and storage container word lengths are returned by the ssGetDataTypeFxpWordLength
and ssGetDataTypeFxpContainWordLen functions, respectively. The storage container size is
returned by the ssGetDataTypeStorageContainerSize function. The container category is
returned by the ssGetDataTypeStorageContainCat function, which in addition to those in the
table above, can also return the following values.

Other Storage Containers

Container Category Description
FXP_STORAGE_UNKNOWN Returned if the storage container category is unknown
FXP_STORAGE_SINGLE The container type for a Simulink single
FXP_STORAGE_DOUBLE The container type for a Simulink double
FXP_STORAGE_SCALEDDOUBLE The container type for a data type that has been overridden with Scaled

double
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Storage Containers in Simulation Example

An sfix24_En10 data type has a word length of 24, but is actually stored in 32 bits during
simulation. For this signal,

• ssGetDataTypeStorageContainCat returns FXP_STORAGE_INT32.
• ssGetDataTypeStorageContainerSize or sizeof( ) returns 4, which is the storage

container size in bytes.
• ssGetDataTypeFxpContainWordLen returns 32, which is the storage container word length in

bits.
• ssGetDataTypeFxpWordLength returns 24, which is the data type word length in bits.

Storage Containers in Code Generation
The storage containers used by this API for code generation are not always the same as those used
for simulation. During code generation, a native C data type is always used. Floating-point data types
are held in C double or float. Fixed-point data types are held in C signed and unsigned char,
short, int, or long.

Emulation

Because it is valuable for rapid prototyping and hardware-in-the-loop testing, the emulation of
smaller signals inside larger containers is supported in code generation. For example, a 29-bit signal
is supported in code generation if there is a C data type available that has at least 32 bits. The rules
for placing a smaller signal into a larger container, and for dealing with the extra container bits, are
the same in code generation as for simulation.

If a smaller signal is emulated inside a larger storage container in simulation, it is not necessarily
emulated in code generation. For example, a 24-bit signal is emulated in a 32-bit storage container in
simulation. However, some DSP chips have native support for 24-bit quantities. On such a target, the
C compiler can define an int or a long to be exactly 24 bits. In this case, the 24-bit signal is held in
a 32-bit container in simulation, and in a 24-bit container in code generation.

Conversely, a signal that was not emulated in simulation might need to be emulated in code
generation. For example, some DSP chips have minimal support for integers. On such chips, char,
short, int, and long might all be defined to 32 bits. In that case, it is necessary to emulate 8- and
16-bit fixed-point data types in code generation.

Storage Container TLC Functions

Since the mapping of storage containers in simulation to storage containers in code generation is not
one-to-one, the Target Language Compiler (TLC) functions for storage containers are different from
those in simulation:

• FixPt_DataTypeNativeType
• FixPt_DataTypeStorageDouble
• FixPt_DataTypeStorageSingle
• FixPt_DataTypeStorageScaledDouble
• FixPt_DataTypeStorageSInt
• FixPt_DataTypeStorageUInt
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• FixPt_DataTypeStorageSLong
• FixPt_DataTypeStorageULong
• FixPt_DataTypeStorageSShort
• FixPt_DataTypeStorageUShort
• FixPt_DataTypeStorageMultiword

The first of these TLC functions, FixPt_DataTypeNativeType, is the closest analogue to
ssGetDataTypeStorageContainCat in simulation. FixPt_DataTypeNativeType returns a TLC
string that specifies the type of the storage container, and the Simulink Coder product automatically
inserts a typedef that maps the string to a native C data type in the generated code.

For example, consider a fixed-data type that is held in FXP_STORAGE_INT8 in simulation.
FixPt_DataTypeNativeType will return int8_T. The int8_T will be typdef'd to a char, short,
int, or long in the generated code, depending upon what is appropriate for the target compiler.

The remaining TLC functions listed above return TRUE or FALSE depending on whether a particular
standard C data type is used to hold a given API-registered data type. Note that these functions do
not necessarily give mutually exclusive answers for a given registered data type, due to the fact that
C data types can potentially overlap in size. In C,

sizeof(char) ≤ sizeof(short) ≤ sizeof(int) ≤ sizeof(long).

One or more of these C data types can be, and very often are, the same size.
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Data Type IDs
In this section...
“The Assignment of Data Type IDs” on page A-9
“Registering Data Types” on page A-10
“Setting and Getting Data Types” on page A-11
“Getting Information About Data Types” on page A-11
“Converting Data Types” on page A-13

The Assignment of Data Type IDs
Each data type used in your S-function is assigned a data type ID. You should always use data type
IDs to get and set information about data types in your S-function.

In general, the Simulink software assigns data type IDs during model initialization on a “first come,
first served” basis. For example, consider the generalized schema of a block diagram below.

The Simulink software assigns a data type ID for each output data type in the diagram in the order it
is requested. For simplicity, assume that the order of request occurs from left to right. Therefore, the
output of block A may be assigned data type ID 13, and the output of block B may be assigned data
type ID 14. The output data type of block C is the same as that of block A, so the data type ID
assigned to the output of block C is also 13. The output of block D is assigned data type ID 15.

Now if the blocks in the model are rearranged,

The Simulink software still assigns the data type IDs in the order in which they are used. Therefore
each data type might end up with a different data type ID. The output of block A is still assigned data
type ID 13. The output of block D is now next in line and is assigned data type ID 14. The output of
block B is assigned data type ID 15. The output data type of block C is still the same as that of block
A, so it is also assigned data type ID 13.

This table summarizes the two cases described above.

Block Data Type ID in Model_1 Data Type ID in Model_2
A 13 13

 Data Type IDs

A-9



Block Data Type ID in Model_1 Data Type ID in Model_2
B 14 15
C 13 13
D 15 14

This example illustrates that there is no strict relationship between the attributes of a data type and
the value of its data type ID. In other words, the data type ID is not assigned based on the
characteristics of the data type it is representing, but rather on when that data type is first needed.

Note Because of the nature of the assignment of data type IDs, you should always use API functions
to extract information from a data type ID about a data type in your S-function.

Registering Data Types
The functions in the following table are available in the API for user-written fixed-point S-functions
for registering data types in simulation. Each of these functions will return a data type ID. To see an
example of a function being used, go to the file and line indicated in the table.

Data Type Registration Functions

Function Description Example of Use
ssRegisterDataTypeFxpBinaryPoint Register a fixed-point data

type with binary-point-only
scaling and return its data
type ID

sfun_user_fxp_asr.c
Line 252

ssRegisterDataTypeFxpFSlopeFixExpBias Register a fixed-point data
type with [Slope Bias]
scaling specified in terms
of fractional slope, fixed
exponent, and bias, and
return its data type ID

Not Available

ssRegisterDataTypeFxpScaledDouble Register a scaled double
data type with [Slope Bias]
scaling specified in terms
of fractional slope, fixed
exponent, and bias, and
return its data type ID

Not Available

ssRegisterDataTypeFxpSlopeBias Register a data type with
[Slope Bias] scaling and
return its data type ID

sfun_user_fxp_dtprop.c
Line 319

Preassigned Data Type IDs

The Simulink software registers its built-in data types, and those data types always have preassigned
data type IDs. The built-in data type IDs are given by the following tokens:

• SS_DOUBLE
• SS_SINGLE
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• SS_INT8
• SS_UINT8
• SS_INT16
• SS_UINT16
• SS_INT32
• SS_UINT32
• SS_BOOLEAN

You do not need to register these data types. If you attempt to register a built-in data type, the
registration function simply returns the preassigned data type ID.

Setting and Getting Data Types
Data type IDs are used to specify the data types of input and output ports, run-time parameters, and
DWork states. To set fixed-point data types for quantities in your S-function, the procedure is as
follows:

1 Register a data type using one of the functions listed in the table Data Type Registration
Functions. A data type ID is returned to you.

Alternately, you can use one of the preassigned data type IDs of the Simulink built-in data types.
2 Use the data type ID to set the data type for an input or output port, run-time parameter, or

DWork state using one of the following functions:

• ssSetInputPortDataType
• ssSetOutputPortDataType
• ssSetRunTimeParamInfo
• ssSetDWorkDataType

To get the data type ID of an input or output port, run-time parameter, or DWork state, use one of the
following functions:

• ssGetInputPortDataType
• ssGetOutputPortDataType
• ssGetSFcnParamDataType or ssGetRunTimeParamInfo
• ssGetDWorkDataType

Getting Information About Data Types
You can use data type IDs with functions to get information about the built-in and registered data
types in your S-function. The functions in the following tables are available in the API for extracting
information about registered data types. To see an example of a function being used, go to the file
and line indicated in the table. Note that data type IDs can also be used with all the standard data
type access methods in simstruc.h, such as ssGetDataTypeSize.
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Storage Container Information Functions

Function Description Example of Use
ssGetDataTypeFxpContainWordLen Return the word length of

the storage container of a
registered data type

sfun_user_fxp_
ContainWordLenProbe.c
Line 181

ssGetDataTypeStorageContainCat Return the storage container
category of a registered data
type

sfun_user_fxp_asr.c
Line 294

ssGetDataTypeStorageContainerSize Return the storage container
size of a registered data type

sfun_user_fxp_
StorageContainSizeProbe.c
Line 171

Signal Data Type Information Functions

Function Description Example of Use
ssGetDataTypeFxpIsSigned Determine whether a fixed-point

registered data type is signed or
unsigned

sfun_user_fxp_asr.c
Line 254

ssGetDataTypeFxpWordLength Return the word length of a fixed-
point registered data type

sfun_user_fxp_asr.c
Line 255

ssGetDataTypeIsFixedPoint Determine whether a registered
data type is a fixed-point data type

sfun_user_fxp_const.c
Line 127

ssGetDataTypeIsFloatingPoint Determine whether a registered
data type is a floating-point data
type

sfun_user_fxp_
IsFloatingPointProbe.c
Line 176

ssGetDataTypeIsFxpFltApiCompat Determine whether a registered
data type is supported by the API
for user-written fixed-point S-
functions

sfun_user_fxp_asr.c
Line 184

ssGetDataTypeIsScalingPow2 Determine whether a registered
data type has power-of-two scaling

sfun_user_fxp_asr.c
Line 203

ssGetDataTypeIsScalingTrivial Determine whether the scaling of
a registered data type is slope = 1,
bias = 0

sfun_user_fxp_
IsScalingTrivialProbe.c
Line 171
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Signal Scaling Information Functions

Function Description Example of Use
ssGetDataTypeBias Return the bias of a registered data

type
sfun_user_fxp_dtprop.c
Line 243

ssGetDataTypeFixedExponent Return the exponent of the slope of a
registered data type

sfun_user_fxp_dtprop.c
Line 237

ssGetDataTypeFracSlope Return the fractional slope of a
registered data type

sfun_user_fxp_dtprop.c
Line 234

ssGetDataTypeFractionLength Return the fraction length of a
registered data type with power-of-
two scaling

sfun_user_fxp_asr.c
Line 256

ssGetDataTypeTotalSlope Return the total slope of the scaling of
a registered data type

sfun_user_fxp_dtprop.c
Line 240

Converting Data Types
The functions in the following table allow you to convert values between registered data types in your
fixed-point S-function.

Data Type Conversion Functions

Function Description Example of Use
ssFxpConvert Convert a value from one data type to

another data type.
Not Available

ssFxpConvertFromRealWorldValue Convert a value of data type double to
another data type.

Not Available

ssFxpConvertToRealWorldValue Convert a value of any data type to a
double.

Not Available
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Overflow Handling and Rounding Methods
In this section...
“Tokens for Overflow Handling and Rounding Methods” on page A-14
“Overflow Logging Structure” on page A-14

Tokens for Overflow Handling and Rounding Methods
The API for user-written fixed-point S-functions provides functions for some mathematical operations,
such as conversions. When these operations are performed, a loss of precision or overflow may occur.
The tokens in the following tables allow you to control the way an API function handles precision loss
and overflow. The data type of the overflow handling methods is fxpModeOverflow. The data type of
the rounding modes is fxpModeRounding.

Overflow Handling Tokens

Token Description
FXP_OVERFLOW_SATURATE Saturate overflows
FXP_OVERFLOW_WRAP Wrap overflows

Rounding Method Tokens

Token Description
FXP_ROUND_CEIL Round to the closest representable number in the direction of

positive infinity
FXP_ROUND_CONVERGENT Round toward nearest integer with ties rounding to nearest

even integer
FXP_ROUND_FLOOR Round to the closest representable number in the direction of

negative infinity
FXP_ROUND_NEAR Round to the closest representable number, with the exact

midpoint rounded in the direction of positive infinity
FXP_ROUND_NEAR_ML Round toward nearest. Ties round toward negative infinity for

negative numbers, and toward positive infinity for positive
numbers

FXP_ROUND_SIMPLEST Automatically chooses between round toward floor and round
toward zero to produce generated code that is as efficient as
possible

FXP_ROUND_ZERO Round to the closest representable number in the direction of
zero

Overflow Logging Structure
Math functions of the API, such as ssFxpConvert, can encounter overflows when carrying out an
operation. These functions provide a mechanism to log the occurrence of overflows and to report that
log back to the caller.

You can use a fixed-point overflow logging structure in your S-function by defining a variable of data
type fxpOverflowLogs. Some API functions, such as ssFxpConvert, accept a pointer to this
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structure as an argument. The function initializes the logging structure and maintains a count of each
the following events that occur while the function is being performed:

• Overflows
• Saturations
• Divide-by-zeros

When a function that accepts a pointer to the logging structure is invoked, the function initializes the
event counts of the structure to zero. The requested math operations are then carried out. Each time
an event is detected, the appropriate event count is incremented by one.

The following fields contain the event-count information of the structure:

• OverflowOccurred
• SaturationOccurred
• DivisionByZeroOccurred
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Create MEX-Files
To create a MEX-file for a user-written fixed-point C S-function on either Windows or UNIX® systems:

• In your S-function, include fixedpoint.c and fixedpoint.h. For more information, see
“Structure of the S-Function” on page A-4.

• Pass an extra argument, -lfixedpoint, to the mex command. For example,

mex('sfun_user_fxp_asr.c','-lfixedpoint')
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Fixed-Point S-Function Examples
The following files in matlabroot/toolbox/simulink/fixedandfloat/fxpdemos/ are
examples of S-functions written with the API for user-written fixed-point S-functions:

• sfun_user_fxp_asr.c
• sfun_user_fxp_BiasProbe.c
• sfun_user_fxp_const.c
• sfun_user_fxp_ContainWordLenProbe.c
• sfun_user_fxp_dtprop.c
• sfun_user_fxp_FixedExponentProbe.c
• sfun_user_fxp_FracLengthProbe.c
• sfun_user_fxp_FracSlopeProbe.c
• sfun_user_fxp_IsFixedPointProbe.c
• sfun_user_fxp_IsFloatingPointProbe.c
• sfun_user_fxp_IsFxpFltApiCompatProbe.c
• sfun_user_fxp_IsScalingPow2Probe.c
• sfun_user_fxp_IsScalingTrivialProbe.c
• sfun_user_fxp_IsSignedProbe.c
• sfun_user_fxp_prodsum.c
• sfun_user_fxp_StorageContainCatProbe.c
• sfun_user_fxp_StorageContainSizeProbe.c
• sfun_user_fxp_TotalSlopeProbe.c
• sfun_user_fxp_U32BitRegion.c
• sfun_user_fxp_WordLengthProbe.c

See Also

Related Examples
• “Get the Input Port Data Type” on page A-18
• “Set the Output Port Data Type” on page A-20
• “Interpret an Input Value” on page A-21
• “Write an Output Value” on page A-23
• “Determine Output Type Using the Input Type” on page A-25
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Get the Input Port Data Type
Within your S-function, you might need to know the data types of different ports, run-time
parameters, and DWorks. In each case, you will need to get the data type ID of the data type, and
then use functions from this API to extract information about the data type.

For example, suppose you need to know the data type of your input port. To do this,

1 Use ssGetInputPortDataType. The data type ID of the input port is returned.
2 Use API functions to extract information about the data type.

The following lines of example code are from sfun_user_fxp_dtprop.c.

In lines 191 and 192, ssGetInputPortDataType is used to get the data type ID for the two input
ports of the S-function:

dataTypeIdU0 = ssGetInputPortDataType( S, 0 );
dataTypeIdU1 = ssGetInputPortDataType( S, 1 );

Further on in the file, the data type IDs are used with API functions to get information about the input
port data types. In lines 205 through 226, a check is made to see whether the input port data types
are single or double:

storageContainerU0 = ssGetDataTypeStorageContainCat( S,
dataTypeIdU0 );
storageContainerU1 = ssGetDataTypeStorageContainCat( S,
dataTypeIdU1 );
 if ( storageContainerU0 == FXP_STORAGE_DOUBLE ||
storageContainerU1 == FXP_STORAGE_DOUBLE )
{
/* Doubles take priority over all other rules.
* If either of first two inputs is double,
* then third input is set to double.
 */
dataTypeIdU2Desired = SS_DOUBLE;
}
else if ( storageContainerU0 == FXP_STORAGE_SINGLE ||
 storageContainerU1 == FXP_STORAGE_SINGLE )
 {
 /* Singles take priority over all other rules,
*    except doubles.
* If either of first two inputs is single
* then third input is set to single.
*/
 dataTypeIdU2Desired = SS_SINGLE;
  }
   else

In lines 227 through 244, additional API functions are used to get information about the data types if
they are neither single nor double:
{
    isSignedU0 = ssGetDataTypeFxpIsSigned( S, dataTypeIdU0 );
    isSignedU1 = ssGetDataTypeFxpIsSigned( S, dataTypeIdU1 );

    wordLengthU0 = ssGetDataTypeFxpWordLength( S, dataTypeIdU0 );
    wordLengthU1 = ssGetDataTypeFxpWordLength( S, dataTypeIdU1 );
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    fracSlopeU0 = ssGetDataTypeFracSlope( S, dataTypeIdU0 );
    fracSlopeU1 = ssGetDataTypeFracSlope( S, dataTypeIdU1 );

    fixedExponentU0 = ssGetDataTypeFixedExponent( S,dataTypeIdU0 );
    fixedExponentU1 = ssGetDataTypeFixedExponent( S,dataTypeIdU1 );

    totalSlopeU0 = ssGetDataTypeTotalSlope( S, dataTypeIdU0 );
    totalSlopeU1 = ssGetDataTypeTotalSlope( S, dataTypeIdU1 );

    biasU0 = ssGetDataTypeBias( S, dataTypeIdU0 );
    biasU1 = ssGetDataTypeBias( S, dataTypeIdU1 );
}

The functions used above return whether the data types are signed or unsigned, as well as their word
lengths, fractional slopes, exponents, total slopes, and biases. Together, these quantities give full
information about the fixed-point data types of the input ports.

See Also

Related Examples
• “Set the Output Port Data Type” on page A-20
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Set the Output Port Data Type
You may want to set the data type of various ports, run-time parameters, or DWorks in your S-
function.

For example, suppose you want to set the output port data type of your S-function. To do this,

1 Register a data type by using one of the functions listed in the table Data Type Registration
Functions. A data type ID is returned.

Alternately, you can use one of the predefined data type IDs of the Simulink built-in data types.
2 Use ssSetOutputPortDataType with the data type ID from Step 1 to set the output port to the

desired data type.

In the example below from lines 336 - 352 of sfun_user_fxp_const.c,
ssRegisterDataTypeFxpBinaryPoint is used to register the data type.
ssSetOutputPortDataType then sets the output data type either to the given data type ID, or to be
dynamically typed:

/* Register data type
   */
if ( notSizesOnlyCall )
  {
 DTypeId DataTypeId = ssRegisterDataTypeFxpBinaryPoint(
            S,
V_ISSIGNED,
V_WORDLENGTH,
V_FRACTIONLENGTH,
1 /* true means obey data type override setting for
this subsystem */ );

ssSetOutputPortDataType( S, 0, DataTypeId );
   }
  else
  {
ssSetOutputPortDataType( S, 0, DYNAMICALLY_TYPED );
}

See Also

Related Examples
• “Interpret an Input Value” on page A-21
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Interpret an Input Value
Suppose you need to get the value of the signal on your input port to use in your S-function. You
should write your code so that the pointer to the input value is properly typed, so that the values read
from the input port are interpreted correctly. To do this, you can use these steps, which are shown in
the example code below:

1 Create a void pointer to the value of the input signal.
2 Get the data type ID of the input port using ssGetInputPortDataType.
3 Use the data type ID to get the storage container type of the input.
4 Have a case for each input storage container type you want to handle. Within each case, you will

need to perform the following in some way:

• Create a pointer of the correct type according to the storage container, and cast the original
void pointer into the new fully typed pointer (see a and c).

• You can now store and use the value by dereferencing the new, fully typed pointer (see b and
d).

For example,

static void mdlOutputs(SimStruct *S, int_T tid)
{
    const void *pVoidIn = 
                    (const void *)ssGetInputPortSignal( S, 0 ); (1)

    DTypeId dataTypeIdU0 = ssGetInputPortDataType( S, 0 ); (2)
      
    fxpStorageContainerCategory storageContainerU0 =
                    ssGetDataTypeStorageContainCat( S, dataTypeIdU0 ); (3)

    switch ( storageContainerU0 )
    {
      case FXP_STORAGE_UINT8: (4)
        {
            const uint8_T *pU8_Properly_Typed_Pointer_To_U0; (a)

            uint8_T u8_Stored_Integer_U0; (b)

            pU8_Properly_Typed_Pointer_To_U0 = 
                    (const uint8_T  *)pVoidIn; (c)

            u8_Stored_Integer_U0 = 
                    *pU8_Properly_Typed_Pointer_To_U0; (d)
            
            <snip: code that uses input when it's in a uint8_T>
        }
        break;

      case FXP_STORAGE_INT8: (4)
        {
            const int8_T *pS8_Properly_Typed_Pointer_To_U0; (a)

            int8_T s8_Stored_Integer_U0; (b)

            pS8_Properly_Typed_Pointer_To_U0 = 
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                    (const int8_T  *)pVoidIn; (c)

            s8_Stored_Integer_U0 = 
                    *pS8_Properly_Typed_Pointer_To_U0; (d)
            
            <snip: code that uses input when it's in a int8_T>
        }
        break;

See Also

Related Examples
• “Write an Output Value” on page A-23
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Write an Output Value
Suppose you need to write the value of the output signal to the output port in your S-function. You
should write your code so that the pointer to the output value is properly typed. To do this, you can
use these steps, which are followed in the example code below:

1 Create a void pointer to the value of the output signal.
2 Get the data type ID of the output port using ssGetOutputPortDataType.
3 Use the data type ID to get the storage container type of the output.
4 Have a case for each output storage container type you want to handle. Within each case, you

will need to perform the following in some way:

• Create a pointer of the correct type according to the storage container, and cast the original
void pointer into the new fully typed pointer (see a and c).

• You can now write the value by dereferencing the new, fully typed pointer (see b and d).

For example,
static void mdlOutputs(SimStruct *S, int_T tid)
{
    <snip>

    void *pVoidOut = ssGetOutputPortSignal( S, 0 ); (1)

    DTypeId dataTypeIdY0 = ssGetOutputPortDataType( S, 0 ); (2)
      
    fxpStorageContainerCategory storageContainerY0 =
                    ssGetDataTypeStorageContainCat( S, 
                    dataTypeIdY0 ); (3)

    switch ( storageContainerY0 )
    {
      case FXP_STORAGE_UINT8: (4)
        {
            const uint8_T *pU8_Properly_Typed_Pointer_To_Y0; (a)

            uint8_T u8_Stored_Integer_Y0; (b)

          <snip: code that puts the desired output stored integer
                value in to temporary variable u8_Stored_Integer_Y0>
                    
            pU8_Properly_Typed_Pointer_To_Y0 = 
                    (const uint8_T  *)pVoidOut; (c)

            *pU8_Properly_Typed_Pointer_To_Y0 = 
                    u8_Stored_Integer_Y0; (d)
            
        }
        break;

      case FXP_STORAGE_INT8: (4)
        {
            const int8_T *pS8_Properly_Typed_Pointer_To_Y0; (a)

            int8_T s8_Stored_Integer_Y0; (b)

          <snip: code that puts the desired output stored integer
                value in to temporary variable s8_Stored_Integer_Y0>
                    
            pS8_Properly_Typed_Pointer_To_Y0 = 
                    (const int8_T  *)pVoidY0; (c)

            *pS8_Properly_Typed_Pointer_To_Y0 = 
                    s8_Stored_Integer_Y0; (d)
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        }
        break;

    <snip>

See Also

Related Examples
• “Determine Output Type Using the Input Type” on page A-25
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Determine Output Type Using the Input Type
The following sample code from lines 243 through 261 of sfun_user_fxp_asr.c gives an example
of using the data type of the input to your S-function to calculate the output data type. Notice that in
this code

• The output is signed or unsigned to match the input (a).
• The output is the same word length as the input (b).
• The fraction length of the output depends on the input fraction length and the number of shifts

(c).

#define MDL_SET_INPUT_PORT_DATA_TYPE
static void mdlSetInputPortDataType(SimStruct *S, int port,
                    DTypeId dataTypeIdInput)
{
    if ( isDataTypeSupported( S, dataTypeIdInput ) )
    {
        DTypeId dataTypeIdOutput;

        ssSetInputPortDataType( S, port, dataTypeIdInput );

        dataTypeIdOutput = ssRegisterDataTypeFxpBinaryPoint(
                    S,
            ssGetDataTypeFxpIsSigned( S, dataTypeIdInput ), (a)
            ssGetDataTypeFxpWordLength( S, dataTypeIdInput ), (b)
            ssGetDataTypeFractionLength( S, dataTypeIdInput )
                    - V_NUM_BITS_TO_SHIFT_RGHT, (c)
            0 /* false means do NOT obey data type override
                               setting for this subsystem */ );

        ssSetOutputPortDataType( S, 0, dataTypeIdOutput );
    }
}
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ssFxpConvert
Convert value from one data type to another

Syntax
extern void ssFxpConvert  (SimStruct *S,
                           void *pVoidDest,
                           size_t sizeofDest, 
                           DTypeId dataTypeIdDest, 
                           const void *pVoidSrc, 
                           size_t sizeofSrc, 
                           DTypeId dataTypeIdSrc, 
                           fxpModeRounding roundMode,
                           fxpModeOverflow overflowMode,
                           fxpOverflowLogs *pFxpOverflowLogs)

Arguments
S

SimStruct representing an S-function block.
pVoidDest

Pointer to the converted value.
sizeofDest

Size in memory of the converted value.
dataTypeIdDest

Data type ID of the converted value.
pVoidSrc

Pointer to the value you want to convert.
sizeofSrc

Size in memory of the value you want to convert.

dataTypeIdSrc
Data type ID of the value you want to convert.

roundMode
Rounding mode you want to use if a loss of precision is necessary during the conversion. Possible
values are FXP_ROUND_CEIL, FXP_ROUND_CONVERGENT, FXP_ROUND_FLOOR, FXP_ROUND_NEAR,
FXP_ROUND_NEAR_ML, FXP_ROUND_SIMPLEST and FXP_ROUND_ZERO.

overflowMode
Overflow mode you want to use if overflow occurs during the conversion. Possible values are
FXP_OVERFLOW_SATURATE and FXP_OVERFLOW_WRAP.

pFxpOverflowLogs
Pointer to the fixed-point overflow logging structure.

 ssFxpConvert
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Description
This function converts a value of any registered built-in or fixed-point data type to any other
registered built-in or fixed-point data type.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more information, see
“Structure of the S-Function” on page A-4.

Languages
C

TLC Functions
None

See Also
ssFxpConvertFromRealWorldValue, ssFxpConvertToRealWorldValue

Introduced before R2006a

A ssFxpConvert
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ssFxpConvertFromRealWorldValue
Convert value of data type double to another data type

Syntax
extern void ssFxpConvertFromRealWorldValue
                              (SimStruct *S,
                               void *pVoidDest,
                               size_t sizeofDest,
                               DTypeId dataTypeIdDest,
                               double dblRealWorldValue,
                               fxpModeRounding roundMode,
                               fxpModeOverflow overflowMode,
                               fxpOverflowLogs *pFxpOverflowLogs)

Arguments
S

SimStruct representing an S-function block.
pVoidDest

Pointer to the converted value.
sizeofDest

Size in memory of the converted value.
dataTypeIdDest

Data type ID of the converted value.
dblRealWorldValue

Double value you want to convert.
roundMode

Rounding mode you want to use if a loss of precision is necessary during the conversion. Possible
values are FXP_ROUND_CEIL, FXP_ROUND_CONVERGENT, FXP_ROUND_FLOOR, FXP_ROUND_NEAR,
FXP_ROUND_NEAR_ML, FXP_ROUND_SIMPLEST and FXP_ROUND_ZERO.

overflowMode
Overflow mode you want to use if overflow occurs during the conversion. Possible values are
FXP_OVERFLOW_SATURATE and FXP_OVERFLOW_WRAP.

pFxpOverflowLogs
Pointer to the fixed-point overflow logging structure.

Description
This function converts a double value to any registered built-in or fixed-point data type.
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Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more information, see
“Structure of the S-Function” on page A-4.

Languages
C

TLC Functions
None

See Also
ssFxpConvert, ssFxpConvertToRealWorldValue

Introduced before R2006a
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ssFxpConvertToRealWorldValue
Convert value of any data type to double

Syntax
extern double ssFxpConvertToRealWorldValue (SimStruct *S,
                                            const void *pVoidSrc,
                                            size_t sizeofSrc,
                                            DTypeId dataTypeIdSrc)

Arguments
S

SimStruct representing an S-function block.
pVoidSrc

Pointer to the value you want to convert.
sizeofSrc

Size in memory of the value you want to convert.
dataTypeIdSrc

Data type ID of the value you want to convert.

Description
This function converts a value of any registered built-in or fixed-point data type to a double.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more information, see
“Structure of the S-Function” on page A-4.

Languages
C

TLC Functions
None

See Also
ssFxpConvert, ssFxpConvertFromRealWorldValue

Introduced before R2006a
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ssFxpGetU32BitRegion
Return stored integer value for 32-bit region of real, scalar signal element

Syntax
extern uint32 ssFxpGetU32BitRegion(SimStruct *S,
                                   const void *pVoid
                                   DTypeId dataTypeId
                                   unsigned int regionIndex)

Arguments
S

SimStruct representing an S-function block.
pVoid

Pointer to the storage container of the real, scalar signal element in which the 32-bit region of
interest resides.

dataTypeId
Data type ID of the registered data type corresponding to the signal.

regionIndex
Index of the 32-bit region whose stored integer value you want to retrieve, where 0 accesses the
least significant 32-bit region.

Description
This function returns the stored integer value in the 32-bit region specified by regionIndex,
associated with the fixed-point data type designated by dataTypeId. You can use this function with
any fixed-point data type, including those with word sizes less than 32 bits. If the fixed-point word
size is less than 32 bits, the remaining bits are sign extended.

This function generates an error if dataTypeId represents a floating-point data type.

To view an example model whose S-functions use the ssFxpGetU32BitRegion function, at the
MATLAB prompt, enter fxpdemo_sfun_user_U32BitRegion.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more information, see
“Structure of the S-Function” on page A-4.

Languages
C

A ssFxpGetU32BitRegion
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See Also
ssFxpSetU32BitRegion

Introduced in R2007b
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ssFxpGetU32BitRegionCompliant
Determine whether S-function is compliant with the U32 bit region interface

Syntax
extern ssFxpSGetU32BitRegionCompliant(SimStruct *S,
                            int *result)

Arguments
S

SimStruct representing an S-function block.
result

• 1 if S-function calls ssFxpSetU32BitRegionCompliant to declare compliance with memory
footprint for fixed-point data types with 33 or more bits

• 0 if S-function does not call ssFxpSetU32BitRegionCompliant

Description
This function checks whether the S-function calls ssFxpSetU32BitRegionCompliant to declare
compliance with the memory footprint for fixed-point data types with 33 or more bits. Before calling
any other Fixed-Point Designer API function on data with 33 or more bits, you must call
ssFxpSetU32BitRegionCompliant as follows:

ssFxpSetU32BitRegionCompliant(S,1);

Note The Fixed-Point Designer software assumes that S-functions that use fixed-point data types
with 33 or more bits without calling ssFxpSetU32BitRegionCompliant are using the obsolete
memory footprint that existed until R2007b. Either redesign these S-functions or isolate them using
the library fixpt_legacy_sfun_support.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more information, see
“Structure of the S-Function” on page A-4.

Languages
C

See Also
ssFxpSetU32BitRegionCompliant
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Introduced in R2009a
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ssFxpSetU32BitRegion
Set stored integer value for 32-bit region of real, scalar signal element

Syntax
extern ssFxpSetU32BitRegion(SimStruct *S,
                            void *pVoid
                            DTypeId dataTypeId
                            uint32 regionValue
                            unsigned int regionIndex)

Arguments
S

SimStruct representing an S-function block.
pVoid

Pointer to the storage container of the real, scalar signal element in which the 32-bit region of
interest resides.

dataTypeId
Data type ID of the registered data type corresponding to the signal.

regionValue
Stored integer value that you want to assign to a 32-bit region.

regionIndex
Index of the 32-bit region whose stored integer value you want to set, where 0 accesses the least
significant 32-bit region.

Description
This function sets regionValue as the stored integer value of the 32-bit region specified by
regionIndex, associated with the fixed-point data type designated by dataTypeId. You can use this
function with any fixed-point data type, including those with word sizes less than 32 bits. If the fixed-
point word size is less than 32 bits, ensure that the remaining bits are sign extended.

This function generates an error if dataTypeId represents a floating-point data type, or if the stored
integer value that you set is invalid.

To view an example model whose S-functions use the ssFxpSetU32BitRegion function, at the
MATLAB prompt, enter fxpdemo_sfun_user_U32BitRegion.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more information, see
“Structure of the S-Function” on page A-4.

A ssFxpSetU32BitRegion
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Languages
C

See Also
ssFxpGetU32BitRegion

Introduced in R2007b
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ssFxpSetU32BitRegionCompliant
Declare compliance with the U32 bit region interface for fixed-point data types with 33 or more bits

Syntax
extern ssFxpSetU32BitRegionCompliant(SimStruct *S,
                          int Value)

Arguments
S

SimStruct representing an S-function block.
Value

• 1 declare compliance with memory footprint for fixed-point data types with 33 or more bits.

Description
This function declares compliance with the Fixed-Point Designer bit region interface for data types
with 33 or more bits. The memory footprint for data types with 33 or more bits varies between
MATLAB host platforms and might change between software releases. To make an S-function robust
to memory footprint changes, use the U32 bit region interface. You can use identical source code on
different MATLAB host platforms and with any software release from R2008b. If the memory footprint
changes between releases, you do not have to recompile U32 bit region compliant S-functions.

To make an S-function U32 bit region compliant, before calling any other Fixed-Point Designer API
function on data with 33 or more bits, you must call this function as follows:

ssFxpSetU32BitRegionCompliant(S,1);

If an S-function block contains a fixed-point data type with 33 or more bits, call this function in
mdlInitializeSizes().

Note The Fixed-Point Designer software assumes that S-functions that use fixed-point data types
with 33 or more bits without calling ssFxpSetU32BitRegionCompliant are using the obsolete
memory footprint that existed until R2007b. Either redesign these S-functions or isolate them using
the library fixpt_legacy_sfun_support.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more information, see
“Structure of the S-Function” on page A-4.

Languages
C

A ssFxpSetU32BitRegionCompliant
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See Also
ssFxpGetU32BitRegionCompliant

Introduced in R2009a
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ssGetDataTypeBias
Return bias of registered data type

Syntax
extern double ssGetDataTypeBias(SimStruct *S, DTypeId
                                dataTypeId)

Arguments
S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered data type for which you want to know the bias.

Description
Fixed-point numbers can be represented as

real-world value = (slope × integer) + bias.

This function returns the bias of a registered data type:

• For both trivial scaling and power-of-two scaling, 0 is returned.
• If the registered data type is ScaledDouble, the bias returned is that of the nonoverridden data

type.

This function errors out when ssGetDataTypeIsFxpFltApiCompat returns FALSE.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more information, see
“Structure of the S-Function” on page A-4.

Languages
C

TLC Functions
FixPt_DataTypeBias

See Also
ssGetDataTypeFixedExponent, ssGetDataTypeFracSlope, ssGetDataTypeTotalSlope
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Introduced before R2006a
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ssGetDataTypeFixedExponent
Return exponent of slope of registered data type

Syntax
extern int ssGetDataTypeFixedExponent (SimStruct *S, DTypeId
                                       dataTypeId)

Arguments
S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered data type for which you want to know the exponent.

Description
Fixed-point numbers can be represented as

real-world value = (slope × integer) + bias,

where the slope can be expressed as

slope = fractional slope × 2exponent.

This function returns the exponent of a registered fixed-point data type:

• For power-of-two scaling, the exponent is the negative of the fraction length.
• If the data type has trivial scaling, including for data types single and double, the exponent is

0.
• If the registered data type is ScaledDouble, the exponent returned is that of the nonoverridden

data type.

This function errors out when ssGetDataTypeIsFxpFltApiCompat returns FALSE.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more information, see
“Structure of the S-Function” on page A-4.

Languages
C

TLC Functions
FixPt_DataTypeFixedExponent
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See Also
ssGetDataTypeBias, ssGetDataTypeFracSlope, ssGetDataTypeTotalSlope

Introduced before R2006a
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ssGetDataTypeFracSlope
Return fractional slope of registered data type

Syntax
extern double ssGetDataTypeFracSlope(SimStruct *S, DTypeId
                                     dataTypeId)

Arguments
S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered data type for which you want to know the fractional slope.

Description
Fixed-point numbers can be represented as

real-world value = (slope × integer) + bias,

where the slope can be expressed as

slope = fractional slope × 2exponent.

This function returns the fractional slope of a registered fixed-point data type. To get the total slope,
use ssGetDataTypeTotalSlope:

• For power-of-two scaling, the fractional slope is 1.
• If the data type has trivial scaling, including data types single and double, the fractional slope

is 1.
• If the registered data type is ScaledDouble, the fractional slope returned is that of the

nonoverridden data type.

This function errors out when ssGetDataTypeIsFxpFltApiCompat returns FALSE.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more information, see
“Structure of the S-Function” on page A-4.

Languages
C

A ssGetDataTypeFracSlope
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TLC Functions
FixPt_DataTypeFracSlope

See Also
ssGetDataTypeBias, ssGetDataTypeFixedExponent, ssGetDataTypeTotalSlope

Introduced before R2006a

 ssGetDataTypeFracSlope

A-45



ssGetDataTypeFractionLength
Return fraction length of registered data type with power-of-two scaling

Syntax
extern int ssGetDataTypeFractionLength (SimStruct *S, DTypeId
                                        dataTypeId)

Arguments
S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered data type for which you want to know the fraction length.

Description
This function returns the fraction length, or the number of bits to the right of the binary point, of the
data type designated by dataTypeId.

This function errors out when ssGetDataTypeIsScalingPow2 returns FALSE.

This function also errors out when ssGetDataTypeIsFxpFltApiCompat returns FALSE.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more information, see
“Structure of the S-Function” on page A-4.

Languages
C

TLC Functions
FixPt_DataTypeFractionLength

See Also
ssGetDataTypeFxpWordLength

Introduced before R2006a
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ssGetDataTypeFxpContainWordLen
Return word length of storage container of registered data type

Syntax
extern int ssGetDataTypeFxpContainWordLen (SimStruct *S,
                                        DTypeId dataTypeId)

Arguments
S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered data type for which you want to know the container word length.

Description
This function returns the word length, in bits, of the storage container of the fixed-point data type
designated by dataTypeId. This function does not return the size of the storage container or the
word length of the data type. To get the storage container size, use
ssGetDataTypeStorageContainerSize. To get the data type word length, use
ssGetDataTypeFxpWordLength.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more information, see
“Structure of the S-Function” on page A-4.

Languages
C

Examples
An sfix24_En10 data type has a word length of 24, but is actually stored in 32 bits during
simulation. For this signal,

• ssGetDataTypeFxpContainWordLen returns 32, which is the storage container word length in
bits.

• ssGetDataTypeFxpWordLength returns 24, which is the data type word length in bits.
• ssGetDataTypeStorageContainerSize or sizeof( ) returns 4, which is the storage

container size in bytes.

TLC Functions
FixPt_DataTypeFxpContainWordLen
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See Also
ssGetDataTypeFxpWordLength, ssGetDataTypeStorageContainCat,
ssGetDataTypeStorageContainerSize

Introduced before R2006a
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ssGetDataTypeFxpIsSigned
Determine whether fixed-point registered data type is signed or unsigned

Syntax
extern int ssGetDataTypeFxpIsSigned (SimStruct *S, DTypeId
                                     dataTypeId)

Arguments
S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered fixed-point data type for which you want to know whether it is
signed.

Description
This function determines whether a registered fixed-point data type is signed:

• If the fixed-point data type is signed, the function returns TRUE. If the fixed-point data type is
unsigned, the function returns FALSE.

• If the registered data type is ScaledDouble, the function returns TRUE or FALSE according to
the signedness of the nonoverridden data type.

• If the registered data type is single or double, this function errors out.

This function errors out when ssGetDataTypeIsFxpFltApiCompat returns FALSE.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more information, see
“Structure of the S-Function” on page A-4.

Languages
C

TLC Functions
FixPt_DataTypeFxpIsSigned

Introduced before R2006a
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ssGetDataTypeFxpWordLength
Return word length of fixed-point registered data type

Syntax
extern int ssGetDataTypeFxpWordLength (SimStruct *S, DTypeId
                                       dataTypeId)

Arguments
S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered fixed-point data type for which you want to know the word length.

Description
This function returns the word length of the fixed-point data type designated by dataTypeId. This
function does not return the word length of the container of the data type. To get the container word
length, use ssGetDataTypeFxpContainWordLen:

• If the registered data type is fixed point, this function returns the total word length including any
sign bits, integer bits, and fractional bits.

• If the registered data type is ScaledDouble, this function returns the word length of the
nonoverridden data type.

• If registered data type is single or double, this function errors out.

This function errors out when ssGetDataTypeIsFxpFltApiCompat returns FALSE.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more information, see
“Structure of the S-Function” on page A-4.

Languages
C

Examples
An sfix24_En10 data type has a word length of 24, but is actually stored in 32 bits during
simulation. For this signal,

• ssGetDataTypeFxpWordLength returns 24, which is the data type word length in bits.
• ssGetDataTypeFxpContainWordLen returns 32, which is the storage container word length in

bits.
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• ssGetDataTypeStorageContainerSize or sizeof( ) returns 4, which is the storage
container size in bytes.

TLC Functions
FixPt_DataTypeFxpWordLength

See Also
ssGetDataTypeFxpContainWordLen, ssGetDataTypeFractionLength,
ssGetDataTypeStorageContainerSize

Introduced before R2006a
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ssGetDataTypeIsDoubleSingleorHalf
Determine whether registered data type is double, single, or half-precision data type

Syntax
extern int ssGetDataTypeIsDoubleSingleOrHalf
                                         (SimStruct *S,
                                         DTypeId dataTypeId)

Arguments
S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered data type for which you want to determine if the data type is
double, single, or half-precision.

Description
This function determines whether a registered data type is a double, single, or half-precision data
type.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more information, see
“Structure of the S-Function” on page A-4.

Languages
C

TLC Functions
FixPt_DataTypeIsDoubleSingleOrHalf

See Also
ssGetDataTypeIsHalfPrecision, ssGetDataTypeIsFloatingPoint,
ssRegisterDataTypeHalfPrecision

Introduced in R2020b
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ssGetDataTypeIsFixedPoint
Determine whether registered data type is fixed-point data type

Syntax
extern int ssGetDataTypeIsFixedPoint(SimStruct *S, DTypeId
                                     dataTypeId)

Arguments
S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered data type for which you want to know whether it is fixed-point.

Description
This function determines whether a registered data type is a fixed-point data type:

• This function returns TRUE if the registered data type is fixed-point, and FALSE otherwise.
• If the registered data type is a pure Simulink integer, such as int8, this function returns TRUE.
• If the registered data type is ScaledDouble, this function returns FALSE.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more information, see
“Structure of the S-Function” on page A-4.

Languages
C

TLC Functions
FixPt_DataTypeIsFixedPoint

See Also
ssGetDataTypeIsFloatingPoint

Introduced before R2006a
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ssGetDataTypeIsFloatingPoint
Determine whether registered data type is floating-point data type

Syntax
extern int ssGetDataTypeIsFloatingPoint (SimStruct *S, DTypeId
                                                       dataTypeId)

Arguments
S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered data type for which you want to know whether it is floating-point.

Description
This function determines whether a registered data type is single or double:

• If the registered data type is either single or double, this function returns TRUE, and FALSE is
returned otherwise.

• If the registered data type is ScaledDouble, this function returns FALSE.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more information, see
“Structure of the S-Function” on page A-4.

Languages
C

TLC Functions
FixPt_DataTypeIsFloatingPoint

See Also
ssGetDataTypeIsFixedPoint

Introduced before R2006a
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ssGetDataTypeIsFxpFltApiCompat
Determine whether registered data type is supported by API for user-written fixed-point S-functions

Syntax
extern int ssGetDataTypeIsFxpFltApiCompat(SimStruct *S, DTypeId
                                          dataTypeId)

Arguments
S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered data type for which you want to determine compatibility with the
API for user-written fixed-point S-functions.

Description
This function determines whether the registered data type is supported by the API for user-written
fixed-point S-functions. The supported data types are all standard Simulink data types, all fixed-point
data types, and data type override data types.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more information, see
“Structure of the S-Function” on page A-4.

Languages
C

TLC Functions
None. Checking for API-compatible data types is done in simulation. Checking for API-compatible
data types is not supported in TLC.

Introduced before R2006a
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ssGetDataTypeIsHalfPrecision
Determine whether registered data type is half-precision data type

Syntax
extern int ssGetDataTypeIsHalfPrecision
                                         (SimStruct *S,
                                         DTypeId dataTypeId)

Arguments
S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered data type for which you want to determine if the data type is half-
precision.

Description
This function determines whether a registered data type is a half-precision data type as defined in
“Half-Precision Format” on page 35-22.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more information, see
“Structure of the S-Function” on page A-4.

Languages
C

TLC Functions
FixPt_DataTypeIsHalfPrecision

See Also
ssGetDataTypeIsDoubleSingleorHalf, ssRegisterDataTypeHalfPrecision

Introduced in R2020b
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ssGetDataTypeIsScalingPow2
Determine whether registered data type has power-of-two scaling

Syntax
extern int ssGetDataTypeIsScalingPow2 (SimStruct *S, DTypeId
                                       dataTypeId)

Arguments
S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered data type for which you want to know whether the scaling is
strictly power-of-two.

Description
This function determines whether the registered data type is scaled strictly by a power of two. Fixed-
point numbers can be represented as

real-world value = (slope × integer) + bias,

where the slope can be expressed as

slope = fractional slope × 2exponent.

When bias  = 0 and fractional slope  = 1, the only scaling factor that remains is a power of two:

real-world value = (2exponent × integer) = (2-fraction length × integer).

Trivial scaling is considered a case of power-of-two scaling, with the exponent being equal to zero.

Note Many fixed-point algorithms are designed to accept only power-of-two scaling. For these
algorithms, you can call ssGetDataTypeIsScalingPow2 in mdlSetInputPortDataType and
mdlSetOutputPortDataType, to prevent unsupported data types from being accepted.

This function errors out when ssGetDataTypeIsFxpFltApiCompat returns FALSE.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more information, see
“Structure of the S-Function” on page A-4.

Languages
C
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TLC Functions
FixPt_DataTypeIsScalingPow2

See Also
ssGetDataTypeIsScalingTrivial

Introduced before R2006a
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ssGetDataTypeIsScalingTrivial
Determine whether scaling of registered data type is slope = 1, bias = 0

Syntax
extern int ssGetDataTypeIsScalingTrivial (SimStruct *S, DTypeId
                                          dataTypeId)

Arguments
S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered data type for which you want to know whether the scaling is trivial.

Description
This function determines whether the scaling of a registered data type is trivial. In [Slope Bias]
representation, fixed-point numbers can be represented as

real-world value = (slope × integer) + bias.

In the trivial case, slope  =  1 and bias  =  0.

In terms of binary-point-only scaling, the binary point is to the right of the least significant bit for
trivial scaling, meaning that the fraction length is zero:

real-world value = integer × 2–fraction length = integer × 20.

In either case, trivial scaling means that the real-world value is simply equal to the stored integer
value:

real-world value = integer.

Scaling is always trivial for pure integers, such as int8, and also for the true floating-point types
single and double.

This function errors out when ssGetDataTypeIsFxpFltApiCompat returns FALSE.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more information, see
“Structure of the S-Function” on page A-4.

Languages
C
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TLC Functions
FixPt_DataTypeIsScalingTrivial

See Also
ssGetDataTypeIsScalingPow2

Introduced before R2006a
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ssGetDataTypeNumberOfChunks
Return number of chunks in multiword storage container of registered data type

Syntax
extern int ssGetDataTypeNumberOfChunks(SimStruct *S,
                                       DTypeId dataTypeId)

Arguments
S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered data type for which you want to know the number of chunks in its
multiword storage container.

Description
This function returns the number of chunks in the multiword storage container of the fixed-point data
type designated by dataTypeId. This function is valid only for a registered data type whose storage
container uses a multiword representation. You can use the ssGetDataTypeStorageContainCat
function to identify the storage container category; for multiword storage containers, the function
returns the category FXP_STORAGE_MULTIWORD.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more information, see
“Structure of the S-Function” on page A-4.

Languages
C

See Also
ssGetDataTypeStorageContainCat

Introduced in R2007b
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ssGetDataTypeStorageContainCat
Return storage container category of registered data type

Syntax
extern fxpStorageContainerCategory
ssGetDataTypeStorageContainCat(SimStruct *S, DTypeId dataTypeId)

Arguments
S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered data type for which you want to know the container category.

Description
This function returns the storage container category of the data type designated by dataTypeId. The
container category returned by this function is used to store input and output signals, run-time
parameters, and DWorks during Simulink simulations.

During simulation, fixed-point signals are held in one of the types of containers shown in the
following table. Therefore in many cases, signals are represented in containers with more bits than
their actual word length.

Fixed-Point Storage Containers

Container Category Signal
Word Length

Container Word
Length

Container Size

FXP_STORAGE_INT8 (signed)
FXP_STORAGE_UINT8 (unsigned)

1 to 8 bits 8 bits 1 byte

FXP_STORAGE_INT16 (signed)
FXP_STORAGE_UINT16 (unsigned)

9 to 16 bits 16 bits 2 bytes

FXP_STORAGE_INT32 (signed)
FXP_STORAGE_UINT32 (unsigned)

17 to 32 bits 32 bits 4 bytes

FXP_STORAGE_OTHER_SINGLE_WORD 33 to word length
of long data type

Length of long
data type

Length of long data type

FXP_STORAGE_MULTIWORD Greater than the
word length of
long data type to
128 bits

Multiples of
length of long
data type to 128
bits

Multiples of length of
long data type to 128 bits

When the number of bits in the signal word length is less than the size of the container, the word
length bits are always stored in the least significant bits of the container. The remaining container
bits must be sign extended to fit the bits of the container:

A ssGetDataTypeStorageContainCat

A-62



• If the data type is unsigned, then the sign-extended bits must be cleared to zero.
• If the data type is signed, then the sign-extended bits must be set to one for strictly negative

numbers, and cleared to zero otherwise.

The ssGetDataTypeStorageContainCat function can also return the following values.

Other Storage Containers

Container Category Description
FXP_STORAGE_UNKNOWN Returned if the storage container category is unknown
FXP_STORAGE_SINGLE Container type for a Simulink single
FXP_STORAGE_DOUBLE Container type for a Simulink double
FXP_STORAGE_SCALEDDOUBLE Container type for a data type that has been overridden with Scaled

double

This function errors out when ssGetDataTypeIsFxpFltApiCompat returns FALSE.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more information, see
“Structure of the S-Function” on page A-4.

Languages
C

TLC Functions
Because the mapping of storage containers in simulation to storage containers in code generation is
not one-to-one, the TLC functions for storage containers in TLC are different from those in simulation.
Refer to “Storage Container TLC Functions” on page A-7 for more information:

• FixPt_DataTypeNativeType
• FixPt_DataTypeStorageDouble
• FixPt_DataTypeStorageSingle
• FixPt_DataTypeStorageScaledDouble
• FixPt_DataTypeStorageSInt
• FixPt_DataTypeStorageUInt
• FixPt_DataTypeStorageSLong
• FixPt_DataTypeStorageULong
• FixPt_DataTypeStorageSShort
• FixPt_DataTypeStorageUShort

See Also
ssGetDataTypeStorageContainerSize
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Introduced before R2006a
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ssGetDataTypeStorageContainerSize
Return storage container size of registered data type

Syntax
extern size_t ssGetDataTypeStorageContainerSize
                                          (SimStruct *S, DTypeId
                                            dataTypeId)

Arguments
S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered data type for which you want to know the container size.

Description
This function returns the storage container size of the data type designated by dataTypeId. This
function returns the same value as would the sizeof( ) function; it does not return the word length
of either the storage container or the data type. To get the word length of the storage container, use
ssGetDataTypeFxpContainWordLen. To get the word length of the data type, use
ssGetDataTypeFxpWordLength.

The container of the size returned by this function stores input and output signals, run-time
parameters, and DWorks during Simulink simulations. It is also the appropriate size measurement to
pass to functions like memcpy( ).

This function errors out when ssGetDataTypeIsFxpFltApiCompat returns FALSE.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more information, see
“Structure of the S-Function” on page A-4.

Languages
C

Examples
An sfix24_En10 data type has a word length of 24, but is actually stored in 32 bits during
simulation. For this signal,

• ssGetDataTypeStorageContainerSize or sizeof( ) returns 4, which is the storage
container size in bytes.
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• ssGetDataTypeFxpContainWordLen returns 32, which is the storage container word length in
bits.

• ssGetDataTypeFxpWordLength returns 24, which is the data type word length in bits.

TLC Functions
FixPt_GetDataTypeStorageContainerSize

See Also
ssGetDataTypeFxpContainWordLen, ssGetDataTypeFxpWordLength,
ssGetDataTypeStorageContainCat

Introduced before R2006a
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ssGetDataTypeTotalSlope
Return total slope of scaling of registered data type

Syntax
extern double ssGetDataTypeTotalSlope (SimStruct *S, DTypeId
                                       dataTypeId)

Arguments
S

SimStruct representing an S-function block.
dataTypeId

Data type ID of the registered data type for which you want to know the total slope.

Description
Fixed-point numbers can be represented as

real-world value = (slope × integer) + bias,

where the slope can be expressed as

slope = fractional slope × 2exponent.

This function returns the total slope, rather than the fractional slope, of the data type designated by
dataTypeId. To get the fractional slope, use ssGetDataTypeFracSlope:

• If the registered data type has trivial scaling, including double and single data types, the
function returns a total slope of 1.

• If the registered data type is ScaledDouble, the function returns the total slope of the
nonoverridden data type. Refer to the examples below.

This function errors out when ssGetDataTypeIsFxpFltApiCompat returns FALSE.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more information, see
“Structure of the S-Function” on page A-4.

Languages
C

Examples
The data type sfix32_En4 becomes flts32_En4 with data type override. The total slope returned
by this function in either case is 0.0625 (2-4).
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The data type ufix16_s7p98 becomes fltu16_s7p98 with data type override. The total slope
returned by this function in either case is 7.98.

TLC Functions
FixPt_DataTypeTotalSlope

See Also
ssGetDataTypeBias, ssGetDataTypeFixedExponent, ssGetDataTypeFracSlope

Introduced before R2006a
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ssLogFixptInstrumentation
Record information collected during simulation

Syntax
extern void ssLogFixptInstrumentation
                              (SimStruct *S,
                               double minValue,
                               double maxValue,
                               int countOverflows,
                               int countSaturations,
                               int countDivisionsByZero,
                               char *pStrName)

Arguments
S

SimStruct representing an S-function block.
minValue

Minimum output value that occurred during simulation.
maxValue

Maximum output value that occurred during simulation.
countOverflows

Number of overflows that occurred during simulation.
countSaturations

Number of saturations that occurred during simulation.
countDivisionsByZero

Number of divisions by zero that occurred during simulation.
*pStrName

The string argument is currently unused.

Description
ssLogFixptInstrumentation records information collected during a simulation, such as output
maximum and minimum, any overflows, saturations, and divisions by zero that occurred. The Fixed-
Point Tool displays this information after a simulation.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more information, see
“Structure of the S-Function” on page A-4.

Languages
C

 ssLogFixptInstrumentation

A-69



Introduced in R2008b
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ssRegisterDataTypeFxpBinaryPoint
Register fixed-point data type with binary-point-only scaling and return its data type ID

Syntax
extern DTypeId ssRegisterDataTypeFxpBinaryPoint
                                 (SimStruct *S,
                                  int isSigned,
                                  int wordLength,
                                  int fractionLength,
                                  int obeyDataTypeOverride)

Arguments
S

SimStruct representing an S-function block.
isSigned

TRUE if the data type is signed.

FALSE if the data type is unsigned.
wordLength

Total number of bits in the data type, including any sign bit.
fractionLength

Number of bits in the data type to the right of the binary point.
obeyDataTypeOverride

TRUE indicates that the Data Type Override setting for the subsystem is to be obeyed.
Depending on the value of Data Type Override, the resulting data type could be Double,
Single, Scaled double, or the fixed-point data type specified by the other arguments of the
function.

FALSE indicates that the Data Type Override setting is to be ignored.

Description
This function fully registers a fixed-point data type with the Simulink software and returns a data type
ID. Note that unlike the standard Simulink function ssRegisterDataType, you do not need to take
any additional registration steps. The data type ID can be used to specify the data types of input and
output ports, run-time parameters, and DWork states. It can also be used with all the standard data
type access methods in simstruc.h, such as ssGetDataTypeSize.

Use this function if you want to register a fixed-point data type with binary-point-only scaling.
Alternatively, you can use one of the other fixed-point registration functions:

• Use ssRegisterDataTypeFxpFSlopeFixExpBias to register a data type with [Slope Bias]
scaling by specifying the word length, fractional slope, fixed exponent, and bias.

• Use ssRegisterDataTypeFxpScaledDouble to register a scaled double.
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• Use ssRegisterDataTypeFxpSlopeBias to register a data type with [Slope Bias] scaling.

If the registered data type is not one of the Simulink built-in data types, a Fixed-Point Designer
software license is checked out. To prevent a Fixed-Point Designer software license from being
checked out when you simply open or view a model, protect registration calls with

if (ssGetSimMode(S) != SS_SIMMODE_SIZES_CALL_ONLY )
    ssRegisterDataType...

Note Because of the nature of the assignment of data type IDs, you should always use API functions
to extract information from a data type ID about a data type in your S-function. For more information,
refer to “Data Type IDs” on page A-9.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more information, see
“Structure of the S-Function” on page A-4.

Languages
C

TLC Functions
None. Data types should be registered in the Simulink software. Registration of data types is not
supported in TLC.

See Also
ssRegisterDataTypeFxpFSlopeFixExpBias, ssRegisterDataTypeFxpScaledDouble,
ssRegisterDataTypeFxpSlopeBias, ssRegisterDataTypeHalfPrecision

Introduced before R2006a

A ssRegisterDataTypeFxpBinaryPoint

A-72



ssRegisterDataTypeFxpFSlopeFixExpBias
Register fixed-point data type with [Slope Bias] scaling specified in terms of fractional slope, fixed
exponent, and bias, and return its data type ID

Syntax
extern DTypeId ssRegisterDataTypeFxpFSlopeFixExpBias
                                     (SimStruct *S,
                                      int isSigned,
                                      int wordLength,
                                      double fractionalSlope,
                                      int fixedExponent,
                                      double bias,
                                      int obeyDataTypeOverride)

Arguments
S

SimStruct representing an S-function block.
isSigned

TRUE if the data type is signed.

FALSE if the data type is unsigned.
wordLength

Total number of bits in the data type, including any sign bit.
fractionalSlope

Fractional slope of the data type.
fixedExponent

Exponent of the slope of the data type.
bias

Bias of the scaling of the data type.
obeyDataTypeOverride

TRUE indicates that the Data Type Override setting for the subsystem is to be obeyed.
Depending on the value of Data Type Override, the resulting data type could be Double,
Single, Scaled double, or the fixed-point data type specified by the other arguments of the
function.

FALSE indicates that the Data Type Override setting is to be ignored.

Description
This function fully registers a fixed-point data type with the Simulink software and returns a data type
ID. Note that unlike the standard Simulink function ssRegisterDataType, you do not need to take
any additional registration steps. The data type ID can be used to specify the data types of input and
output ports, run-time parameters, and DWork states. It can also be used with all the standard data
type access methods in simstruc.h, such as ssGetDataTypeSize.
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Use this function if you want to register a fixed-point data type by specifying the word length,
fractional slope, fixed exponent, and bias. Alternatively, you can use one of the other fixed-point
registration functions:

• Use ssRegisterDataTypeFxpBinaryPoint to register a data type with binary-point-only
scaling.

• Use ssRegisterDataTypeFxpScaledDouble to register a scaled double.
• Use ssRegisterDataTypeFxpSlopeBias to register a data type with [Slope Bias] scaling.

If the registered data type is not one of the Simulink built-in data types, a Fixed-Point Designer
software license is checked out. To prevent a Fixed-Point Designer software license from being
checked out when you simply open or view a model, protect registration calls with

if (ssGetSimMode(S) != SS_SIMMODE_SIZES_CALL_ONLY )
    ssRegisterDataType...

Note Because of the nature of the assignment of data type IDs, you should always use API functions
to extract information from a data type ID about a data type in your S-function. For more information,
refer to “Data Type IDs” on page A-9.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more information, see
“Structure of the S-Function” on page A-4.

Languages
C

TLC Functions
None. Data types should be registered in the Simulink software. Registration of data types is not
supported in TLC.

See Also
ssRegisterDataTypeFxpBinaryPoint, ssRegisterDataTypeFxpScaledDouble,
ssRegisterDataTypeFxpSlopeBias, ssRegisterDataTypeHalfPrecision

Introduced before R2006a
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ssRegisterDataTypeFxpScaledDouble
Register scaled double data type with [Slope Bias] scaling specified in terms of fractional slope, fixed
exponent, and bias, and return its data type ID

Syntax
extern DTypeId ssRegisterDataTypeFxpScaledDouble
                                     (SimStruct *S,
                                      int isSigned,
                                      int wordLength,
                                      double fractionalSlope,
                                      int fixedExponent,
                                      double bias,
                                      int obeyDataTypeOverride)

Arguments
S

SimStruct representing an S-function block.
isSigned

TRUE if the data type is signed.

FALSE if the data type is unsigned.
wordLength

Total number of bits in the data type, including any sign bit.
fractionalSlope

Fractional slope of the data type.
fixedExponent

Exponent of the slope of the data type.
bias

Bias of the scaling of the data type.
obeyDataTypeOverride

TRUE indicates that the Data Type Override setting for the subsystem is to be obeyed.
Depending on the value of Data Type Override, the resulting data type could be Double,
Single, Scaled double, or the fixed-point data type specified by the other arguments of the
function.

FALSE indicates that the Data Type Override setting is to be ignored.

Description
This function fully registers a fixed-point data type with the Simulink software and returns a data type
ID. Note that unlike the standard Simulink function ssRegisterDataType, you do not need to take
any additional registration steps. The data type ID can be used to specify the data types of input and
output ports, run-time parameters, and DWork states. It can also be used with all the standard data
type access methods in simstruc.h, such as ssGetDataTypeSize.
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Use this function if you want to register a scaled double data type. Alternatively, you can use one of
the other fixed-point registration functions:

• Use ssRegisterDataTypeFxpBinaryPoint to register a data type with binary-point-only
scaling.

• Use ssRegisterDataTypeFxpFSlopeFixExpBias to register a data type with [Slope Bias]
scaling by specifying the word length, fractional slope, fixed exponent, and bias.

• Use ssRegisterDataTypeFxpSlopeBias to register a data type with [Slope Bias] scaling.

If the registered data type is not one of the Simulink built-in data types, a Fixed-Point Designer
software license is checked out. To prevent a Fixed-Point Designer software license from being
checked out when you simply open or view a model, protect registration calls with

if (ssGetSimMode(S) != SS_SIMMODE_SIZES_CALL_ONLY )
    ssRegisterDataType...

Note Because of the nature of the assignment of data type IDs, you should always use API functions
to extract information from a data type ID about a data type in your S-function. For more information,
refer to “Data Type IDs” on page A-9.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more information, see
“Structure of the S-Function” on page A-4.

Languages
C

TLC Functions
None. Data types should be registered in the Simulink software. Registration of data types is not
supported in TLC.

See Also
ssRegisterDataTypeFxpBinaryPoint, ssRegisterDataTypeFxpFSlopeFixExpBias,
ssRegisterDataTypeFxpSlopeBias, ssRegisterDataTypeHalfPrecision

Introduced before R2006a
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ssRegisterDataTypeFxpSlopeBias
Register data type with [Slope Bias] scaling and return its data type ID

Syntax
extern DTypeId ssRegisterDataTypeFxpSlopeBias
                                         (SimStruct *S,
                                          int isSigned,
                                          int wordLength,
                                          double totalSlope,
                                          double bias,
                                          int obeyDataTypeOverride)

Arguments
S

SimStruct representing an S-function block.
isSigned

TRUE if the data type is signed.

FALSE if the data type is unsigned.
wordLength

Total number of bits in the data type, including any sign bit.
totalSlope

Total slope of the scaling of the data type.
bias

Bias of the scaling of the data type.
obeyDataTypeOverride

TRUE indicates that the Data Type Override setting for the subsystem is to be obeyed.
Depending on the value of Data Type Override, the resulting data type could be Double,
Single, Scaled double, or the fixed-point data type specified by the other arguments of the
function.

FALSE indicates that the Data Type Override setting is to be ignored.

Description
This function fully registers a fixed-point data type with the Simulink software and returns a data type
ID. Note that unlike the standard Simulink function ssRegisterDataType, you do not need to take
any additional registration steps. The data type ID can be used to specify the data types of input and
output ports, run-time parameters, and DWork states. It can also be used with all the standard data
type access methods in simstruc.h, such as ssGetDataTypeSize.

Use this function if you want to register a fixed-point data type with [Slope Bias] scaling. Alternately,
you can use one of the other fixed-point registration functions:
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• Use ssRegisterDataTypeFxpBinaryPoint to register a data type with binary-point-only
scaling.

• Use ssRegisterDataTypeFxpFSlopeFixExpBias to register a data type with [Slope Bias]
scaling by specifying the word length, fractional slope, fixed exponent, and bias.

• Use ssRegisterDataTypeFxpScaledDouble to register a scaled double.

If the registered data type is not one of the Simulink built-in data types, a Fixed-Point Designer
software license is checked out. To prevent a Fixed-Point Designer software license from being
checked out when you simply open or view a model, protect registration calls with

if (ssGetSimMode(S) != SS_SIMMODE_SIZES_CALL_ONLY )
    ssRegisterDataType...

Note Because of the nature of the assignment of data type IDs, you should always use API functions
to extract information from a data type ID about a data type in your S-function. For more information,
refer to “Data Type IDs” on page A-9.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more information, see
“Structure of the S-Function” on page A-4.

Languages
C

TLC Functions
None.

See Also
ssRegisterDataTypeFxpBinaryPoint, ssRegisterDataTypeFxpFSlopeFixExpBias,
ssRegisterDataTypeFxpScaledDouble, ssRegisterDataTypeHalfPrecision

Introduced before R2006a
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ssRegisterDataTypeHalfPrecision
Register half-precision data type and return its data type ID

Syntax
extern int ssRegisterDataTypeHalfPrecision
                                         (SimStruct *S,
                                         int obeyDataTypeOverride)

Arguments
S

SimStruct representing an S-function block.
obeyDataTypeOverride

TRUE indicates that the Data Type Override setting is to be obeyed. Depending on the value of
Data Type Override, the resulting data type could be Double, Single, Scaled double, or the
fixed-point data type specified by the other arguments of the function.

FALSE indicates that the Data Type Override setting is to be ignored.

Description
This function fully registers the half-precision data type with the Simulink software and returns a data
type ID. Note that unlike the standard Simulink function ssRegisterDataType, you do not need to
take any additional registration steps. The data type ID can be used to specify the data types of input
and output ports, run-time parameters, and DWork states. It can also be used with all the standard
data type access methods in simstruc.h, such as ssGetDataTypeSize.

Use this function if you want to register a half-precision data type. For more information on the
supported half-precision format, see “Half-Precision Format” on page 35-22.

The registered data type is not one of the Simulink built-in data types, so a Fixed-Point Designer
software license is checked out. To prevent a Fixed-Point Designer software license from being
checked out when you open or view a model, protect registration calls with

if (ssGetSimMode(S) != SS_SIMMODE_SIZES_CALL_ONLY )
    ssRegisterDataType...

Note Because of the nature of the assignment of data type IDs, you should always use API functions
to extract information from a data type ID about a data type in your S-function. For more information,
refer to “Data Type IDs” on page A-9.

Requirement
To use this function, you must include fixedpoint.h and fixedpoint.c. For more information, see
“Structure of the S-Function” on page A-4.
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Languages
C

TLC Functions
None.

See Also
ssRegisterDataTypeFxpFSlopeFixExpBias, ssGetDataTypeIsDoubleSingleorHalf,
ssGetDataTypeIsFloatingPoint ssGetDataTypeIsHalfPrecision

Introduced in R2020b
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Create Fixed-Point Data
This example shows the basics of how to use the fixed-point numeric object fi.

Notation

The fixed-point numeric object is called fi because J.H. Wilkinson used fi to denote fixed-point
computations in his classic texts Rounding Errors in Algebraic Processes (1963), and The Algebraic
Eigenvalue Problem (1965).

Setup

This example may use display settings or preferences that are different from what you are currently
using. To ensure that your current display settings and preferences are not changed by running this
example, the example automatically saves and restores them. The following code captures the current
states for any display settings or properties that the example changes.

originalFormat = get(0, 'format');
format loose
format long g
% Capture the current state of and reset the fi display and logging
% preferences to the factory settings.
fiprefAtStartOfThisExample = get(fipref);
reset(fipref);

Default Fixed-Point Attributes

To assign a fixed-point data type to a number or variable with the default fixed-point parameters, use
the fi constructor. The resulting fixed-point value is called a fi object.

For example, the following creates fi objects a and b with attributes shown in the display, all of
which we can specify when the variables are constructed. Note that when the FractionLength
property is not specified, it is set automatically to "best precision" for the given word length, keeping
the most-significant bits of the value. When the WordLength property is not specified it defaults to
16 bits.

a = fi(pi)

a = 

              3.1416015625

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 13

b = fi(0.1)

b = 

        0.0999984741210938

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
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            WordLength: 16
        FractionLength: 18

Specifying Signed and WordLength Properties

The second and third numeric arguments specify Signed (true or 1 = signed, false or 0 =
unsigned), and WordLength in bits, respectively.

% Signed 8-bit
a = fi(pi, 1, 8)

a = 

                   3.15625

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 8
        FractionLength: 5

The sfi constructor may also be used to construct a signed fi object

a1 = sfi(pi,8)

a1 = 

                   3.15625

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 8
        FractionLength: 5

% Unsigned 20-bit
b = fi(exp(1), 0, 20)

b = 

          2.71828079223633

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Unsigned
            WordLength: 20
        FractionLength: 18

The ufi constructor may be used to construct an unsigned fi object

b1 = ufi(exp(1), 20)

b1 = 

          2.71828079223633

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Unsigned

 Create Fixed-Point Data

53-3



            WordLength: 20
        FractionLength: 18

Precision

The data is stored internally with as much precision as is specified. However, it is important to be
aware that initializing high precision fixed-point variables with double-precision floating-point
variables may not give you the resolution that you might expect at first glance. For example, let's
initialize an unsigned 100-bit fixed-point variable with 0.1, and then examine its binary expansion:

a = ufi(0.1, 100);

bin(a)

ans =

    '1100110011001100110011001100110011001100110011001101000000000000000000000000000000000000000000000000'

Note that the infinite repeating binary expansion of 0.1 gets cut off at the 52nd bit (in fact, the 53rd
bit is significant and it is rounded up into the 52nd bit). This is because double-precision floating-
point variables (the default MATLAB® data type), are stored in 64-bit floating-point format, with 1 bit
for the sign, 11 bits for the exponent, and 52 bits for the mantissa plus one "hidden" bit for an
effective 53 bits of precision. Even though double-precision floating-point has a very large range, its
precision is limited to 53 bits. For more information on floating-point arithmetic, refer to Chapter 1 of
Cleve Moler's book, Numerical Computing with MATLAB. The pdf version can be found here: https://
www.mathworks.com/company/aboutus/founders/clevemoler.html

So, why have more precision than floating-point? Because most fixed-point processors have data
stored in a smaller precision, and then compute with larger precisions. For example, let's initialize a
40-bit unsigned fi and multiply using full-precision for products.

Note that the full-precision product of 40-bit operands is 80 bits, which is greater precision than
standard double-precision floating-point.

a = fi(0.1, 0, 40);
bin(a)

ans =

    '1100110011001100110011001100110011001101'

b = a*a

b = 

        0.0100000000000045

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Unsigned
            WordLength: 80
        FractionLength: 86

bin(b)
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ans =

    '10100011110101110000101000111101011100001111010111000010100011110101110000101001'

Access to Data

The data can be accessed in a number of ways which map to built-in data types and binary strings.
For example,

DOUBLE(A)

a = fi(pi);
double(a)

ans =

              3.1416015625

returns the double-precision floating-point "real-world" value of a, quantized to the precision of a.

A.DOUBLE = ...

We can also set the real-world value in a double.

a.double = exp(1)

a = 

             2.71826171875

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 13

sets the real-world value of a to e, quantized to a's numeric type.

STOREDINTEGER(A)

storedInteger(a)

ans =

  int16

   22268

returns the "stored integer" in the smallest built-in integer type available, up to 64 bits.
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Relationship Between Stored Integer Value and Real-World Value

In BinaryPoint scaling, the relationship between the stored integer value and the real-world value
is

There is also SlopeBias scaling, which has the relationship

where

and

The math operators of fi work with BinaryPoint scaling and real-valued SlopeBias scaled fi
objects.

BIN(A), OCT(A), DEC(A), HEX(A)

return the stored integer in binary, octal, unsigned decimal, and hexadecimal strings, respectively.

bin(a)

ans =

    '0101011011111100'

oct(a)

ans =

    '053374'

dec(a)

ans =

    '22268'

hex(a)

ans =

    '56fc'
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A.BIN = ..., A.OCT = ..., A.DEC = ..., A.HEX = ...

set the stored integer from binary, octal, unsigned decimal, and hexadecimal strings, respectively.

a.bin = '0110010010001000'

a = 

              3.1416015625

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 13

a.oct = '031707'

a = 

           1.6180419921875

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 13

a.dec = '22268'

a = 

             2.71826171875

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 13

a.hex = '0333'

a = 

           0.0999755859375

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 13
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Specifying FractionLength

When the FractionLength property is not specified, it is computed to be the best precision for the
magnitude of the value and given word length. You may also specify the fraction length directly as the
fourth numeric argument in the fi constructor or the third numeric argument in the sfi or ufi
constructor. In the following, compare the fraction length of a, which was explicitly set to 0, to the
fraction length of b, which was set to best precision for the magnitude of the value.

a = sfi(10,16,0)

a = 

    10

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 0

b = sfi(10,16)

b = 

    10

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 11

Note that the stored integer values of a and b are different, even though their real-world values are
the same. This is because the real-world value of a is the stored integer scaled by 2^0 = 1, while the
real-world value of b is the stored integer scaled by 2^-11 = 0.00048828125.

storedInteger(a)

ans =

  int16

   10

storedInteger(b)

ans =

  int16

   20480
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Specifying Properties with Parameter/Value Pairs

Thus far, we have been specifying the numeric type properties by passing numeric arguments to the
fi constructor. We can also specify properties by giving the name of the property as a string followed
by the value of the property:

a = fi(pi,'WordLength',20)

a = 

          3.14159393310547

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 20
        FractionLength: 17

For more information on fi properties, type

help fi

or

doc fi

at the MATLAB command line.

Numeric Type Properties

All of the numeric type properties of fi are encapsulated in an object named numerictype:

T = numerictype

T =

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 15

The numeric type properties can be modified either when the object is created by passing in
parameter/value arguments

T = numerictype('WordLength',40,'FractionLength',37)

T =

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 40
        FractionLength: 37

or they may be assigned by using the dot notation
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T.Signed = false

T =

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Unsigned
            WordLength: 40
        FractionLength: 37

All of the numeric type properties of a fi may be set at once by passing in the numerictype object.
This is handy, for example, when creating more than one fi object that share the same numeric type.

a = fi(pi,'numerictype',T)

a = 

          3.14159265359194

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Unsigned
            WordLength: 40
        FractionLength: 37

b = fi(exp(1),'numerictype',T)

b = 

          2.71828182845638

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Unsigned
            WordLength: 40
        FractionLength: 37

The numerictype object may also be passed directly to the fi constructor

a1 = fi(pi,T)

a1 = 

          3.14159265359194

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Unsigned
            WordLength: 40
        FractionLength: 37

For more information on numerictype properties, type

help numerictype

or

doc numerictype
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at the MATLAB command line.

Display Preferences

The display preferences for fi can be set with the fipref object. They can be saved between
MATLAB sessions with the savefipref command.

Display of Real-World Values

When displaying real-world values, the closest double-precision floating-point value is displayed. As
we have seen, double-precision floating-point may not always be able to represent the exact value of
high-precision fixed-point number. For example, an 8-bit fractional number can be represented
exactly in doubles

a = sfi(1,8,7)

a = 

                 0.9921875

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 8
        FractionLength: 7

bin(a)

ans =

    '01111111'

while a 100-bit fractional number cannot (1 is displayed, when the exact value is 1 - 2^-99):

b = sfi(1,100,99)

b = 

     1

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 100
        FractionLength: 99

Note, however, that the full precision is preserved in the internal representation of fi

bin(b)

ans =

    '0111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111'
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The display of the fi object is also affected by MATLAB's format command. In particular, when
displaying real-world values, it is handy to use

format long g

so that as much precision as is possible will be displayed.

There are also other display options to make a more shorthand display of the numeric type
properties, and options to control the display of the value (as real-world value, binary, octal, decimal
integer, or hex).

For more information on display preferences, type

help fipref
help savefipref
help format

or

doc fipref
doc savefipref
doc format

at the MATLAB command line.

Cleanup

The following code sets any display settings or preferences that the example changed back to their
original states.

% Reset the fi display and logging preferences
fipref(fiprefAtStartOfThisExample);
set(0, 'format', originalFormat);
%#ok<*NOPTS,*NASGU>
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Perform Fixed-Point Arithmetic
This example shows how to perform basic fixed-point arithmetic operations.

Save warning states before beginning.

warnstate = warning;

Addition and Subtraction

Whenever you add two unsigned fixed-point numbers, you may need a carry bit to correctly represent
the result. For this reason, when adding two B-bit numbers (with the same scaling), the resulting
value has an extra bit compared to the two operands used.

a = ufi(0.234375,4,6);
c = a + a

c = 

    0.4688

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Unsigned
            WordLength: 5
        FractionLength: 6

a.bin

ans =

    '1111'

c.bin

ans =

    '11110'

With signed, two's-complement numbers, a similar scenario occurs because of the sign extension
required to correctly represent the result.

a = sfi(0.078125,4,6);
b = sfi(-0.125,4,6);
c = a + b

c = 

   -0.0469

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 5
        FractionLength: 6
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a.bin

ans =

    '0101'

b.bin

ans =

    '1000'

c.bin

ans =

    '11101'

If you add or subtract two numbers with different precision, the radix point first needs to be aligned
to perform the operation. The result is that there is a difference of more than one bit between the
result of the operation and the operands (depending on how far apart the radix points are).

a = sfi(pi,16,13);
b = sfi(0.1,12,14);
c = a + b

c = 

    3.2416

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 18
        FractionLength: 14

Further Considerations for Addition and Subtraction

Note that the following pattern is not recommended. Since scalar additions are performed at each
iteration in the for-loop, a bit is added to temp during each iteration. As a result, instead of a
ceil(log2(Nadds)) bit-growth, the bit-growth is equal to Nadds.

s = rng; rng('default');
b = sfi(4*rand(16,1)-2,32,30);
rng(s); % restore RNG state
Nadds = length(b) - 1;
temp  = b(1);
for n = 1:Nadds
    temp = temp + b(n+1); % temp has 15 more bits than b
end

If the sum command is used instead, the bit-growth is curbed as expected.
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c = sum(b) % c has 4 more bits than b

c = 

    7.0059

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 36
        FractionLength: 30

Multiplication

In general, a full precision product requires a word length equal to the sum of the word lengths of the
operands. In the following example, note that the word length of the product c is equal to the word
length of a plus the word length of b. The fraction length of c is also equal to the fraction length of a
plus the fraction length of b.

a = sfi(pi,20);
b = sfi(exp(1),16);
c = a * b

c = 

    8.5397

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 36
        FractionLength: 30

Assignment

When you assign a fixed-point value into a pre-defined variable, quantization might be involved. In
such cases, the right-hand-side of the expression is quantized by rounding to nearest and then
saturating, if necessary, before assigning to the left-hand-side.

N = 10;
a = sfi(2*rand(N,1)-1,16,15);
b = sfi(2*rand(N,1)-1,16,15);
c = sfi(zeros(N,1),16,14);
for n = 1:N
    c(n) = a(n).*b(n);
end

Note that when the product a(n).*b(n) is computed with full precision, an intermediate result with
wordlength 32 and fraction length 30 is generated. That result is then quantized to a wordlength of
16 and a fraction length of 14, as explained above. The quantized value is then assigned to the
element c(n).

Quantizing Results Explicitly

Often, it is not desirable to round to nearest or to saturate when quantizing a result because of the
extra logic/computation required. It also may be undesirable to have to assign to a left-hand-side
value to perform the quantization. You can use QUANTIZE for such purposes. A common case is a
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feedback-loop. If no quantization is introduced, un-bounded bit-growth will occur as more input data
is provided.

a = sfi(0.1,16,18);
x = sfi(2*rand(128,1)-1,16,15);
y = sfi(zeros(size(x)),16,14);
for n = 1:length(x)
    z    = y(n);
    y(n) = x(n) - quantize(a.*z, true, 16, 14, 'Floor', 'Wrap');
end

In this example, the product a.*z is computed with full precision and is subsequently quantized to a
wordlength of 16 bits and a fraction length of 14. The quantization is done by rounding to floor
(truncation) and allowing for wrapping if overflow occurs. Quantization still occurs at assignment,
because the expression x(n) - quantize(a.*z, ...) produces an intermediate result of 18 bits
and y is defined to have 16 bits. To eliminate the quantization at assignment, you can introduce an
additional explicit quantization as shown below. The advantage of doing this is that no round-to-
nearest/saturation logic is used. The left-hand-side result has the same 16-bit wordlength and fraction
length of 14 as y(n), so no quantization is necessary.

a = sfi(0.1,16,18);
x = sfi(2*rand(128,1)-1,16,15);
y = sfi(zeros(size(x)),16,14);
T = numerictype(true, 16, 14);
for n = 1:length(x)
    z    = y(n);
    y(n) = quantize(x(n), T, 'Floor', 'Wrap') - ...
           quantize(a.*z, T, 'Floor', 'Wrap');
end

Non-Full-Precision Sums

Full-precision sums are not always desirable. For example, the 18-bit wordlength corresponding to
the intermediate result x(n) - quantize(...) above may result in complicated and inefficient
code, if C code is generated. Instead, it may be desirable to keep all results of addition/subtraction to
16 bits. You can use the accumpos and accumneg functions for this purpose.

a = sfi(0.1,16,18);
x = sfi(2*rand(128,1)-1,16,15);
y = sfi(zeros(size(x)),16,14);
T = numerictype(true, 16, 14);
for n = 1:length(x)
    z    = y(n);
    y(n) = quantize(x(n), T);                 % defaults: 'Floor','Wrap'
    y(n) = accumneg(y(n), quantize(a.*z, T)); % defaults: 'Floor','Wrap'
end

Modeling Accumulators

accumpos and accumneg are well-suited to model accumulators. The behavior corresponds to the
+= and -= operators in C. A common example is an FIR filter in which the coefficients and input data
are represented with 16 bits. The multiplication is performed in full-precision, yielding 32 bits, and an
accumulator with 8 guard-bits, i.e. 40-bits total is used to enable up to 256 accumulations without the
possibility of overflow.

b = sfi(1/256*[1:128,128:-1:1],16); % Filter coefficients
x = sfi(2*rand(300,1)-1,16,15);     % Input data
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z = sfi(zeros(256,1),16,15);        % Used to store the states
y = sfi(zeros(size(x)),40,31);      % Initialize Output data
for n = 1:length(x)
    acc = sfi(0,40,31); % Reset accumulator
    z(1) = x(n);        % Load input sample
    for k = 1:length(b)
        acc = accumpos(acc,b(k).*z(k)); % Multiply and accumulate
    end
    z(2:end) = z(1:end-1); % Update states
    y(n) = acc;            % Assign output
end

Matrix Arithmetic

To simplify syntax and shorten simulation time, you can use matrix arithmetic. For the FIR filter
example, you can replace the inner loop with an inner product.

z = sfi(zeros(256,1),16,15); % Used to store the states
y = sfi(zeros(size(x)),40,31);
for n = 1:length(x)
    z(1) = x(n);
    y(n) = b*z;
    z(2:end) = z(1:end-1);
end

The inner product b*z is performed with full precision. Because this is a matrix operation, the bit
growth is due to both the multiplication involved and the addition of the resulting products.
Therefore, the bit growth depends on the length of the operands. Since b and z have length 256, that
accounts for an 8-bit growth due to the additions. This is why the inner product results in 32 + 8 = 40
bits (with fraction length 31). Since this is the format y is initialized to, no quantization occurs in the
assignment y(n) = b*z.

If you had to perform an inner product for more than 256 coefficients, the bit growth would be more
than 8 bits beyond the 32 needed for the product. If you only had a 40-bit accumulator, you could
model the behavior by either introducing a quantizer, as in y(n) = quantize(Q,b*z), or you could
use the accumpos function as has been shown.

Modeling a Counter

accumpos can be used to model a simple counter which naturally wraps after reaching its maximum
value. For example, you can model a 3-bit counter as follows.

c = ufi(0,3,0);
Ncounts = 20; % Number of times to count
for n = 1:Ncounts
    c = accumpos(c,1);
end

Since the 3-bit counter naturally wraps back to 0 after reaching 7, the final value of the counter is
mod(20,8) = 4.

Math With Other Built-In Data Types

FI * DOUBLE

When doing multiplication between fi and double, the double is cast to a fi with the same word
length and signedness of the fi, and best-precision fraction length. The result of the operation is a
fi.
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a = fi(pi);
b = 0.5 * a

b = 

    1.5708

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 32
        FractionLength: 28

FI + DOUBLE or FI - DOUBLE

When doing addition or subtraction between fi and double, the double is cast to a fi with the same
numerictype as the fi. The result of the operation is a fi.

This behavior of fi + double changed in R2012b. You can turn off the incompatibility warning by
entering the following warning command.

warning off fixed:incompatibility:fi:behaviorChangeHeterogeneousMathOperationRules
a = fi(pi);
b = a + 1

b = 

    4.1416

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 17
        FractionLength: 13

Some Differences Between MATLAB® and C

Note that in C, the result of an operation between an integer data type and a double data type
promotes to a double.

However, in MATLAB, the result of an operation between a built-in integer data type and a double
data type is an integer. In this respect, the fi object behaves like the built-in integer data types in
MATLAB. The result of an operation between a fi and a double is a fi.

FI * INT8

When doing arithmetic between fi and one of the built-in integer data types [u]int[8,16,32], the word
length and signedness of the integer are preserved. The result of the operation is a fi.

a = fi(pi);
b = int8(2) * a

b = 

    6.2832

          DataTypeMode: Fixed-point: binary point scaling
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            Signedness: Signed
            WordLength: 24
        FractionLength: 13

Restore warning states.

warning(warnstate);
%#ok<*NASGU,*NOPTS>
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Set Fixed-Point Math Attributes
This example shows how to set fixed point math attributes in MATLAB® code.

You can control fixed-point math attributes for assignment, addition, subtraction, and multiplication
using the fimath object. You can attach a fimath object to a fi object using setfimath. You can
remove a fimath object from a fi object using removefimath.

You can generate C code from the examples if you have MATLAB Coder™ software.

Set and Remove Fixed Point Math Attributes

You can insulate your fixed-point operations from global and local fimath settings by using the
setfimath and removefimath functions. You can also return from functions with no fimath
attached to output variables. This gives you local control over fixed-point math settings without
interfering with the settings in other functions.

MATLAB Code

function y = user_written_sum(u)
    % Setup
    F = fimath('RoundingMethod','Floor',...
        'OverflowAction','Wrap',...
        'SumMode','KeepLSB',...
        'SumWordLength',32);
    u = setfimath(u,F);
    y = fi(0,true,32,get(u,'FractionLength'),F);
    % Algorithm
    for i=1:length(u)
        y(:) = y + u(i);
    end
    % Cleanup
    y = removefimath(y);
end

Output has no Attached FIMATH

When you run the code, the fimath controls the arithmetic inside the function, but the return value
has no attached fimath. This is due to the use of setfimath and removefimath inside the function
user_written_sum.

>> u = fi(1:10,true,16,11);
>> y = user_written_sum(u)

y =
    55
          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 32
        FractionLength: 11

Generated C Code

If you have MATLAB Coder software, you can generate C code using the following commands.

>> u = fi(1:10,true,16,11);
>> codegen user_written_sum -args {u} -config:lib -launchreport
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Functions fimath, setfimath and removefimath control the fixed-point math, but the underlying
data contained in the variables does not change and so the generated C code does not produce any
data copies.

int32_T user_written_sum(const int16_T u[10])
{
  int32_T y;
  int32_T i;
  /* Setup */
  y = 0;
  /* Algorithm */
  for (i = 0; i < 10; i++) {
    y += u[i];
  }
  /* Cleanup */
  return y;
}

Mismatched FIMATH

When you operate on fi objects, their fimath properties must be equal, or you get an error.

>> A = fi(pi,'ProductMode','KeepLSB');
>> B = fi(2,'ProductMode','SpecifyPrecision');
>> C = A * B

Error using embedded.fi/mtimes
The embedded.fimath of both operands must be equal.

To avoid this error, you can remove fimath from one of the variables in the expression. In this
example, the fimath is removed from B in the context of the expression without modifying B itself,
and the product is computed using the fimath attached to A.

>> C = A * removefimath(B)

C =

                6.283203125

           DataTypeMode: Fixed-point: binary point scaling
             Signedness: Signed
             WordLength: 32
         FractionLength: 26

         RoundingMethod: Nearest
         OverflowAction: Saturate
            ProductMode: KeepLSB
      ProductWordLength: 32
                SumMode: FullPrecision

Changing FIMATH on Temporary Variables

If you have variables with no attached fimath, but you want to control a particular operation, then
you can attach a fimath in the context of the expression without modifying the variables.

For example, the product is computed with the fimath defined by F.

>> F = fimath('ProductMode','KeepLSB','OverflowAction','Wrap','RoundingMethod','Floor');
>> A = fi(pi);
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>> B = fi(2);
>> C = A * setfimath(B,F)

C =

     6.2832

           DataTypeMode: Fixed-point: binary point scaling
             Signedness: Signed
             WordLength: 32
         FractionLength: 26

         RoundingMethod: Floor
         OverflowAction: Wrap
            ProductMode: KeepLSB
      ProductWordLength: 32
                SumMode: FullPrecision
       MaxSumWordLength: 128

Note that variable B is not changed.

>> B

B =

      2

           DataTypeMode: Fixed-point: binary point scaling
             Signedness: Signed
             WordLength: 16
         FractionLength: 13

Removing FIMATH Conflict in a Loop

You can compute products and sums to match the accumulator of a DSP with floor rounding and wrap
overflow, and use nearest rounding and saturate overflow on the output. To avoid mismatched
fimath errors, you can remove the fimath on the output variable when it is used in a computation
with the other variables.

MATLAB Code

In this example, the products are 32-bits, and the accumulator is 40-bits, keeping the least-
significant-bits with floor rounding and wrap overflow like C's native integer rules. The output uses
nearest rounding and saturate overflow.

function [y,z] = setfimath_removefimath_in_a_loop(b,a,x,z)
    % Setup
    F_floor = fimath('RoundingMethod','Floor',...
           'OverflowAction','Wrap',...
           'ProductMode','KeepLSB',...
           'ProductWordLength',32,...
           'SumMode','KeepLSB',...
           'SumWordLength',40);
    F_nearest = fimath('RoundingMethod','Nearest',...
        'OverflowAction','Wrap');
    % Set fimaths that are local to this function
    b = setfimath(b,F_floor);
    a = setfimath(a,F_floor);
    x = setfimath(x,F_floor);
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    z = setfimath(z,F_floor);
    % Create y with nearest rounding
    y = coder.nullcopy(fi(zeros(size(x)),true,16,14,F_nearest));
    % Algorithm
    for j=1:length(x)
        % Nearest assignment into y
        y(j) =  b(1)*x(j) + z(1);
        % Remove y's fimath conflict with other fimaths
        z(1) = (b(2)*x(j) + z(2)) - a(2) * removefimath(y(j));
        z(2) =  b(3)*x(j)         - a(3) * removefimath(y(j));
    end
    % Cleanup: Remove fimath from outputs
    y = removefimath(y);
    z = removefimath(z);
end

Code Generation Instructions

If you have MATLAB Coder software, you can generate C code with the specified hardware
characteristics using the following commands.

N = 256;
t = 1:N;
xstep = [ones(N/2,1);-ones(N/2,1)];
num = [0.0299545822080925  0.0599091644161849  0.0299545822080925];
den = [1                  -1.4542435862515900  0.5740619150839550];

b = fi(num,true,16);
a = fi(den,true,16);
x = fi(xstep,true,16,15);
zi = fi(zeros(2,1),true,16,14);

B = coder.Constant(b);
A = coder.Constant(a);

config_obj = coder.config('lib');
config_obj.GenerateReport = true;
config_obj.LaunchReport = true;
config_obj.TargetLang = 'C';
config_obj.GenerateComments = true;
config_obj.GenCodeOnly = true;
config_obj.HardwareImplementation.ProdBitPerChar=8;
config_obj.HardwareImplementation.ProdBitPerShort=16;
config_obj.HardwareImplementation.ProdBitPerInt=32;
config_obj.HardwareImplementation.ProdBitPerLong=40;

codegen -config config_obj setfimath_removefimath_in_a_loop -args {B,A,x,zi} -launchreport

Generated C Code

Functions fimath, setfimath and removefimath control the fixed-point math, but the underlying
data contained in the variables does not change and so the generated C code does not produce any
data copies.

void setfimath_removefimath_in_a_loop(const int16_T x[256], int16_T z[2],
  int16_T y[256])
{
  int32_T j;
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  int40_T i0;
  int16_T b_y;

  /* Setup */
  /* Set fimaths that are local to this function */
  /* Create y with nearest rounding */
  /* Algorithm */
  for (j = 0; j < 256; j++) {
    /* Nearest assignment into y */
    i0 = 15705 * x[j] + ((int40_T)z[0] << 20);
    b_y = (int16_T)((int32_T)(i0 >> 20) + ((i0 & 524288L) != 0L));

    /* Remove y's fimath conflict with other fimaths */
    z[0] = (int16_T)(((31410 * x[j] + ((int40_T)z[1] << 20)) - ((int40_T)(-23826
      * b_y) << 6)) >> 20);
    z[1] = (int16_T)((15705 * x[j] - ((int40_T)(9405 * b_y) << 6)) >> 20);
    y[j] = b_y;
  }

  /* Cleanup: Remove fimath from outputs */
}

Polymorphic Code

You can write MATLAB code that can be used for both floating-point and fixed-point types using
setfimath and removefimath.

function y = user_written_function(u)
    % Setup
    F = fimath('RoundingMethod','Floor',...
        'OverflowAction','Wrap',...
        'SumMode','KeepLSB');
    u = setfimath(u,F);
    % Algorithm
    y = u + u;
    % Cleanup
    y = removefimath(y);
end

Fixed Point Inputs

When the function is called with fixed-point inputs, then fimath F is used for the arithmetic, and the
output has no attached fimath.

>> u = fi(pi/8,true,16,15,'RoundingMethod','Convergent');
>> y = user_written_function(u)

y =

             0.785400390625

           DataTypeMode: Fixed-point: binary point scaling
             Signedness: Signed
             WordLength: 32
         FractionLength: 15

Generated C Code for Fixed Point

If you have MATLAB Coder software, you can generate C code using the following commands.
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>> u = fi(pi/8,true,16,15,'RoundingMethod','Convergent');
>> codegen user_written_function -args {u} -config:lib -launchreport

Functions fimath, setfimath and removefimath control the fixed-point math, but the underlying
data contained in the variables does not change and so the generated C code does not produce any
data copies.

int32_T user_written_function(int16_T u)
{
  /* Setup */
  /* Algorithm */
  /* Cleanup */
  return u + u;
}

Double Inputs

Since setfimath and removefimath are pass-through for floating-point types, the
user_written_function example works with floating-point types, too.

function y = user_written_function(u)
    % Setup
    F = fimath('RoundingMethod','Floor',...
        'OverflowAction','Wrap',...
        'SumMode','KeepLSB');
    u = setfimath(u,F);
    % Algorithm
    y = u + u;
    % Cleanup
    y = removefimath(y);
end

Generated C Code for Double

When compiled with floating-point input, you get the following generated C code.

>> codegen user_written_function -args {0} -config:lib -launchreport

real_T user_written_function(real_T u)
{
  return u + u;
}

Where the real_T type is defined as a double:

typedef double real_T;

More Polymorphic Code

This function is written so that the output is created to be the same type as the input, so both
floating-point and fixed-point can be used with it.

function y = user_written_sum_polymorphic(u)
    % Setup
    F = fimath('RoundingMethod','Floor',...
        'OverflowAction','Wrap',...
        'SumMode','KeepLSB',...
        'SumWordLength',32);
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     u = setfimath(u,F);

     if isfi(u)
         y = fi(0,true,32,get(u,'FractionLength'),F);
     else
         y = zeros(1,1,class(u));
     end

     % Algorithm
     for i=1:length(u)
         y(:) = y + u(i);
     end

     % Cleanup
     y = removefimath(y);

end

Fixed Point Generated C Code

If you have MATLAB Coder software, you can generate fixed-point C code using the following
commands.

>> u = fi(1:10,true,16,11);
>> codegen user_written_sum_polymorphic -args {u} -config:lib -launchreport

Functions fimath, setfimath and removefimath control the fixed-point math, but the underlying
data contained in the variables does not change and so the generated C code does not produce any
data copies.

int32_T user_written_sum_polymorphic(const int16_T u[10])
{
  int32_T y;
  int32_T i;

  /* Setup */
  y = 0;

  /* Algorithm */
  for (i = 0; i < 10; i++) {
    y += u[i];
  }

  /* Cleanup */
  return y;
}

Floating Point Generated C Code

If you have MATLAB Coder software, you can generate floating-point C code using the following
commands.

>> u = 1:10;
>> codegen user_written_sum_polymorphic -args {u} -config:lib -launchreport

real_T user_written_sum_polymorphic(const real_T u[10])
{
  real_T y;
  int32_T i;
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  /* Setup */
  y = 0.0;

  /* Algorithm */
  for (i = 0; i < 10; i++) {
    y += u[i];
  }

  /* Cleanup */
  return y;
}

Where the real_T type is defined as a double:

typedef double real_T;

SETFIMATH on Integer Types

Following the established pattern of treating built-in integers like fi objects, setfimath converts
integer input to the equivalent fi with attached fimath.

>> u = int8(5);
>> codegen user_written_u_plus_u -args {u} -config:lib -launchreport

function y = user_written_u_plus_u(u)
    % Setup
    F = fimath('RoundingMethod','Floor',...
        'OverflowAction','Wrap',...
        'SumMode','KeepLSB',...
        'SumWordLength',32);
    u = setfimath(u,F);
    % Algorithm
    y = u + u;
    % Cleanup
    y = removefimath(y);
end

The output type was specified by the fimath to be 32-bit.

int32_T user_written_u_plus_u(int8_T u)
{
  /* Setup */
  /* Algorithm */
  /* Cleanup */
  return u + u;
}
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View Fixed-Point Number Circles
This example shows how to define unsigned and signed two's complement integer and fixed-point
numbers.

Fixed-Point Number Definitions

This example illustrates the definitions of unsigned and signed-two's-complement integer and fixed-
point numbers.

Unsigned Integers.

Unsigned integers are represented in the binary number system in the following way. Let

b = [b(n) b(n-1) ... b(2) b(1)]

be the binary digits of an n-bit unsigned integer, where each b(i) is either one or zero. Then the value
of b is

u = b(n)*2^(n-1) + b(n-1)*2^(n-2) + ... + b(2)*2^(1) + b(1)*2^(0)

For example, let's define a 3-bit unsigned integer quantizer, and enumerate its range.

originalFormat = get(0, 'format'); format

q = quantizer('ufixed',[3 0]);
[a,b] = range(q);
u = (a:eps(q):b)'

% Now, let's display those values in binary.
b = num2bin(q,u)

u =

     0
     1
     2
     3
     4
     5
     6
     7

b =

  8x3 char array

    '000'
    '001'
    '010'
    '011'
    '100'
    '101'
    '110'
    '111'
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Unsigned Integer Number Circle.

Let's array them around a clock face with their corresponding binary and decimal values.

fidemo.numbercircle(q);

Unsigned Fixed-Point.

Unsigned fixed-point values are unsigned integers that are scaled by a power of two. We call the
negative exponent of the power of two the "fractionlength".

If the unsigned integer u is defined as before, and the fractionlength is f, then the value of the
unsigned fixed-point number is

  uf = u*2^-f

For example, let's define a 3-bit unsigned fixed-point quantizer with a fractionlength of 1, and
enumerate its range.

q = quantizer('ufixed',[3 1]);
[a,b] = range(q);
uf = (a:eps(q):b)'

% Now, let's display those values in binary.
b = num2bin(q,uf)

uf =
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         0
    0.5000
    1.0000
    1.5000
    2.0000
    2.5000
    3.0000
    3.5000

b =

  8x3 char array

    '000'
    '001'
    '010'
    '011'
    '100'
    '101'
    '110'
    '111'

Unsigned Fixed-Point Number Circle.

Let's array them around a clock face with their corresponding binary and decimal values.

fidemo.numbercircle(q);
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Unsigned Fractional Fixed-Point.

Unsigned fractional fixed-point numbers are fixed-point numbers whos fractionlength f is equal to the
wordlength n, which produces a scaling such that the range of numbers is between 0 and 1-2^-f,
inclusive. This is the most common form of fixed-point numbers because it has the nice property that
all of the numbers are less than one, and the product of two numbers less than one is a number less
than one, and so multiplication does not overflow.

Thus, the definition of unsigned fractional fixed-point is the same as unsigned fixed-point, with the
restriction that f=n, where n is the wordlength in bits.

  uf = u*2^-f

For example, let's define a 3-bit unsigned fractional fixed-point quantizer, which implies a
fractionlength of 3.

q = quantizer('ufixed',[3 3]);
[a,b] = range(q);
uf = (a:eps(q):b)'

% Now, let's display those values in binary.
b = num2bin(q,uf)

uf =

         0
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    0.1250
    0.2500
    0.3750
    0.5000
    0.6250
    0.7500
    0.8750

b =

  8x3 char array

    '000'
    '001'
    '010'
    '011'
    '100'
    '101'
    '110'
    '111'

Unsigned Fractional Fixed-Point Number Circle.

Let's array them around a clock face with their corresponding binary and decimal values.

fidemo.numbercircle(q);
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Signed Two's-Complement Integers.

Signed integers are represented in two's-complement in the binary number system in the following
way. Let

b = [b(n) b(n-1) ... b(2) b(1)]

be the binary digits of an n-bit signed integer, where each b(i) is either one or zero. Then the value of
b is

s = -b(n)*2^(n-1) + b(n-1)*2^(n-2) + ... + b(2)*2^(1) + b(1)*2^(0)

Note that the difference between this and the unsigned number is the negative weight on the most-
significant-bit (MSB).

For example, let's define a 3-bit signed integer quantizer, and enumerate its range.

q = quantizer('fixed',[3 0]);
[a,b] = range(q);
s = (a:eps(q):b)'

% Now, let's display those values in binary.
b = num2bin(q,s)

% Note that the most-significant-bit of negative numbers is 1, and positive
% numbers is 0.

s =

    -4
    -3
    -2
    -1
     0
     1
     2
     3

b =

  8x3 char array

    '100'
    '101'
    '110'
    '111'
    '000'
    '001'
    '010'
    '011'

Signed Two's-Complement Integer Number Circle.

Let's array them around a clock face with their corresponding binary and decimal values.
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The reason for this ungainly looking definition of negative numbers is that addition of all numbers,
both positive and negative, is carried out as if they were all positive, and then the n+1 carry bit is
discarded. The result will be correct if there is no overflow.

fidemo.numbercircle(q);

Signed Fixed-Point.

Signed fixed-point values are signed integers that are scaled by a power of two. We call the negative
exponent of the power of two the "fractionlength".

If the signed integer s is defined as before, and the fractionlength is f, then the value of the signed
fixed-point number is

  sf = s*2^-f

For example, let's define a 3-bit signed fixed-point quantizer with a fractionlength of 1, and
enumerate its range.

q = quantizer('fixed',[3 1]);
[a,b] = range(q);
sf = (a:eps(q):b)'

% Now, let's display those values in binary.
b = num2bin(q,sf)

sf =
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   -2.0000
   -1.5000
   -1.0000
   -0.5000
         0
    0.5000
    1.0000
    1.5000

b =

  8x3 char array

    '100'
    '101'
    '110'
    '111'
    '000'
    '001'
    '010'
    '011'

Signed Fixed-Point Number Circle.

Let's array them around a clock face with their corresponding binary and decimal values.

fidemo.numbercircle(q);
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Signed Fractional Fixed-Point.

Signed fractional fixed-point numbers are fixed-point numbers whos fractionlength f is one less than
the wordlength n, which produces a scaling such that the range of numbers is between -1 and 1-2^-f,
inclusive. This is the most common form of fixed-point numbers because it has the nice property that
the product of two numbers less than one is a number less than one, and so multiplication does not
overflow. The only exception is the case when we are multiplying -1 by -1, because +1 is not an
element of this number system. Some processors have a special multiplication instruction for this
situation, and some add an extra bit in the product to guard against this overflow.

Thus, the definition of signed fractional fixed-point is the same as signed fixed-point, with the
restriction that f=n-1, where n is the wordlength in bits.

  sf = s*2^-f

For example, let's define a 3-bit signed fractional fixed-point quantizer, which implies a fractionlength
of 2.

q = quantizer('fixed',[3 2]);
[a,b] = range(q);
sf = (a:eps(q):b)'

% Now, let's display those values in binary.
b = num2bin(q,sf)

sf =
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   -1.0000
   -0.7500
   -0.5000
   -0.2500
         0
    0.2500
    0.5000
    0.7500

b =

  8x3 char array

    '100'
    '101'
    '110'
    '111'
    '000'
    '001'
    '010'
    '011'

Signed Fractional Fixed-Point Number Circle.

Let's array them around a clock face with their corresponding binary and decimal values.

fidemo.numbercircle(q);

set(0, 'format', originalFormat);
%#ok<*NOPTS,*NASGU>
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Perform Binary-Point Scaling
This example shows how to perform binary point scaling in FI.

FI Construction

a = fi(v,s,w,f) returns a fi with value v, signedness s, word length w, and fraction length f.

If s is true (signed) the leading or most significant bit (MSB) in the resulting fi is always the sign bit.

Fraction length f is the scaling 2^(-f).

For example, create a signed 8-bit long fi with a value of 0.5 and a scaling of 2^(-7):

a = fi(0.5,true,8,7)

a = 

    0.5000

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 8
        FractionLength: 7

Fraction Length and the Position of the Binary Point

The fraction length or the scaling determines the position of the binary point in the fi object.

The Fraction Length is Positive and Less than the Word Length

When the fraction length f is positive and less than the word length, the binary point lies f places to
the left of the least significant bit (LSB) and within the word.

For example, in a signed 3-bit fi with fraction length of 1 and value -0.5, the binary point lies 1 place
to the left of the LSB. In this case each bit is set to 1 and the binary equivalent of the fi with its
binary point is 11.1 .

The real world value of -0.5 is obtained by multiplying each bit by its scaling factor, starting with the
LSB and working up to the signed MSB.

(1*2^-1) + (1*2^0) +(-1*2^1) = -0.5

storedInteger(a) returns the stored signed, unscaled integer value -1.

(1*2^0) + (1*2^1) +(-1*2^2) = -1

a = fi(-0.5,true,3,1)
bin(a)
storedInteger(a)

a = 

   -0.5000
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          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 3
        FractionLength: 1

ans =

    '111'

ans =

  int8

   -1

The Fraction Length is Positive and Greater than the Word Length

When the fraction length f is positive and greater than the word length, the binary point lies f places
to the left of the LSB and outside the word.

For example the binary equivalent of a signed 3-bit word with fraction length of 4 and value of
-0.0625 is ._111 Here _ in the ._111 denotes an unused bit that is not a part of the 3-bit word. The
first 1 after the _ is the MSB or the sign bit.

The real world value of -0.0625 is computed as follows (LSB to MSB).

(1*2^-4) + (1*2^-3) + (-1*2^-2) = -0.0625

bin(b) will return 111 at the MATLAB® prompt and storedInteger(b) = -1

b = fi(-0.0625,true,3,4)
bin(b)
storedInteger(b)

b = 

   -0.0625

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 3
        FractionLength: 4

ans =

    '111'

ans =

  int8

   -1
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The Fraction Length is a Negative Integer and Less than the Word Length

When the fraction length f is negative the binary point lies f places to the right of LSB and is outside
the physical word.

For instance in c = fi(-4,true,3,-2) the binary point lies 2 places to the right of the LSB
111__.. Here the two right most spaces are unused bits that are not part of the 3-bit word. The right
most 1 is the LSB and the leading 1 is the sign bit.

The real world value of -4 is obtained by multiplying each bit by its scaling factor 2^(-f), i.e. 2(-
(-2)) = 2^(2) for the LSB, and then adding the products together.

(1*2^2) + (1*2^3) +(-1*2^4) = -4

bin(c) and storedInteger(c) will still give 111 and -1 as in the previous two examples.

c = fi(-4,true,3,-2)
bin(c)
storedInteger(c)

c = 

    -4

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 3
        FractionLength: -2

ans =

    '111'

ans =

  int8

   -1

The Fraction Length is Set Automatically to the Best Precision Possible and is Negative

In this example we create a signed 3-bit fi where the fraction length is set automatically depending
on the value that the fi is supposed to contain. The resulting fi has a value of 6, with a wordlength
of 3 bits and a fraction length of -1. Here the binary point is 1 place to the right of the LSB: 011_..
The _ is again an unused bit and the first 1 before the _ is the LSB. The leading 1 is the sign bit.

The real world value (6) is obtained as follows:

(1*2^1) + (1*2^2) + (-0*2^3) = 6

bin(d) and storedInteger(d) will give 011 and 3 respectively.

d = fi(5,true,3)
bin(d)
storedInteger(d)
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d = 

     6

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 3
        FractionLength: -1

ans =

    '011'

ans =

  int8

   3

Interactive FI Binary Point Scaling Example

This is an interactive example that allows the user to change the fraction length of a 3-bit fixed-point
number by moving the binary point using a slider. The fraction length can be varied from -3 to 5 and
the user can change the value of the 3 bits to '0' or '1' for either signed or unsigned numbers.

The "Scaling factors" above the 3 bits display the scaling or weight that each bit is given for the
specified signedness and fraction length. The fi code, the double precision real-world value and the
fixed-point attributes are also displayed.

Type fibinscaling at the MATLAB prompt to run this example.

%#ok<*NOPTS,*NASGU>
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Compute Quantization Error
This example shows how to compute and compare the statistics of the signal quantization error when
using various rounding methods.

First, a random signal is created that spans the range of the quantizer.

Next, the signal is quantized, respectively, with rounding methods 'fix', 'floor', 'ceil', 'nearest', and
'convergent', and the statistics of the signal are estimated.

The theoretical probability density function of the quantization error will be computed with ERRPDF,
the theoretical mean of the quantization error will be computed with ERRMEAN, and the theoretical
variance of the quantization error will be computed with ERRVAR.

Uniformly Distributed Random Signal

First we create a uniformly distributed random signal that spans the domain -1 to 1 of the fixed-point
quantizers that we will look at.

q = quantizer([8 7]);
r = realmax(q);
u = r*(2*rand(50000,1) - 1);        % Uniformly distributed (-1,1)
xi=linspace(-2*eps(q),2*eps(q),256);

Fix: Round Towards Zero.

Notice that with 'fix' rounding, the probability density function is twice as wide as the others. For this
reason, the variance is four times that of the others.

q = quantizer('fix',[8 7]);
err = quantize(q,u) - u;
f_t = errpdf(q,xi);
mu_t = errmean(q);
v_t  = errvar(q);
% Theoretical variance = eps(q)^2 / 3
% Theoretical mean     = 0
fidemo.qerrordemoplot(q,f_t,xi,mu_t,v_t,err)

Estimated   error variance (dB) = -46.8586
Theoretical error variance (dB) = -46.9154
Estimated   mean = 7.788e-06
Theoretical mean = 0
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Floor: Round Towards Minus Infinity.

Floor rounding is often called truncation when used with integers and fixed-point numbers that are
represented in two's complement. It is the most common rounding mode of DSP processors because it
requires no hardware to implement. Floor does not produce quantized values that are as close to the
true values as ROUND will, but it has the same variance, and small signals that vary in sign will be
detected, whereas in ROUND they will be lost.

q = quantizer('floor',[8 7]);
err = quantize(q,u) - u;
f_t = errpdf(q,xi);
mu_t = errmean(q);
v_t  = errvar(q);
% Theoretical variance =  eps(q)^2 / 12
% Theoretical mean     = -eps(q)/2
fidemo.qerrordemoplot(q,f_t,xi,mu_t,v_t,err)

Estimated   error variance (dB) = -52.9148
Theoretical error variance (dB) = -52.936
Estimated   mean = -0.0038956
Theoretical mean = -0.0039062
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Ceil: Round Towards Plus Infinity.

q = quantizer('ceil',[8 7]);
err = quantize(q,u) - u;
f_t = errpdf(q,xi);
mu_t = errmean(q);
v_t  = errvar(q);
% Theoretical variance = eps(q)^2 / 12
% Theoretical mean     = eps(q)/2
fidemo.qerrordemoplot(q,f_t,xi,mu_t,v_t,err)

Estimated   error variance (dB) = -52.9148
Theoretical error variance (dB) = -52.936
Estimated   mean = 0.0039169
Theoretical mean = 0.0039062
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Round: Round to Nearest. In a Tie, Round to Largest Magnitude.

Round is more accurate than floor, but all values smaller than eps(q) get rounded to zero and so are
lost.

q = quantizer('nearest',[8 7]);
err = quantize(q,u) - u;
f_t = errpdf(q,xi);
mu_t = errmean(q);
v_t  = errvar(q);
% Theoretical variance = eps(q)^2 / 12
% Theoretical mean     = 0
fidemo.qerrordemoplot(q,f_t,xi,mu_t,v_t,err)

Estimated   error variance (dB) = -52.9579
Theoretical error variance (dB) = -52.936
Estimated   mean = -2.212e-06
Theoretical mean = 0
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Convergent: Round to Nearest. In a Tie, Round to Even.

Convergent rounding eliminates the bias introduced by ordinary "round" caused by always rounding
the tie in the same direction.

q = quantizer('convergent',[8 7]);
err = quantize(q,u) - u;
f_t = errpdf(q,xi);
mu_t = errmean(q);
v_t  = errvar(q);
% Theoretical variance = eps(q)^2 / 12
% Theoretical mean     = 0
fidemo.qerrordemoplot(q,f_t,xi,mu_t,v_t,err)

Estimated   error variance (dB) = -52.9579
Theoretical error variance (dB) = -52.936
Estimated   mean = -2.212e-06
Theoretical mean = 0
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Comparison of Nearest vs. Convergent

The error probability density function for convergent rounding is difficult to distinguish from that of
round-to-nearest by looking at the plot.

The error p.d.f. of convergent is

f(err) = 1/eps(q),  for -eps(q)/2 <= err <= eps(q)/2, and 0 otherwise

while the error p.d.f. of round is

f(err) = 1/eps(q),  for -eps(q)/2 <  err <= eps(q)/2, and 0 otherwise

Note that the error p.d.f. of convergent is symmetric, while round is slightly biased towards the
positive.

The only difference is the direction of rounding in a tie.

x=(-3.5:3.5)';
[x convergent(x) nearest(x)]

ans =

   -3.5000   -4.0000   -3.0000
   -2.5000   -2.0000   -2.0000
   -1.5000   -2.0000   -1.0000
   -0.5000         0         0
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    0.5000         0    1.0000
    1.5000    2.0000    2.0000
    2.5000    2.0000    3.0000
    3.5000    4.0000    4.0000

Plot Helper Function

The helper function that was used to generate the plots in this example is listed below.

type(fullfile(matlabroot,'toolbox','fixedpoint','fidemos','+fidemo','qerrordemoplot.m'))
%#ok<*NOPTS>

function qerrordemoplot(q,f_t,xi,mu_t,v_t,err)
%QERRORDEMOPLOT  Plot function for QERRORDEMO.
%    QERRORDEMOPLOT(Q,F_T,XI,MU_T,V_T,ERR) produces the plot and display
%    used by the example function QERRORDEMO, where Q is the quantizer
%    whose attributes are being analyzed; F_T is the theoretical
%    quantization error probability density function for quantizer Q
%    computed by ERRPDF; XI is the domain of values being evaluated by
%    ERRPDF; MU_T is the theoretical quantization error mean of quantizer Q
%    computed by ERRMEAN; V_T is the theoretical quantization error
%    variance of quantizer Q computed by ERRVAR; and ERR is the error
%    generated by quantizing a random signal by quantizer Q.
%
%    See QERRORDEMO for examples of use.

%    Copyright 1999-2014 The MathWorks, Inc.

v=10*log10(var(err));
disp(['Estimated   error variance (dB) = ',num2str(v)]);
disp(['Theoretical error variance (dB) = ',num2str(10*log10(v_t))]);
disp(['Estimated   mean = ',num2str(mean(err))]);
disp(['Theoretical mean = ',num2str(mu_t)]);
[n,c]=hist(err);
figure(gcf)
bar(c,n/(length(err)*(c(2)-c(1))),'hist');
line(xi,f_t,'linewidth',2,'color','r');
% Set the ylim uniformly on all plots
set(gca,'ylim',[0 max(errpdf(quantizer(q.format,'nearest'),xi)*1.1)])
legend('Estimated','Theoretical')
xlabel('err'); ylabel('errpdf')
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Detect Limit Cycles in Fixed-Point State-Space Systems
This example shows how to analyze a fixed-point state-space system to detect limit cycles.

The example focuses on detecting large scale limit cycles due to overflow with zero inputs and
highlights the conditions that are sufficient to prevent such oscillations.

References:

[1] Richard A. Roberts and Clifford T. Mullis, "Digital Signal Processing", Addison-Wesley, Reading,
Massachusetts, 1987, ISBN 0-201-16350-0, Section 9.3.

[2] S. K. Mitra, "Digital Signal Processing: A Computer Based Approach", McGraw-Hill, New York,
1998, ISBN 0-07-042953-7.

Select a State-Space Representation of the System.

We observe that the system is stable by observing that the eigenvalues of the state-transition matrix A
have magnitudes less than 1.

originalFormat = get(0, 'format');
format
A = [0 1; -.5 1]; B = [0; 1]; C = [1 0]; D = 0;
eig(A)

ans =

   0.5000 + 0.5000i
   0.5000 - 0.5000i

Filter Implementation
type(fullfile(matlabroot,'toolbox','fixedpoint','fidemos','+fidemo','fisisostatespacefilter.m'))

function [y,z] = fisisostatespacefilter(A,B,C,D,x,z)
%FISISOSTATESPACEFILTER Single-input, single-output statespace filter
% [Y,Zf] = FISISOSTATESPACEFILTER(A,B,C,D,X,Zi) filters data X with
% initial conditions Zi with the state-space filter defined by matrices
% A, B, C, D.  Output Y and final conditions Zf are returned.

%   Copyright 2004-2011 The MathWorks, Inc.

y = x; 
z(:,2:length(x)+1) = 0;
for k=1:length(x)
  y(k)     = C*z(:,k) + D*x(k);
  z(:,k+1) = A*z(:,k) + B*x(k);
end

Floating-Point Filter

Create a floating-point filter and observe the trajectory of the states.

First, we choose random states within the unit square and observe where they are projected after one
step of being multiplied by the state-transition matrix A.
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rng('default');
clf
x1 = [-1 1 1 -1 -1];
y1 = [-1 -1 1 1 -1];
plot(x1,y1,'c')
axis([-1.5 1.5 -1.5 1.5]); axis square; grid;
hold on

% Plot the projection of the square
p = A*[x1;y1];
plot(p(1,:),p(2,:),'r')

r = 2*rand(2,1000)-1;
pr = A*r;
plot(pr(1,:),pr(2,:),'.')

Random Initial States Followed Through Time

Drive the filter with a random initial state, normalized to be inside the unit square, with the input all
zero, and run the filter.

Note that some of the states wander outside the unit square, and that they eventually wind down to
the zero state at the origin, z=[0;0].

x = zeros(10,1);
zi = [0;0];
q = quantizer([16 15]);
for k=1:20
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  y = x;
  zi(:) = randquant(q,size(A,1),1);
  [y,zf] = fidemo.fisisostatespacefilter(A,B,C,D,x,zi);
  plot(zf(1,:), zf(2,:),'go-','markersize',8);
end
title('Double-Precision State Sequence Plot');
xlabel('z1'); ylabel('z2')

State Trajectory

Because the eigenvalues are less than one in magnitude, the system is stable, and all initial states
wind down to the origin with zero input. However, the eigenvalues don't tell the whole story about the
trajectory of the states, as in this example, where the states were projected outward first, before they
start to contract.

The singular values of A give us a better indication of the overall state trajectory. The largest singular
value is about 1.46, which indicates that states aligned with the corresponding singular vector will be
projected away from the origin.

svd(A)

ans =

    1.4604
    0.3424
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Fixed-Point Filter Creation

Create a fixed-point filter and check for limit cycles.

The MATLAB® code for the filter remains the same. It becomes a fixed-point filter because we drive it
with fixed-point inputs.

For the sake of illustrating overflow oscillation, we are choosing product and sum data types that will
overflow.

rng('default');
F = fimath('OverflowAction','Wrap',...
           'ProductMode','SpecifyPrecision',...
           'ProductWordLength',16,'ProductFractionLength',15,...
           'SumMode','SpecifyPrecision',...
           'SumWordLength',16,'SumFractionLength',15);

A = fi(A,'fimath',F)
B = fi(B,'fimath',F)
C = fi(C,'fimath',F)
D = fi(D,'fimath',F)

A = 

         0    1.0000
   -0.5000    1.0000

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 14

        RoundingMethod: Nearest
        OverflowAction: Wrap
           ProductMode: SpecifyPrecision
     ProductWordLength: 16
 ProductFractionLength: 15
               SumMode: SpecifyPrecision
         SumWordLength: 16
     SumFractionLength: 15
         CastBeforeSum: true

B = 

     0
     1

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 14

        RoundingMethod: Nearest
        OverflowAction: Wrap
           ProductMode: SpecifyPrecision
     ProductWordLength: 16
 ProductFractionLength: 15
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               SumMode: SpecifyPrecision
         SumWordLength: 16
     SumFractionLength: 15
         CastBeforeSum: true

C = 

     1     0

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 14

        RoundingMethod: Nearest
        OverflowAction: Wrap
           ProductMode: SpecifyPrecision
     ProductWordLength: 16
 ProductFractionLength: 15
               SumMode: SpecifyPrecision
         SumWordLength: 16
     SumFractionLength: 15
         CastBeforeSum: true

D = 

     0

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 15

        RoundingMethod: Nearest
        OverflowAction: Wrap
           ProductMode: SpecifyPrecision
     ProductWordLength: 16
 ProductFractionLength: 15
               SumMode: SpecifyPrecision
         SumWordLength: 16
     SumFractionLength: 15
         CastBeforeSum: true

Plot the Projection of the Square in Fixed-Point

Again, we choose random states within the unit square and observe where they are projected after
one step of being multiplied by the state-transition matrix A. The difference is that this time matrix A
is fixed-point.

Note that the triangles that projected out of the square before in floating-point, are now wrapped
back into the interior of the square.

clf
r = 2*rand(2,1000)-1;
pr = A*r;
plot([-1 1 1 -1 -1],[-1 -1 1 1 -1],'c')
axis([-1.5 1.5 -1.5 1.5]); axis square; grid;
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hold on
plot(pr(1,:),pr(2,:),'.')

Execute the Fixed-Point Filter.

The only difference between this and the previous code is that we are driving it with fixed-point data
types.

x = fi(zeros(10,1),1,16,15,'fimath',F);
zi = fi([0;0],1,16,15,'fimath',F);
q = assignmentquantizer(zi);
e = double(eps(zi));
rng('default');
for k=1:20
  y = x;
  zi(:) = randquant(q,size(A,1),1);
  [y,zf] = fidemo.fisisostatespacefilter(A,B,C,D,x,zi);
  if abs(double(zf(end)))>0.5, c='ro-'; else, c='go-'; end
  plot(zf(1,:), zf(2,:),c,'markersize',8);
end
title('Fixed-Point State Sequence Plot');
xlabel('z1'); ylabel('z2')
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Trying this for other randomly chosen initial states illustrates that once a state enters one of the
triangular regions, then it is projected into the other triangular region, and back and forth, and never
escapes.

Sufficient Conditions for Preventing Overflow Limit Cycles

There are two sufficient conditions to prevent overflow limit cycles in a system:

• the system is stable i.e., abs(eig(A))<1,
• the matrix A is normal i.e., A'*A = A*A'.

Note that for the current representation, the second condition does not hold.

Apply Similarity Transform to Create a Normal A

We now apply a similarity transformation to the original system that will create a normal state-
transition matrix A2.

T = [-2 0;-1 1];
Tinv = [-.5 0;-.5 1];
A2 = Tinv*A*T; B2 = Tinv*B; C2 = C*T; D2 = D;

Similarity transformations preserve eigenvalues, as a result of which the system transfer function of
the transformed system remains same as before. However, the transformed state transformation
matrix A2 is normal.
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Check for Limit Cycles on the Transformed System.

Plot the Projection of the Square of the Normal-Form System

Now the projection of random initial states inside the unit square all contract uniformly. This is the
result of the state transition matrix A2 being normal. The states are also rotated by 90 degrees
counterclockwise.

clf
r = 2*rand(2,1000)-1;
pr = A2*r;
plot([-1 1 1 -1 -1],[-1 -1 1 1 -1],'c')
axis([-1.5 1.5 -1.5 1.5]); axis square; grid;
hold on
plot(pr(1,:),pr(2,:),'.')

Plot the State Sequence

Plotting the state sequences again for the same initial states as before we see that the outputs now
spiral towards the origin.

x = fi(zeros(10,1),1,16,15,'fimath',F);
zi = fi([0;0],1,16,15,'fimath',F);
q = assignmentquantizer(zi);
e = double(eps(zi));
rng('default');
for k=1:20
  y = x;
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  zi(:) = randquant(q,size(A,1),1);
  [y,zf] = fidemo.fisisostatespacefilter(A2,B2,C2,D2,x,zi);
  if abs(double(zf(end)))>0.5, c='ro-'; else, c='go-'; end
  plot(zf(1,:), zf(2,:),c,'markersize',8);
end
title('Normal-Form Fixed-Point State Sequence Plot');
xlabel('z1'); ylabel('z2')

Trying this for other randomly chosen initial states illustrates that there is no region from which the
filter is unable to recover.

set(0, 'format', originalFormat);
%#ok<*NASGU,*NOPTS>
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Develop Fixed-Point Algorithms
This example shows how to develop and verify a simple fixed-point algorithm.

Simple Example of Algorithm Development

This example shows the development and verification of a simple fixed-point filter algorithm. We will
follow the following steps:

1) Implement a second-order filter algorithm and simulate in double-precision floating-point.

2) Instrument the code to visualize the dynamic range of the output and state.

3) Convert the algorithm to fixed point by changing the data type of the variables. The algorithm itself
does not change.

4) Compare and plot the fixed-point and floating-point results.

Floating-Point Variable Definitions

We develop our algorithm in double-precision floating-point. We will use a second-order lowpass filter
to remove the high frequencies in the input signal.

b = [ 0.25 0.5      0.25    ]; % Numerator coefficients
a = [ 1    0.09375  0.28125 ]; % Denominator coefficients
% Random input that has both high and low frequencies.
s = rng; rng(0,'v5uniform');
x = randn(1000,1);
rng(s); % restore RNG state
% Pre-allocate the output and state for speed.
y = zeros(size(x));
z = [0;0];

Data-Type-Independent Algorithm

This is a second-order filter that implements the standard difference equation:

y(n) = b(1)*x(n) + b(2)*x(n-1) + b(3)*x(n-2) - a(2)*y(n-1) - a(3)*y(n-2)

for k=1:length(x)
    y(k) =  b(1)*x(k) + z(1);
    z(1) = (b(2)*x(k) + z(2)) - a(2)*y(k);
    z(2) =  b(3)*x(k)         - a(3)*y(k);
end

% Save the Floating-Point Result
ydouble = y;

Visualize Dynamic Range

To convert to fixed point, we need to know the range of the variables. Depending on the complexity of
an algorithm, this task can be simple or quite challenging. In this example, the range of the input
value is known, so selecting an appropriate fixed-point data type is simple. We will concentrate on the
output (y) and states (z) since their range is unknown. To view the dynamic range of the output and
states, we will modify the code slightly to instrument it. We will create two NumericTypeScope
objects and view the dynamic range of the output (y) and states (z) simultaneously.
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Instrument Floating-Point Code

% Reset states
z = [0;0];

hscope1 = NumericTypeScope;
hscope2 = NumericTypeScope;
for k=1:length(x)
    y(k) =  b(1)*x(k) + z(1);
    z(1) = (b(2)*x(k) + z(2)) - a(2)*y(k);
    z(2) =  b(3)*x(k)         - a(3)*y(k);
    % process the data and update the visual.
    step(hscope1,z);
end
step(hscope2,y);
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Analyze Information in the Scope

Let us first analyze the information displayed for variable z (state). From the histogram we can see
that the dynamic range lies between (  ].

By default, the scope uses a word length of 16 bits with zero tolerable overflows. This results in a
data type of numerictype(true,16, 14) since we need at least 2 integer bit to avoid overflows. You can
get more information on the statistical data from the Input Data and Resulting Type panels. From the
Input Data panel we can see that the data has both positive and negative values and hence a signed
quantity which is reflected in the suggested numerictype. Also, the maximum data value is 1.51 which
can be represented by the suggested type.

Next, let us look at variable y (output). From the histogram plot we see that the dynamic range lies
between (  ].
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By default, the scope uses a word length of 16 bits with zero tolerable overflows. This results in a
data type of numerictype(true,16, 14) since we need at least 2 integer bits to avoid overflows. With
this suggested type you see no overflows or underflows.

Fixed-Point Variable Definitions

We convert variables to fixed-point and run the algorithm again. We will turn on logging to see the
overflows and underflows introduced by the selected data types.

% Turn on logging to see overflows/underflows.
FIPREF_STATE = get(fipref);
reset(fipref)
fp = fipref;
default_loggingmode = fp.LoggingMode;
fp.LoggingMode = 'On';
% Capture the present state of and reset the global fimath to the factory
% settings.
globalFimathAtStart = fimath;
resetglobalfimath;
% Define the fixed-point types for the variables in the below format:
%   fi(Data, Signed, WordLength, FractionLength)
b = fi(b, 1, 8, 6);
a = fi(a, 1, 8, 6);

x = fi(x, 1, 16, 13);
y = fi(zeros(size(x)), 1, 16, 13);
z = fi([0;0], 1, 16, 14);

Same Data-Type-Independent Algorithm
for k=1:length(x)
    y(k) =  b(1)*x(k) + z(1);
    z(1) = (b(2)*x(k) + z(2)) - a(2)*y(k);
    z(2) =  b(3)*x(k)         - a(3)*y(k);
end
% Reset the logging mode.
fp.LoggingMode = default_loggingmode;

In this example, we have redefined the fixed-point variables with the same names as the floating-point
so that we could inline the algorithm code for clarity. However, it is a better practice to enclose the
algorithm code in a MATLAB® file function that could be called with either floating-point or fixed-
point variables. See filimitcycledemo.m for an example of writing and using a datatype-agnostic
algorithm.

Compare and Plot the Floating-Point and Fixed-Point Results

We will now plot the magnitude response of the floating-point and fixed-point results and the
response of the filter to see if the filter behaves as expected when it is converted to fixed-point.

n = length(x);
f = linspace(0,0.5,n/2);
x_response = 20*log10(abs(fft(double(x))));
ydouble_response = 20*log10(abs(fft(ydouble)));
y_response = 20*log10(abs(fft(double(y))));
plot(f,x_response(1:n/2),'c-',...
    f,ydouble_response(1:n/2),'bo-',...
    f,y_response(1:n/2),'gs-');
ylabel('Magnitude in dB');
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xlabel('Normalized Frequency');
legend('Input','Floating point output','Fixed point output','Location','Best');
title('Magnitude response of Floating-point and Fixed-point results');

h = fft(double(b),n)./fft(double(a),n);
h = h(1:end/2);
clf
hax = axes;
plot(hax,f,20*log10(abs(h)));
set(hax,'YLim',[-40 0]);
title('Magnitude response of the filter');
ylabel('Magnitude in dB')
xlabel('Frequency');
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Notice that the high frequencies in the input signal are attenuated by the low-pass filter which is the
expected behavior.

Plot the Error

clf
n = (0:length(y)-1)';
e = double(lsb(y));
plot(n,double(y)-ydouble,'.-r', ...
     [n(1) n(end)],[e/2 e/2],'c', ...
     [n(1) n(end)],[-e/2 -e/2],'c')
text(n(end),e/2,'+1/2 LSB','HorizontalAlignment','right','VerticalAlignment','bottom')
text(n(end),-e/2,'-1/2 LSB','HorizontalAlignment','right','VerticalAlignment','top')
xlabel('n (samples)'); ylabel('error')
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Simulink®

If you have Simulink® and Fixed-Point Designer™, you can run this model, which is the equivalent of
the algorithm above. The output, y_sim is a fixed-point variable equal to the variable y calculated
above in MATLAB code.

As in the MATLAB code, the fixed-point parameters in the blocks can be modified to match an actual
system; these have been set to match the MATLAB code in the example above. Double-click on the
blocks to see the settings.

if fidemo.hasSimulinkLicense

    % Set up the From Workspace variable
    x_sim.time = n;
    x_sim.signals.values = x;
    x_sim.signals.dimensions = 1;

    % Run the simulation
    out_sim = sim('fitdf2filter_demo', 'SaveOutput', 'on', ...
        'SrcWorkspace', 'current');

    % Open the model
    fitdf2filter_demo

    % Verify that the Simulink results are the same as the MATLAB file
    isequal(y, out_sim.get('y_sim'))
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end

ans =

  logical

   1

Assumptions Made for this Example

In order to simplify the example, we have taken the default math parameters: round-to-nearest,
saturate on overflow, full precision products and sums. We can modify all of these parameters to
match an actual system.

The settings were chosen as a starting point in algorithm development. Save a copy of this MATLAB
file, start playing with the parameters, and see what effects they have on the output. How does the
algorithm behave with a different input? See the help for fi, fimath, and numerictype for information
on how to set other parameters, such as rounding mode, and overflow mode.

close all force;
bdclose all;
% Reset the global fimath
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globalfimath(globalFimathAtStart);
fipref(FIPREF_STATE);
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Calculate Fixed-Point Arctangent
This example shows how to use the CORDIC algorithm, polynomial approximation, and lookup table
approaches to calculate the fixed-point, four quadrant inverse tangent. These implementations are
approximations to the MATLAB® built-in function atan2. An efficient fixed-point arctangent
algorithm to estimate an angle is critical to many applications, including control of robotics,
frequency tracking in wireless communications, and many more.

Calculating atan2(y,x) Using the CORDIC Algorithm

Introduction

The cordicatan2 function approximates the MATLAB® atan2 function, using a CORDIC-based
algorithm. CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-
based CORDIC algorithm (see [1,2]) is one of the most hardware efficient algorithms because it only
requires iterative shift-add operations. The CORDIC algorithm eliminates the need for explicit
multipliers, and is suitable for calculating a variety of functions, such as sine, cosine, arcsine,
arccosine, arctangent, vector magnitude, divide, square root, hyperbolic and logarithmic functions.

CORDIC Vectoring Computation Mode

The CORDIC vectoring mode equations are widely used to calculate atan(y/x). In vectoring mode,
the CORDIC rotator rotates the input vector towards the positive X-axis to minimize the  component
of the residual vector. For each iteration, if the  coordinate of the residual vector is positive, the
CORDIC rotator rotates clockwise (using a negative angle); otherwise, it rotates counter-clockwise
(using a positive angle). If the angle accumulator is initialized to 0, at the end of the iterations, the
accumulated rotation angle is the angle of the original input vector.

In vectoring mode, the CORDIC equations are:

 is the angle accumulator

where  if , and  otherwise;

, and  is the total number of iterations.

As  approaches  :
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As explained above, the arctangent can be directly computed using the vectoring mode CORDIC
rotator with the angle accumulator initialized to zero, i.e.,  and .

Understanding the CORDICATAN2 Code

Introduction

The cordicatan2 function computes the four quadrant arctangent of the elements of x and y, where
. cordicatan2 calculates the arctangent using the vectoring mode

CORDIC algorithm, according to the above CORDIC equations.

Initialization

The cordicatan2 function performs the following initialization steps:

•  is set to the initial X input value.
•  is set to the initial Y input value.
•  is set to zero.

After  iterations, these initial values lead to 

Shared Fixed-Point and Floating-Point CORDIC Kernel Code

The MATLAB code for the CORDIC algorithm (vectoring mode) kernel portion is as follows (for the
case of scalar x, y, and z). This same code is used for both fixed-point and floating-point operations:

function [x, y, z] = cordic_vectoring_kernel(x, y, z, inpLUT, n)
% Perform CORDIC vectoring kernel algorithm for N kernel iterations.
xtmp = x;
ytmp = y;
for idx = 1:n
    if y < 0
        x(:) = x - ytmp;
        y(:) = y + xtmp;
        z(:) = z - inpLUT(idx);
    else
        x(:) = x + ytmp;
        y(:) = y - xtmp;
        z(:) = z + inpLUT(idx);
    end
    xtmp = bitsra(x, idx); % bit-shift-right for multiply by 2^(-idx)
    ytmp = bitsra(y, idx); % bit-shift-right for multiply by 2^(-idx)
end

Visualizing the Vectoring Mode CORDIC Iterations

The CORDIC algorithm is usually run through a specified (constant) number of iterations since ending
the CORDIC iterations early would break pipelined code, and the CORDIC gain  would not be
constant because  would vary.

For very large values of , the CORDIC algorithm is guaranteed to converge, but not always
monotonically. As will be shown in the following example, intermediate iterations occasionally rotate
the vector closer to the positive X-axis than the following iteration does. You can typically achieve
greater accuracy by increasing the total number of iterations.
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Example

In the following example, iteration 5 provides a better estimate of the angle than iteration 6, and the
CORDIC algorithm converges in later iterations.

Initialize the input vector with angle  degrees, magnitude = 1

origFormat = get(0, 'format'); % store original format setting;
                               % restore this setting at the end.
format short
%
theta = 43*pi/180;  % input angle in radians
Niter = 10;         % number of iterations
inX   = cos(theta); % x coordinate of the input vector
inY   = sin(theta); % y coordinate of the input vector
%
% pre-allocate memories
zf = zeros(1, Niter);
xf = [inX, zeros(1, Niter)];
yf = [inY, zeros(1, Niter)];
angleLUT = atan(2.^-(0:Niter-1)); % pre-calculate the angle lookup table
%
% Call CORDIC vectoring kernel algorithm
for k = 1:Niter
   [xf(k+1), yf(k+1), zf(k)] = fixed.internal.cordic_vectoring_kernel_private(inX, inY, 0, angleLUT, k);
end

The following output shows the CORDIC angle accumulation (in degrees) through 10 iterations. Note
that the 5th iteration produced less error than the 6th iteration, and that the calculated angle quickly
converges to the actual input angle afterward.

angleAccumulator = zf*180/pi; angleError = angleAccumulator - theta*180/pi;
fprintf('Iteration: %2d, Calculated angle: %7.3f, Error in degrees: %10g, Error in bits: %g\n',...
        [(1:Niter); angleAccumulator(:)'; angleError(:)';log2(abs(zf(:)'-theta))]);

Iteration:  1, Calculated angle:  45.000, Error in degrees:          2, Error in bits: -4.84036
Iteration:  2, Calculated angle:  18.435, Error in degrees:   -24.5651, Error in bits: -1.22182
Iteration:  3, Calculated angle:  32.471, Error in degrees:   -10.5288, Error in bits: -2.44409
Iteration:  4, Calculated angle:  39.596, Error in degrees:   -3.40379, Error in bits: -4.07321
Iteration:  5, Calculated angle:  43.173, Error in degrees:   0.172543, Error in bits: -8.37533
Iteration:  6, Calculated angle:  41.383, Error in degrees:   -1.61737, Error in bits: -5.14671
Iteration:  7, Calculated angle:  42.278, Error in degrees:  -0.722194, Error in bits: -6.3099
Iteration:  8, Calculated angle:  42.725, Error in degrees:   -0.27458, Error in bits: -7.70506
Iteration:  9, Calculated angle:  42.949, Error in degrees: -0.0507692, Error in bits: -10.1403
Iteration: 10, Calculated angle:  43.061, Error in degrees:  0.0611365, Error in bits: -9.87218

As N approaches , the CORDIC rotator gain  approaches 1.64676. In this example, the input
 was on the unit circle, so the initial rotator magnitude is 1. The following output shows the

rotator magnitude through 10 iterations:

rotatorMagnitude = sqrt(xf.^2+yf.^2); % CORDIC rotator gain through iterations
fprintf('Iteration: %2d, Rotator magnitude: %g\n',...
    [(0:Niter); rotatorMagnitude(:)']);

Iteration:  0, Rotator magnitude: 1
Iteration:  1, Rotator magnitude: 1.41421
Iteration:  2, Rotator magnitude: 1.58114
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Iteration:  3, Rotator magnitude: 1.6298
Iteration:  4, Rotator magnitude: 1.64248
Iteration:  5, Rotator magnitude: 1.64569
Iteration:  6, Rotator magnitude: 1.64649
Iteration:  7, Rotator magnitude: 1.64669
Iteration:  8, Rotator magnitude: 1.64674
Iteration:  9, Rotator magnitude: 1.64676
Iteration: 10, Rotator magnitude: 1.64676

Note that  approaches 0, and  approaches  because .

y_n = yf(end)

y_n =

   -0.0018

x_n = xf(end)

x_n =

    1.6468

figno = 1;
fidemo.fixpt_atan2_demo_plot(figno, xf, yf) %Vectoring Mode CORDIC Iterations
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figno = figno + 1; %Cumulative Angle and Rotator Magnitude Through Iterations
fidemo.fixpt_atan2_demo_plot(figno,Niter, theta, angleAccumulator, rotatorMagnitude)
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Performing Overall Error Analysis of the CORDIC Algorithm

The overall error consists of two parts:

1 The algorithmic error that results from the CORDIC rotation angle being represented by a finite
number of basic angles.

2 The quantization or rounding error that results from the finite precision representation of the
angle lookup table, and from the finite precision arithmetic used in fixed-point operations.

Calculate the CORDIC Algorithmic Error
theta  = (-178:2:180)*pi/180; % angle in radians
inXflt = cos(theta); % generates input vector
inYflt = sin(theta);
Niter  = 12; % total number of iterations
zflt   = cordicatan2(inYflt, inXflt, Niter); % floating-point results

Calculate the maximum magnitude of the CORDIC algorithmic error by comparing the CORDIC
computation to the builtin atan2 function.

format long
cordic_algErr_real_world_value = max(abs((atan2(inYflt, inXflt) - zflt)))

cordic_algErr_real_world_value =

     4.753112306290497e-04
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The log base 2 error is related to the number of iterations. In this example, we use 12 iterations (i.e.,
accurate to 11 binary digits), so the magnitude of the error is less than 

cordic_algErr_bits = log2(cordic_algErr_real_world_value)

cordic_algErr_bits =

 -11.038839889583048

Relationship Between Number of Iterations and Precision

Once the quantization error dominates the overall error, i.e., the quantization error is greater than
the algorithmic error, increasing the total number of iterations won't significantly decrease the
overall error of the fixed-point CORDIC algorithm. You should pick your fraction lengths and total
number of iterations to ensure that the quantization error is smaller than the algorithmic error. In the
CORDIC algorithm, the precision increases by one bit every iteration. Thus, there is no reason to pick
a number of iterations greater than the precision of the input data.

Another way to look at the relationship between the number of iterations and the precision is in the
right-shift step of the algorithm. For example, on the counter-clockwise rotation

x(:) = x0 - bitsra(y,i);
y(:) = y + bitsra(x0,i);

if i is equal to the word length of y and x0, then bitsra(y,i) and bitsra(x0,i) shift all the way
to zero and do not contribute anything to the next step.

To measure the error from the fixed-point algorithm, and not the differences in input values, compute
the floating-point reference with the same inputs as the fixed-point CORDIC algorithm.

inXfix = sfi(inXflt, 16, 14);
inYfix = sfi(inYflt, 16, 14);
zref   = atan2(double(inYfix), double(inXfix));
zfix8  = cordicatan2(inYfix, inXfix, 8);
zfix10 = cordicatan2(inYfix, inXfix, 10);
zfix12 = cordicatan2(inYfix, inXfix, 12);
zfix14 = cordicatan2(inYfix, inXfix, 14);
zfix15 = cordicatan2(inYfix, inXfix, 15);
cordic_err = bsxfun(@minus,zref,double([zfix8;zfix10;zfix12;zfix14;zfix15]));

The error depends on the number of iterations and the precision of the input data. In the above
example, the input data is in the range [-1, +1], and the fraction length is 14. From the following
tables showing the maximum error at each iteration, and the figure showing the overall error of the
CORDIC algorithm, you can see that the error decreases by about 1 bit per iteration until the
precision of the data is reached.

iterations = [8, 10, 12, 14, 15];
max_cordicErr_real_world_value = max(abs(cordic_err'));
fprintf('Iterations: %2d, Max error in real-world-value: %g\n',...
    [iterations; max_cordicErr_real_world_value]);

Iterations:  8, Max error in real-world-value: 0.00773633
Iterations: 10, Max error in real-world-value: 0.00187695
Iterations: 12, Max error in real-world-value: 0.000501175
Iterations: 14, Max error in real-world-value: 0.000244621
Iterations: 15, Max error in real-world-value: 0.000244621
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max_cordicErr_bits = log2(max_cordicErr_real_world_value);
fprintf('Iterations: %2d, Max error in bits: %g\n',[iterations; max_cordicErr_bits]);

Iterations:  8, Max error in bits: -7.01414
Iterations: 10, Max error in bits: -9.05739
Iterations: 12, Max error in bits: -10.9624
Iterations: 14, Max error in bits: -11.9972
Iterations: 15, Max error in bits: -11.9972

figno = figno + 1;
fidemo.fixpt_atan2_demo_plot(figno, theta, cordic_err)

Accelerating the Fixed-Point CORDICATAN2 Algorithm Using FIACCEL

You can generate a MEX function from MATLAB code using the MATLAB® fiaccel command.
Typically, running a generated MEX function can improve the simulation speed, although the actual
speed improvement depends on the simulation platform being used. The following example shows
how to accelerate the fixed-point cordicatan2 algorithm using fiaccel.

The fiaccel function compiles the MATLAB code into a MEX function. This step requires the
creation of a temporary directory and write permissions in that directory.

tempdirObj = fidemo.fiTempdir('fixpt_atan2_demo');

When you declare the number of iterations to be a constant (e.g., 12) using
coder.newtype('constant',12), the compiled angle lookup table will also be constant, and thus
won't be computed at each iteration. Also, when you call the compiled MEX file cordicatan2_mex,
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you will not need to give it the input argument for the number of iterations. If you pass in the number
of iterations, the MEX function will error.

The data type of the input parameters determines whether the cordicatan2 function performs
fixed-point or floating-point calculations. When MATLAB generates code for this file, code is only
generated for the specific data type. For example, if the inputs are fixed point, only fixed-point code is
generated.

inp = {inYfix, inXfix, coder.newtype('constant',12)}; % example inputs for the function
fiaccel('cordicatan2', '-o', 'cordicatan2_mex',  '-args', inp)

First, calculate a vector of 4 quadrant atan2 by calling cordicatan2.

tstart = tic;
cordicatan2(inYfix,inXfix,Niter);
telapsed_Mcordicatan2 = toc(tstart);

Next, calculate a vector of 4 quadrant atan2 by calling the MEX-function cordicatan2_mex.

cordicatan2_mex(inYfix,inXfix); % load the MEX file
tstart = tic;
cordicatan2_mex(inYfix,inXfix);
telapsed_MEXcordicatan2 = toc(tstart);

Now, compare the speed. Type the following in the MATLAB command window to see the speed
improvement on your specific platform:

fiaccel_speedup = telapsed_Mcordicatan2/telapsed_MEXcordicatan2;

To clean up the temporary directory, run the following commands:

clear cordicatan2_mex;
status = tempdirObj.cleanUp;

Calculating atan2(y,x) Using Chebyshev Polynomial Approximation

Polynomial approximation is a multiply-accumulate (MAC) centric algorithm. It can be a good choice
for DSP implementations of non-linear functions like atan(x).

For a given degree of polynomial, and a given function f(x) = atan(x) evaluated over the interval
of [-1, +1], the polynomial approximation theory tries to find the polynomial that minimizes the
maximum value of , where P(x) is the approximating polynomial. In general, you can
obtain polynomials very close to the optimal one by approximating the given function in terms of
Chebyshev polynomials and cutting off the polynomial at the desired degree.

The approximation of arctangent over the interval of [-1, +1] using the Chebyshev polynomial of the
first kind is summarized in the following formula:

where

53 Fixed-Point Designer Examples

53-76



Therefore, the 3rd order Chebyshev polynomial approximation is

The 5th order Chebyshev polynomial approximation is

The 7th order Chebyshev polynomial approximation is

You can obtain four quadrant output through angle correction based on the properties of the
arctangent function.

Comparing the Algorithmic Error of the CORDIC and Polynomial Approximation Algorithms

In general, higher degrees of polynomial approximation produce more accurate final results.
However, higher degrees of polynomial approximation also increase the complexity of the algorithm
and require more MAC operations and more memory. To be consistent with the CORDIC algorithm
and the MATLAB atan2 function, the input arguments consist of both x and y coordinates instead of
the ratio y/x.

To eliminate quantization error, floating-point implementations of the CORDIC and Chebyshev
polynomial approximation algorithms are used in the comparison below. An algorithmic error
comparison reveals that increasing the number of CORDIC iterations results in less error. It also
reveals that the CORDIC algorithm with 12 iterations provides a slightly better angle estimation than
the 5th order Chebyshev polynomial approximation. The approximation error of the 3rd order
Chebyshev Polynomial is about 8 times larger than that of the 5th order Chebyshev polynomial. You
should choose the order or degree of the polynomial based on the required accuracy of the angle
estimation and the hardware constraints.

The coefficients of the Chebyshev polynomial approximation for atan(x) are shown in ascending
order of x.

constA3 = [0.970562748477141, -0.189514164974601]; % 3rd order
constA5 = [0.994949366116654,-0.287060635532652,0.078037176446441]; % 5th order
constA7 = [0.999133448222780 -0.320533292381664 0.144982490144465...
          -0.038254464970299]; % 7th order

theta   = (-90:1:90)*pi/180; % angle in radians
inXflt  = cos(theta);
inYflt  = sin(theta);
zfltRef = atan2(inYflt, inXflt); % Ideal output from ATAN2 function
zfltp3  = fidemo.poly_atan2(inYflt,inXflt,3,constA3); % 3rd order polynomial
zfltp5  = fidemo.poly_atan2(inYflt,inXflt,5,constA5); % 5th order polynomial
zfltp7  = fidemo.poly_atan2(inYflt,inXflt,7,constA7); % 7th order polynomial
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zflt8   = cordicatan2(inYflt, inXflt,  8); % CORDIC alg with 8 iterations
zflt12  = cordicatan2(inYflt, inXflt, 12); % CORDIC alg with 12 iterations

The maximum algorithmic error magnitude (or infinity norm of the algorithmic error) for the CORDIC
algorithm with 8 and 12 iterations is shown below:

cordic_algErr    = [zfltRef;zfltRef] - [zflt8;zflt12];
max_cordicAlgErr = max(abs(cordic_algErr'));
fprintf('Iterations: %2d, CORDIC algorithmic error in real-world-value: %g\n',...
    [[8,12]; max_cordicAlgErr(:)']);

Iterations:  8, CORDIC algorithmic error in real-world-value: 0.00772146
Iterations: 12, CORDIC algorithmic error in real-world-value: 0.000483258

The log base 2 error shows the number of binary digits of accuracy. The 12th iteration of the CORDIC
algorithm has an estimated angle accuracy of :

max_cordicAlgErr_bits = log2(max_cordicAlgErr);
fprintf('Iterations: %2d, CORDIC algorithmic error in bits: %g\n',...
    [[8,12]; max_cordicAlgErr_bits(:)']);

Iterations:  8, CORDIC algorithmic error in bits: -7.01691
Iterations: 12, CORDIC algorithmic error in bits: -11.0149

The following code shows the magnitude of the maximum algorithmic error of the polynomial
approximation for orders 3, 5, and 7:

poly_algErr    = [zfltRef;zfltRef;zfltRef] - [zfltp3;zfltp5;zfltp7];
max_polyAlgErr = max(abs(poly_algErr'));
fprintf('Order: %d, Polynomial approximation algorithmic error in real-world-value: %g\n',...
    [3:2:7; max_polyAlgErr(:)']);

Order: 3, Polynomial approximation algorithmic error in real-world-value: 0.00541647
Order: 5, Polynomial approximation algorithmic error in real-world-value: 0.000679384
Order: 7, Polynomial approximation algorithmic error in real-world-value: 9.16204e-05

The log base 2 error shows the number of binary digits of accuracy.

max_polyAlgErr_bits = log2(max_polyAlgErr);
fprintf('Order: %d, Polynomial approximation algorithmic error in bits: %g\n',...
    [3:2:7; max_polyAlgErr_bits(:)']);

Order: 3, Polynomial approximation algorithmic error in bits: -7.52843
Order: 5, Polynomial approximation algorithmic error in bits: -10.5235
Order: 7, Polynomial approximation algorithmic error in bits: -13.414

figno = figno + 1;
fidemo.fixpt_atan2_demo_plot(figno, theta, cordic_algErr, poly_algErr)
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Converting the Floating-Point Chebyshev Polynomial Approximation Algorithm to Fixed
Point

Assume the input and output word lengths are constrained to 16 bits by the hardware, and the 5th
order Chebyshev polynomial is used in the approximation. Because the dynamic range of inputs x, y
and y/x are all within [-1, +1], you can avoid overflow by picking a signed fixed-point input data type
with a word length of 16 bits and a fraction length of 14 bits. The coefficients of the polynomial are
purely fractional and within (-1, +1), so we can pick their data types as signed fixed point with a word
length of 16 bits and a fraction length of 15 bits (best precision). The algorithm is robust because

 is within [-1, +1], and the multiplication of the coefficients and  is within (-1, +1). Thus,
the dynamic range will not grow, and due to the pre-determined fixed-point data types, overflow is not
expected.

Similar to the CORDIC algorithm, the four quadrant polynomial approximation-based atan2
algorithm outputs estimated angles within . Therefore, we can pick an output fraction length of
13 bits to avoid overflow and provide a dynamic range of [-4, +3.9998779296875].

The basic floating-point Chebyshev polynomial approximation of arctangent over the interval [-1, +1]
is implemented as the chebyPoly_atan_fltpt local function in the poly_atan2.m file.

   function z = chebyPoly_atan_fltpt(y,x,N,constA,Tz,RoundingMethodStr)

   tmp = y/x;
   switch N
       case 3
           z = constA(1)*tmp + constA(2)*tmp^3;
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       case 5
           z = constA(1)*tmp + constA(2)*tmp^3 + constA(3)*tmp^5;
       case 7
           z = constA(1)*tmp + constA(2)*tmp^3 + constA(3)*tmp^5 + constA(4)*tmp^7;
       otherwise
           disp('Supported order of Chebyshev polynomials are 3, 5 and 7');
   end

The basic fixed-point Chebyshev polynomial approximation of arctangent over the interval [-1, +1] is
implemented as the chebyPoly_atan_fixpt local function in the poly_atan2.m file.

   function z = chebyPoly_atan_fixpt(y,x,N,constA,Tz,RoundingMethodStr)

   z = fi(0,'numerictype', Tz, 'RoundingMethod', RoundingMethodStr);
   Tx = numerictype(x);
   tmp = fi(0, 'numerictype',Tx, 'RoundingMethod', RoundingMethodStr);
   tmp(:) = Tx.divide(y, x); % y/x;

   tmp2 = fi(0, 'numerictype',Tx, 'RoundingMethod', RoundingMethodStr);
   tmp3 = fi(0, 'numerictype',Tx, 'RoundingMethod', RoundingMethodStr);
   tmp2(:) = tmp*tmp;  % (y/x)^2
   tmp3(:) = tmp2*tmp; % (y/x)^3

   z(:) = constA(1)*tmp + constA(2)*tmp3; % for order N = 3

   if (N == 5) || (N == 7)
       tmp5 = fi(0, 'numerictype',Tx, 'RoundingMethod', RoundingMethodStr);
       tmp5(:) = tmp3 * tmp2; % (y/x)^5
       z(:) = z + constA(3)*tmp5; % for order N = 5

       if N == 7
           tmp7 = fi(0, 'numerictype',Tx, 'RoundingMethod', RoundingMethodStr);
           tmp7(:) = tmp5 * tmp2; % (y/x)^7
           z(:) = z + constA(4)*tmp7; %for order N = 7
       end
   end

The universal four quadrant atan2 calculation using Chebyshev polynomial approximation is
implemented in the poly_atan2.m file.

   function z = poly_atan2(y,x,N,constA,Tz,RoundingMethodStr)

   if nargin < 5
       % floating-point algorithm
       fhandle = @chebyPoly_atan_fltpt;
       Tz = [];
       RoundingMethodStr = [];
       z = zeros(size(y));
   else
       % fixed-point algorithm
       fhandle = @chebyPoly_atan_fixpt;
       %pre-allocate output
       z = fi(zeros(size(y)), 'numerictype', Tz, 'RoundingMethod', RoundingMethodStr);
   end

   % Apply angle correction to obtain four quadrant output
   for idx = 1:length(y)
      % first quadrant
      if abs(x(idx)) >= abs(y(idx))
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          % (0, pi/4]
          z(idx) = feval(fhandle, abs(y(idx)), abs(x(idx)), N, constA, Tz, RoundingMethodStr);
      else
          % (pi/4, pi/2)
          z(idx) = pi/2 - feval(fhandle, abs(x(idx)), abs(y(idx)), N, constA, Tz, RoundingMethodStr);
      end

      if x(idx) < 0
          % second and third quadrant
          if y(idx) < 0
              z(idx) = -pi + z(idx);
          else
             z(idx) = pi - z(idx);
          end
      else % fourth quadrant
          if y(idx) < 0
              z(idx) = -z(idx);
          end
      end
   end

Performing the Overall Error Analysis of the Polynomial Approximation Algorithm

Similar to the CORDIC algorithm, the overall error of the polynomial approximation algorithm
consists of two parts - the algorithmic error and the quantization error. The algorithmic error of the
polynomial approximation algorithm was analyzed and compared to the algorithmic error of the
CORDIC algorithm in a previous section.

Calculate the Quantization Error

Compute the quantization error by comparing the fixed-point polynomial approximation to the
floating-point polynomial approximation.

Quantize the inputs and coefficients with convergent rounding:

inXfix = fi(fi(inXflt,  1, 16, 14,'RoundingMethod','Convergent'),'fimath',[]);
inYfix = fi(fi(inYflt,  1, 16, 14,'RoundingMethod','Convergent'),'fimath',[]);
constAfix3 = fi(fi(constA3, 1, 16,'RoundingMethod','Convergent'),'fimath',[]);
constAfix5 = fi(fi(constA5, 1, 16,'RoundingMethod','Convergent'),'fimath',[]);
constAfix7 = fi(fi(constA7, 1, 16,'RoundingMethod','Convergent'),'fimath',[]);

Calculate the maximum magnitude of the quantization error using Floor rounding:

ord    = 3:2:7; % using 3rd, 5th, 7th order polynomials
Tz     = numerictype(1, 16, 13); % output data type
zfix3p = fidemo.poly_atan2(inYfix,inXfix,ord(1),constAfix3,Tz,'Floor'); % 3rd order
zfix5p = fidemo.poly_atan2(inYfix,inXfix,ord(2),constAfix5,Tz,'Floor'); % 5th order
zfix7p = fidemo.poly_atan2(inYfix,inXfix,ord(3),constAfix7,Tz,'Floor'); % 7th order
poly_quantErr = bsxfun(@minus, [zfltp3;zfltp5;zfltp7], double([zfix3p;zfix5p;zfix7p]));
max_polyQuantErr_real_world_value = max(abs(poly_quantErr'));
max_polyQuantErr_bits = log2(max_polyQuantErr_real_world_value);
fprintf('PolyOrder: %2d, Quant error in bits: %g\n',...
    [ord; max_polyQuantErr_bits]);

PolyOrder:  3, Quant error in bits: -12.7101
PolyOrder:  5, Quant error in bits: -12.325
PolyOrder:  7, Quant error in bits: -11.8416

Calculate the Overall Error
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Compute the overall error by comparing the fixed-point polynomial approximation to the builtin
atan2 function. The ideal reference output is zfltRef. The overall error of the 7th order polynomial
approximation is dominated by the quantization error, which is due to the finite precision of the input
data, coefficients and the rounding effects from the fixed-point arithmetic operations.

poly_err = bsxfun(@minus, zfltRef, double([zfix3p;zfix5p;zfix7p]));
max_polyErr_real_world_value = max(abs(poly_err'));
max_polyErr_bits = log2(max_polyErr_real_world_value);
fprintf('PolyOrder: %2d, Overall error in bits: %g\n',...
    [ord; max_polyErr_bits]);

PolyOrder:  3, Overall error in bits: -7.51907
PolyOrder:  5, Overall error in bits: -10.2497
PolyOrder:  7, Overall error in bits: -11.5883

figno = figno + 1;
fidemo.fixpt_atan2_demo_plot(figno, theta, poly_err)

The Effect of Rounding Modes in Polynomial Approximation

Compared to the CORDIC algorithm with 12 iterations and a 13-bit fraction length in the angle
accumulator, the fifth order Chebyshev polynomial approximation gives a similar order of
quantization error. In the following example, Nearest, Round and Convergent rounding modes give
smaller quantization errors than the Floor rounding mode.

Maximum magnitude of the quantization error using Floor rounding
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poly5_quantErrFloor = max(abs(poly_quantErr(2,:)));
poly5_quantErrFloor_bits = log2(poly5_quantErrFloor)

poly5_quantErrFloor_bits =

 -12.324996933210334

For comparison, calculate the maximum magnitude of the quantization error using Nearest
rounding:

zfixp5n = fidemo.poly_atan2(inYfix,inXfix,5,constAfix5,Tz,'Nearest');
poly5_quantErrNearest = max(abs(zfltp5 - double(zfixp5n)));
poly5_quantErrNearest_bits = log2(poly5_quantErrNearest)
set(0, 'format', origFormat); % reset MATLAB output format

poly5_quantErrNearest_bits =

 -13.175966487895451

Calculating atan2(y,x) Using Lookup Tables

There are many lookup table based approaches that may be used to implement fixed-point arctangent
approximations. The following is a low-cost approach based on a single real-valued lookup table and
simple nearest-neighbor linear interpolation.

Single Lookup Table Based Approach

The atan2 method of the fi object in the Fixed-Point Designer™ approximates the MATLAB® builtin
floating-point atan2 function, using a single lookup table based approach with simple nearest-
neighbor linear interpolation between values. This approach allows for a small real-valued lookup
table and uses simple arithmetic.

Using a single real-valued lookup table simplifies the index computation and the overall arithmetic
required to achieve very good accuracy of the results. These simplifications yield a relatively high
speed performance as well as relatively low memory requirements.

Understanding the Lookup Table Based ATAN2 Implementation

Lookup Table Size and Accuracy

Two important design considerations of a lookup table are its size and its accuracy. It is not possible
to create a table for every possible  input value. It is also not possible to be perfectly accurate due
to the quantization of the lookup table values.

As a compromise, the atan2 method of the Fixed-Point Designer fi object uses an 8-bit lookup table
as part of its implementation. An 8-bit table is only 256 elements long, so it is small and efficient.
Eight bits also corresponds to the size of a byte or a word on many platforms. Used in conjunction
with linear interpolation, and 16-bit output (lookup table value) precision, an 8-bit-addressable lookup
table provides very good accuracy as well as performance.

Overview of Algorithm Implementation
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To better understand the Fixed-Point Designer implementation, first consider the symmetry of the
four-quadrant atan2(y,x) function. If you always compute the arctangent in the first-octant of the x-
y space (i.e., between angles 0 and pi/4 radians), then you can perform octant correction on the
resulting angle for any y and x values.

As part of the pre-processing portion, the signs and relative magnitudes of y and x are considered,
and a division is performed. Based on the signs and magnitudes of y and x, only one of the following
values is computed: y/x, x/y, -y/x, -x/y, -y/-x, -x/-y. The unsigned result that is guaranteed to be non-
negative and purely fractional is computed, based on the a priori knowledge of the signs and
magnitudes of y and x. An unsigned 16-bit fractional fixed-point type is used for this value.

The 8 most significant bits (MSBs) of the stored unsigned integer representation of the purely-
fractional unsigned fixed-point result is then used to directly index an 8-bit (length-256) lookup table
value containing angle values between 0 and pi/4 radians. Two table lookups are performed, one at
the computed table index location lutValBelow, and one at the next index location lutValAbove:

idxUint8MSBs = bitsliceget(idxUFIX16, 16, 9);
zeroBasedIdx = int16(idxUint8MSBs);
lutValBelow  = FI_ATAN_LUT(zeroBasedIdx + 1);
lutValAbove  = FI_ATAN_LUT(zeroBasedIdx + 2);

The remaining 8 least significant bits (LSBs) of idxUFIX16 are used to interpolate between these two
table values. The LSB values are treated as a normalized scaling factor with 8-bit fractional data type
rFracNT:

rFracNT      = numerictype(0,8,8); % fractional remainder data type
idxFrac8LSBs = reinterpretcast(bitsliceget(idxUFIX16,8,1), rFracNT);
rFraction    = idxFrac8LSBs;

The two lookup table values, with the remainder (rFraction) value, are used to perform a simple
nearest-neighbor linear interpolation. A real multiply is used to determine the weighted difference
between the two points. This results in a simple calculation (equivalent to one product and two sums)
to obtain the interpolated fixed-point result:

temp = rFraction * (lutValAbove - lutValBelow);
rslt = lutValBelow + temp;

Finally, based on the original signs and relative magnitudes of y and x, the output result is formed
using simple octant-correction logic and arithmetic. The first-octant [0, pi/4] angle value results are
added or subtracted with constants to form the octant-corrected angle outputs.

Computing Fixed-point Arctangent Using ATAN2

You can call the atan2 function directly using fixed-point or floating-point inputs. The lookup table
based algorithm is used for the fixed-point atan2 implementation:

zFxpLUT = atan2(inYfix,inXfix);

Calculate the Overall Error

You can compute the overall error by comparing the fixed-point lookup table based approximation to
the builtin atan2 function. The ideal reference output is zfltRef.

lut_err = bsxfun(@minus, zfltRef, double(zFxpLUT));
max_lutErr_real_world_value = max(abs(lut_err'));
max_lutErr_bits = log2(max_lutErr_real_world_value);
fprintf('Overall error in bits: %g\n', max_lutErr_bits);
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Overall error in bits: -12.6743

figno = figno + 1;
fidemo.fixpt_atan2_demo_plot(figno, theta, lut_err)

Comparison of Overall Error Between the Fixed-Point Implementations

As was done previously, you can compute the overall error by comparing the fixed-point
approximation(s) to the builtin atan2 function. The ideal reference output is zfltRef.

zfixCDC15      = cordicatan2(inYfix, inXfix, 15);
cordic_15I_err = bsxfun(@minus, zfltRef, double(zfixCDC15));
poly_7p_err    = bsxfun(@minus, zfltRef, double(zfix7p));
figno = figno + 1;
fidemo.fixpt_atan2_demo_plot(figno, theta, cordic_15I_err, poly_7p_err, lut_err)
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Comparing the Costs of the Fixed-Point Approximation Algorithms

The fixed-point CORDIC algorithm requires the following operations:

• 1 table lookup per iteration
• 2 shifts per iteration
• 3 additions per iteration

The N-th order fixed-point Chebyshev polynomial approximation algorithm requires the following
operations:

• 1 division
• (N+1) multiplications
• (N-1)/2 additions

The simplified single lookup table algorithm with nearest-neighbor linear interpolation requires the
following operations:

• 1 division
• 2 table lookups
• 1 multiplication
• 2 additions
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In real world applications, selecting an algorithm for the fixed-point arctangent calculation typically
depends on the required accuracy, cost and hardware constraints.

close all; % close all figure windows

References

1 Jack E. Volder, The CORDIC Trigonometric Computing Technique, IRE Transactions on Electronic
Computers, Volume EC-8, September 1959, pp. 330-334.

2 Ray Andraka, A survey of CORDIC algorithm for FPGA based computers, Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays, Feb. 22-24, 1998,
pp. 191-200.
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Calculate Fixed-Point Sine and Cosine
This example shows how to use both CORDIC-based and lookup table-based algorithms provided by
the Fixed-Point Designer™ to approximate the MATLAB® sine (SIN) and cosine (COS) functions.
Efficient fixed-point sine and cosine algorithms are critical to many embedded applications, including
motor controls, navigation, signal processing, and wireless communications.

Calculating Sine and Cosine Using the CORDIC Algorithm

Introduction

The cordiccexp, cordicsincos, cordicsin, and cordiccos functions approximate the MATLAB
sin and cos functions using a CORDIC-based algorithm. CORDIC is an acronym for COordinate
Rotation DIgital Computer. The Givens rotation-based CORDIC algorithm (see [1,2]) is one of the
most hardware efficient algorithms because it only requires iterative shift-add operations. The
CORDIC algorithm eliminates the need for explicit multipliers, and is suitable for calculating a variety
of functions, such as sine, cosine, arcsine, arccosine, arctangent, vector magnitude, divide, square
root, hyperbolic and logarithmic functions.

You can use the CORDIC rotation computing mode to calculate sine and cosine, and also polar-to-
cartesian conversion operations. In this mode, the vector magnitude and an angle of rotation are
known and the coordinate (X-Y) components are computed after rotation.

CORDIC Rotation Computation Mode

The CORDIC rotation mode algorithm begins by initializing an angle accumulator with the desired
rotation angle. Next, the rotation decision at each CORDIC iteration is done in a way that decreases
the magnitude of the residual angle accumulator. The rotation decision is based on the sign of the
residual angle in the angle accumulator after each iteration.

In rotation mode, the CORDIC equations are:

where  if , and  otherwise;

, and  is the total number of iterations.

This provides the following result as  approaches :

Where:
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.

In rotation mode, the CORDIC algorithm is limited to rotation angles between  and . To
support angles outside of that range, the cordiccexp, cordicsincos, cordicsin, and cordiccos
functions use quadrant correction (including possible extra negation) after the CORDIC iterations are
completed.

Understanding the CORDICSINCOS Sine and Cosine Code

Introduction

The cordicsincos function calculates the sine and cosine of input angles in the range [-2*pi, 2*pi)
using the CORDIC algorithm. This function takes an angle  (radians) and the number of iterations as
input arguments. The function returns approximations of sine and cosine.

The CORDIC computation outputs are scaled by the rotator gain. This gain is accounted for by pre-
scaling the initial  constant value.

Initialization

The cordicsincos function performs the following initialization steps:

• The angle input look-up table inpLUT is set to atan(2 .^ -(0:N-1)).
•  is set to the  input argument value.
•  is set to .
•  is set to zero.

The judicious choice of initial values allows the algorithm to directly compute both sine and cosine
simultaneously. After  iterations, these initial values lead to the following outputs as  approaches

:

Shared Fixed-Point and Floating-Point CORDIC Kernel Code

The MATLAB code for the CORDIC algorithm (rotation mode) kernel portion is as follows (for the case
of scalar x, y, and z). This same code is used for both fixed-point and floating-point operations:

function [x, y, z] = cordic_rotation_kernel(x, y, z, inpLUT, n)
% Perform CORDIC rotation kernel algorithm for N kernel iterations.
xtmp = x;
ytmp = y;
for idx = 1:n
    if z < 0
        z(:) = z + inpLUT(idx);
        x(:) = x + ytmp;
        y(:) = y - xtmp;
    else
        z(:) = z - inpLUT(idx);
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        x(:) = x - ytmp;
        y(:) = y + xtmp;
    end
    xtmp = bitsra(x, idx); % bit-shift-right for multiply by 2^(-idx)
    ytmp = bitsra(y, idx); % bit-shift-right for multiply by 2^(-idx)
end

Visualizing the Sine-Cosine Rotation Mode CORDIC Iterations

The CORDIC algorithm is usually run through a specified (constant) number of iterations since ending
the CORDIC iterations early would break pipelined code, and the CORDIC gain  would not be
constant because  would vary.

For very large values of , the CORDIC algorithm is guaranteed to converge, but not always
monotonically. As will be shown in the following example, intermediate iterations occasionally
produce more accurate results than later iterations. You can typically achieve greater accuracy by
increasing the total number of iterations.

Example

In the following example, iteration 5 provides a better estimate of the result than iteration 6, and the
CORDIC algorithm converges in later iterations.

theta   = pi/5; % input angle in radians
niters  = 10;   % number of iterations
sinTh   = sin(theta); % reference result
cosTh   = cos(theta); % reference result
y_sin   = zeros(niters, 1);
sin_err = zeros(niters, 1);
x_cos   = zeros(niters, 1);
cos_err = zeros(niters, 1);
fprintf('\n\nNITERS \tERROR\n');
fprintf('------\t----------\n');
for n = 1:niters
    [y_sin(n), x_cos(n)] = cordicsincos(theta, n);
    sin_err(n) = abs(y_sin(n) - sinTh);
    cos_err(n) = abs(x_cos(n) - cosTh);
    if n < 10
        fprintf('   %d \t %1.8f\n', n, cos_err(n));
    else
        fprintf('  %d \t %1.8f\n', n, cos_err(n));
    end
end
fprintf('\n');

NITERS     ERROR
------    ----------
   1      0.10191021
   2      0.13966630
   3      0.03464449
   4      0.03846157
   5      0.00020393
   6      0.01776952
   7      0.00888037
   8      0.00436052
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   9      0.00208192
  10      0.00093798

Plot the CORDIC approximation error on a bar graph

figure(1); clf;
bar(1:niters, cos_err(1:niters));
xlabel('Number of iterations','fontsize',12,'fontweight','b');
ylabel('Error','fontsize',12,'fontweight','b');
title('CORDIC approximation error for cos(pi/5) computation',...
    'fontsize',12,'fontweight','b');
axis([0 niters 0 0.14]);

Plot the X-Y results for 5 iterations

Niter2Draw = 5;
figure(2), clf, hold on
plot(cos(0:0.1:pi/2), sin(0:0.1:pi/2), 'b--'); % semi-circle
for i=1:Niter2Draw
    plot([0 x_cos(i)],[0 y_sin(i)], 'LineWidth', 2); % CORDIC iteration result
    text(x_cos(i),y_sin(i),int2str(i),'fontsize',12,'fontweight','b');
end
plot(cos(theta), sin(theta), 'r*', 'MarkerSize', 20); % IDEAL result
xlabel('X (COS)','fontsize',12,'fontweight','b')
ylabel('Y (SIN)','fontsize',12,'fontweight','b')
title('CORDIC iterations for cos(pi/5) computation',...
    'fontsize',12,'fontweight','b')

 Calculate Fixed-Point Sine and Cosine

53-91



axis equal;
axis square;

Computing Fixed-point Sine with cordicsin

Create 1024 points between [-2*pi, 2*pi)

stepSize = pi/256;
thRadDbl = (-2*pi):stepSize:(2*pi - stepSize);
thRadFxp = sfi(thRadDbl, 12);     % signed, 12-bit fixed-point values
sinThRef = sin(double(thRadFxp)); % reference results

Compare fixed-point CORDIC vs. double-precision trig function results

Use 12-bit quantized inputs and vary the number of iterations from 4 to 10.

for niters = 4:3:10
    cdcSinTh  = cordicsin(thRadFxp,  niters);
    errCdcRef = sinThRef - double(cdcSinTh);
    figure; hold on; axis([-2*pi 2*pi -1.25 1.25]);
    plot(thRadFxp, sinThRef,  'b');
    plot(thRadFxp, cdcSinTh,  'g');
    plot(thRadFxp, errCdcRef, 'r');
    ylabel('sin(\Theta)','fontsize',12,'fontweight','b');
    set(gca,'XTick',-2*pi:pi/2:2*pi);
    set(gca,'XTickLabel',...
        {'-2*pi', '-3*pi/2', '-pi', '-pi/2', ...
        '0', 'pi/2', 'pi', '3*pi/2','2*pi'});
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    set(gca,'YTick',-1:0.5:1);
    set(gca,'YTickLabel',{'-1.0','-0.5','0','0.5','1.0'});
    ref_str = 'Reference: sin(double(\Theta))';
    cdc_str = sprintf('12-bit CORDICSIN; N = %d', niters);
    err_str = sprintf('Error (max = %f)', max(abs(errCdcRef)));
    legend(ref_str, cdc_str, err_str);
    title(cdc_str,'fontsize',12,'fontweight','b');
end
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Compute the LSB Error for N = 10

figure;
fracLen = cdcSinTh.FractionLength;
plot(thRadFxp, abs(errCdcRef) * pow2(fracLen));
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',...
    {'-2*pi', '-3*pi/2', '-pi', '-pi/2', ...
    '0', 'pi/2', 'pi', '3*pi/2','2*pi'});
ylabel(sprintf('LSB Error: 1 LSB = 2^{-%d}',fracLen),'fontsize',12,'fontweight','b');
title('LSB Error: 12-bit CORDICSIN; N=10','fontsize',12,'fontweight','b');
axis([-2*pi 2*pi 0 6]);
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Compute Noise Floor

fft_mag = abs(fft(double(cdcSinTh)));
max_mag = max(fft_mag);
mag_db  = 20*log10(fft_mag/max_mag);
figure;
hold on;
plot(0:1023, mag_db);
plot(0:1023, zeros(1,1024),'r--');     % Normalized peak (0 dB)
plot(0:1023, -62.*ones(1,1024),'r--'); % Noise floor level
ylabel('dB Magnitude','fontsize',12,'fontweight','b');
title('62 dB Noise Floor: 12-bit CORDICSIN; N=10',...
    'fontsize',12,'fontweight','b');
% axis([0 1023 -120 0]); full FFT
axis([0 round(1024*(pi/8)) -100 10]); % zoom in
set(gca,'XTick',[0 round(1024*pi/16) round(1024*pi/8)]);
set(gca,'XTickLabel',{'0','pi/16','pi/8'});
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Accelerating the Fixed-Point CORDICSINCOS Function with FIACCEL

You can generate a MEX function from MATLAB code using the MATLAB® fiaccel function. Typically,
running a generated MEX function can improve the simulation speed, although the actual speed
improvement depends on the simulation platform being used. The following example shows how to
accelerate the fixed-point cordicsincos function using fiaccel.

The fiaccel function compiles the MATLAB code into a MEX function. This step requires the
creation of a temporary directory and write permissions in this directory.

tempdirObj = fidemo.fiTempdir('fi_sin_cos_demo');

When you declare the number of iterations to be a constant (e.g., 10) using
coder.newtype('constant',10), the compiled angle look-up table will also be constant, and thus
won't be computed at each iteration. Also, when you call cordicsincos_mex, you will not need to
give it the input argument for the number of iterations. If you pass in the number of iterations, the
MEX-function will error.

The data type of the input parameters determines whether the cordicsincos function performs
fixed-point or floating-point calculations. When MATLAB generates code for this file, code is only
generated for the specific data type. For example, if the THETA input argument is fixed point, then
only fixed-point code is generated.

inp = {thRadFxp, coder.newtype('constant',10)}; % example inputs for the function
fiaccel('cordicsincos', '-o', 'cordicsincos_mex',  '-args', inp)

First, calculate sine and cosine by calling cordicsincos.
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tstart = tic;
cordicsincos(thRadFxp,10);
telapsed_Mcordicsincos = toc(tstart);

Next, calculate sine and cosine by calling the MEX-function cordicsincos_mex.

cordicsincos_mex(thRadFxp); % load the MEX file
tstart = tic;
cordicsincos_mex(thRadFxp);
telapsed_MEXcordicsincos = toc(tstart);

Now, compare the speed. Type the following at the MATLAB command line to see the speed
improvement on your platform:

fiaccel_speedup = telapsed_Mcordicsincos/telapsed_MEXcordicsincos;

To clean up the temporary directory, run the following commands:

clear cordicsincos_mex;
status = tempdirObj.cleanUp;

Calculating SIN and COS Using Lookup Tables

There are many lookup table-based approaches that may be used to implement fixed-point sine and
cosine approximations. The following is a low-cost approach based on a single real-valued lookup
table and simple nearest-neighbor linear interpolation.

Single Lookup Table Based Approach

The sin and cos methods of the fi object in the Fixed-Point Designer approximate the MATLAB®
builtin floating-point sin and cos functions, using a lookup table-based approach with simple
nearest-neighbor linear interpolation between values. This approach allows for a small real-valued
lookup table and uses simple arithmetic.

Using a single real-valued lookup table simplifies the index computation and the overall arithmetic
required to achieve very good accuracy of the results. These simplifications yield relatively high
speed performance and also relatively low memory requirements.

Understanding the Lookup Table Based SIN and COS Implementation

Lookup Table Size and Accuracy

Two important design considerations of a lookup table are its size and its accuracy. It is not possible
to create a table for every possible input value . It is also not possible to be perfectly accurate due to
the quantization of  or  lookup table values.

As a compromise, the Fixed-Point Designer SIN and COS methods of FI use an 8-bit lookup table as
part of their implementation. An 8-bit table is only 256 elements long, so it is small and efficient.
Eight bits also corresponds to the size of a byte or a word on many platforms. Used in conjunction
with linear interpolation, and 16-bit output (lookup table value) precision, an 8-bit-addressable lookup
table provides both very good accuracy and performance.

Initializing the Constant SIN Lookup Table Values

For implementation simplicity, table value uniformity, and speed, a full sinewave table is used. First, a
quarter-wave SIN function is sampled at 64 uniform intervals in the range [0, pi/2) radians. Choosing
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a signed 16-bit fractional fixed-point data type for the table values, i.e., tblValsNT =
numerictype(1,16,15), produces best precision results in the SIN output range [-1.0, 1.0). The
values are pre-quantized before they are set, to avoid overflow warnings.

tblValsNT = numerictype(1,16,15);
quarterSinDblFltPtVals  = (sin(2*pi*((0:63) ./ 256)))';
endpointQuantized_Plus1 = 1.0 - double(eps(fi(0,tblValsNT)));

halfSinWaveDblFltPtVals = ...
    [quarterSinDblFltPtVals; ...
    endpointQuantized_Plus1; ...
    flipud(quarterSinDblFltPtVals(2:end))];

fullSinWaveDblFltPtVals = ...
    [halfSinWaveDblFltPtVals; -halfSinWaveDblFltPtVals];

FI_SIN_LUT = fi(fullSinWaveDblFltPtVals, tblValsNT);

Overview of Algorithm Implementation

The implementation of the Fixed-Point Designer sin and cos methods of fi objects involves first
casting the fixed-point angle inputs  (in radians) to a pre-defined data type in the range [0, 2pi]. For
this purpose, a modulo-2pi operation is performed to obtain the fixed-point input value
inpValInRange in the range [0, 2pi] and cast to the best precision binary point scaled unsigned 16-
bit fixed-point type numerictype(0,16,13):

% Best UNSIGNED type for real-world value range [0,  2*pi],
% which maps to fixed-point stored integer vals [0, 51472].
inpInRangeNT = numerictype(0,16,13);

Next, we get the 16-bit stored unsigned integer value from this in-range fixed-point FI angle value:

idxUFIX16 = fi(storedInteger(inpValInRange), numerictype(0,16,0));

We multiply the stored integer value by a normalization constant, 65536/51472. The resulting integer
value will be in a full-scale uint16 index range:

normConst_NT = numerictype(0,32,31);
normConstant = fi(65536/51472, normConst_NT);
fullScaleIdx = normConstant * idxUFIX16;
idxUFIX16(:) = fullScaleIdx;

The top 8 most significant bits (MSBs) of this full-scale unsigned 16-bit index idxUFIX16 are used to
directly index into the 8-bit sine lookup table. Two table lookups are performed, one at the computed
table index location lutValBelow, and one at the next index location lutValAbove:

idxUint8MSBs = storedInteger(bitsliceget(idxUFIX16, 16, 9));
zeroBasedIdx = int16(idxUint8MSBs);
lutValBelow  = FI_SIN_LUT(zeroBasedIdx + 1);
lutValAbove  = FI_SIN_LUT(zeroBasedIdx + 2);

The remaining 8 least significant bits (LSBs) of idxUFIX16 are used to interpolate between these two
table values. The LSB values are treated as a normalized scaling factor with 8-bit fractional data type
rFracNT:

rFracNT      = numerictype(0,8,8); % fractional remainder data type
idxFrac8LSBs = reinterpretcast(bitsliceget(idxUFIX16,8,1), rFracNT);
rFraction    = idxFrac8LSBs;
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A real multiply is used to determine the weighted difference between the two points. This results in a
simple calculation (equivalent to one product and two sums) to obtain the interpolated fixed-point
sine result:

temp = rFraction * (lutValAbove - lutValBelow);
rslt = lutValBelow + temp;

Example

Using the above algorithm, here is an example of the lookup table and linear interpolation process
used to compute the value of SIN for a fixed-point input inpValInRange = 0.425 radians:

% Use an arbitrary input value (e.g., 0.425 radians)
inpInRangeNT  = numerictype(0,16,13);    % best precision, [0, 2*pi] radians
inpValInRange = fi(0.425, inpInRangeNT); % arbitrary fixed-point input angle

% Normalize its stored integer to get full-scale unsigned 16-bit integer index
idxUFIX16     = fi(storedInteger(inpValInRange), numerictype(0,16,0));
normConst_NT  = numerictype(0,32,31);
normConstant  = fi(65536/51472, normConst_NT);
fullScaleIdx  = normConstant * idxUFIX16;
idxUFIX16(:)  = fullScaleIdx;

% Do two table lookups using unsigned 8-bit integer index (i.e., 8 MSBs)
idxUint8MSBs  = storedInteger(bitsliceget(idxUFIX16, 16, 9));
zeroBasedIdx  = int16(idxUint8MSBs);          % zero-based table index value
lutValBelow   = FI_SIN_LUT(zeroBasedIdx + 1); % 1st table lookup value
lutValAbove   = FI_SIN_LUT(zeroBasedIdx + 2); % 2nd table lookup value

% Do nearest-neighbor interpolation using 8 LSBs (treat as fractional remainder)
rFracNT       = numerictype(0,8,8); % fractional remainder data type
idxFrac8LSBs  = reinterpretcast(bitsliceget(idxUFIX16,8,1), rFracNT);
rFraction     = idxFrac8LSBs; % fractional value for linear interpolation
temp          = rFraction * (lutValAbove - lutValBelow);
rslt          = lutValBelow + temp;

Here is a plot of the algorithm results:

x_vals = 0:(pi/128):(pi/4);
xIdxLo = zeroBasedIdx - 1;
xIdxHi = zeroBasedIdx + 4;
figure; hold on; axis([x_vals(xIdxLo) x_vals(xIdxHi) 0.25 0.65]);
plot(x_vals(xIdxLo:xIdxHi), double(FI_SIN_LUT(xIdxLo:xIdxHi)), 'b^--');
plot([x_vals(zeroBasedIdx+1) x_vals(zeroBasedIdx+2)], ...
    [lutValBelow lutValAbove], 'k.'); % Closest values
plot(0.425, double(rslt), 'r*'); % Interpolated fixed-point result
plot(0.425, sin(0.425),   'gs'); % Double precision reference result
xlabel('X'); ylabel('SIN(X)');
lut_val_str = 'Fixed-point lookup table values';
near_str    = 'Two closest fixed-point LUT values';
interp_str  = 'Interpolated fixed-point result';
ref_str     = 'Double precision reference value';
legend(lut_val_str, near_str, interp_str, ref_str);
title('Fixed-Point Designer Lookup Table Based SIN with Linear Interpolation', ...
    'fontsize',12,'fontweight','b');
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Computing Fixed-point Sine Using SIN

Create 1024 points between [-2*pi, 2*pi)

stepSize = pi/256;
thRadDbl = (-2*pi):stepSize:(2*pi - stepSize); % double precision floating-point
thRadFxp = sfi(thRadDbl, 12); % signed, 12-bit fixed-point inputs

Compare fixed-point SIN vs. double-precision SIN results

fxpSinTh  = sin(thRadFxp); % fixed-point results
sinThRef  = sin(double(thRadFxp)); % reference results
errSinRef = sinThRef - double(fxpSinTh);
figure; hold on; axis([-2*pi 2*pi -1.25 1.25]);
plot(thRadFxp, sinThRef,  'b');
plot(thRadFxp, fxpSinTh,  'g');
plot(thRadFxp, errSinRef, 'r');
ylabel('sin(\Theta)','fontsize',12,'fontweight','b');
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',...
    {'-2*pi', '-3*pi/2', '-pi', '-pi/2', ...
    '0', 'pi/2', 'pi', '3*pi/2','2*pi'});
set(gca,'YTick',-1:0.5:1);
set(gca,'YTickLabel',{'-1.0','-0.5','0','0.5','1.0'});
ref_str = 'Reference: sin(double(\Theta))';
fxp_str = sprintf('16-bit Fixed-Point SIN with 12-bit Inputs');
err_str = sprintf('Error (max = %f)', max(abs(errSinRef)));
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legend(ref_str, fxp_str, err_str);
title(fxp_str,'fontsize',12,'fontweight','b');

Compute the LSB Error

figure;
fracLen = fxpSinTh.FractionLength;
plot(thRadFxp, abs(errSinRef) * pow2(fracLen));
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',...
    {'-2*pi', '-3*pi/2', '-pi', '-pi/2', ...
    '0', 'pi/2', 'pi', '3*pi/2','2*pi'});
ylabel(sprintf('LSB Error: 1 LSB = 2^{-%d}',fracLen),'fontsize',12,'fontweight','b');
title('LSB Error: 16-bit Fixed-Point SIN with 12-bit Inputs','fontsize',12,'fontweight','b');
axis([-2*pi 2*pi 0 8]);
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Compute Noise Floor

fft_mag = abs(fft(double(fxpSinTh)));
max_mag = max(fft_mag);
mag_db  = 20*log10(fft_mag/max_mag);
figure;
hold on;
plot(0:1023, mag_db);
plot(0:1023, zeros(1,1024),'r--');     % Normalized peak (0 dB)
plot(0:1023, -64.*ones(1,1024),'r--'); % Noise floor level (dB)
ylabel('dB Magnitude','fontsize',12,'fontweight','b');
title('64 dB Noise Floor: 16-bit Fixed-Point SIN with 12-bit Inputs',...
    'fontsize',12,'fontweight','b');
% axis([0 1023 -120 0]); full FFT
axis([0 round(1024*(pi/8)) -100 10]); % zoom in
set(gca,'XTick',[0 round(1024*pi/16) round(1024*pi/8)]);
set(gca,'XTickLabel',{'0','pi/16','pi/8'});
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Comparing the Costs of the Fixed-Point Approximation Algorithms

The fixed-point CORDIC algorithm requires the following operations:

• 1 table lookup per iteration
• 2 shifts per iteration
• 3 additions per iteration

The simplified single lookup table algorithm with nearest-neighbor linear interpolation requires the
following operations:

• 2 table lookups
• 1 multiplication
• 2 additions

In real world applications, selecting an algorithm for the fixed-point trigonometric function
calculations typically depends on the required accuracy, cost and hardware constraints.

close all; % close all figure windows

References

1 Jack E. Volder, The CORDIC Trigonometric Computing Technique, IRE Transactions on Electronic
Computers, Volume EC-8, September 1959, pp330-334.
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Compute Sine and Cosine Using CORDIC Rotation Kernel
This example shows how to compute sine and cosine using a CORDIC rotation kernel in MATLAB®.
CORDIC-based algorithms are critical to many embedded applications, including motor controls,
navigation, signal processing, and wireless communications.

Introduction

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm (see [1,2]) is one of the most hardware efficient algorithms because it only requires
iterative shift-add operations. The CORDIC algorithm eliminates the need for explicit multipliers, and
is suitable for calculating a variety of functions, such as sine, cosine, arcsine, arccosine, arctangent,
vector magnitude, divide, square root, hyperbolic and logarithmic functions.

The fixed-point CORDIC algorithm requires the following operations:

• 1 table lookup per iteration
• 2 shifts per iteration
• 3 additions per iteration

CORDIC Kernel Algorithm Using the Rotation Computation Mode

You can use a CORDIC rotation computing mode algorithm to calculate sine and cosine
simultaneously, compute polar-to-cartesian conversions, and for other operations. In the rotation
mode, the vector magnitude and an angle of rotation are known and the coordinate (X-Y) components
are computed after rotation.

The CORDIC rotation mode algorithm begins by initializing an angle accumulator with the desired
rotation angle. Next, the rotation decision at each CORDIC iteration is done in a way that decreases
the magnitude of the residual angle accumulator. The rotation decision is based on the sign of the
residual angle in the angle accumulator after each iteration.

In rotation mode, the CORDIC equations are:

where  if , and  otherwise;

, and  is the total number of iterations.

This provides the following result as  approaches :

Where:
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.

Typically  is chosen to be a large-enough constant value. Thus,  may be pre-computed.

In rotation mode, the CORDIC algorithm is limited to rotation angles between  and . To
support angles outside of that range, quadrant correction is often used.

Efficient MATLAB Implementation of a CORDIC Rotation Kernel Algorithm

A MATLAB code implementation example of the CORDIC Rotation Kernel algorithm follows (for the
case of scalar x, y, and z). This same code can be used for both fixed-point and floating-point
operation.

CORDIC Rotation Kernel

function [x, y, z] = cordic_rotation_kernel(x, y, z, inpLUT, n)
% Perform CORDIC rotation kernel algorithm for N iterations.
xtmp = x;
ytmp = y;
for idx = 1:n
    if z < 0
        z(:) = accumpos(z, inpLUT(idx));
        x(:) = accumpos(x, ytmp);
        y(:) = accumneg(y, xtmp);
    else
        z(:) = accumneg(z, inpLUT(idx));
        x(:) = accumneg(x, ytmp);
        y(:) = accumpos(y, xtmp);
    end
    xtmp = bitsra(x, idx); % bit-shift-right for multiply by 2^(-idx)
    ytmp = bitsra(y, idx); % bit-shift-right for multiply by 2^(-idx)
end

CORDIC-Based Sine and Cosine Computation Using Normalized Inputs

Sine and Cosine Computation Using the CORDIC Rotation Kernel

The judicious choice of initial values allows the CORDIC kernel rotation mode algorithm to directly
compute both sine and cosine simultaneously.

First, the following initialization steps are performed:

• The angle input look-up table inpLUT is set to atan(2 .^ -(0:N-1)).
•  is set to the  input argument value.
•  is set to .
•  is set to zero.

After  iterations, these initial values lead to the following outputs as  approaches :

•

•
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Other rotation-kernel-based function approximations are possible via pre- and post-processing and
using other initial conditions (see [1,2]).

The CORDIC algorithm is usually run through a specified (constant) number of iterations since ending
the CORDIC iterations early would break pipelined code, and the CORDIC gain  would not be
constant because  would vary.

For very large values of , the CORDIC algorithm is guaranteed to converge, but not always
monotonically. You can typically achieve greater accuracy by increasing the total number of
iterations.

Example

Suppose that you have a rotation angle sensor (e.g. in a servo motor) that uses formatted integer
values to represent measured angles of rotation. Also suppose that you have a 16-bit integer
arithmetic unit that can perform add, subtract, shift, and memory operations. With such a device, you
could implement the CORDIC rotation kernel to efficiently compute cosine and sine (equivalently,
cartesian X and Y coordinates) from the sensor angle values, without the use of multiplies or large
lookup tables.

sumWL  = 16; % CORDIC sum word length
thNorm = -1.0:(2^-8):1.0; % Normalized [-1.0, 1.0] angle values
theta  = fi(thNorm, 1, sumWL); % Fixed-point angle values (best precision)

z_NT   = numerictype(theta);             % Data type for Z
xyNT   = numerictype(1, sumWL, sumWL-2); % Data type for X-Y
x_out  = fi(zeros(size(theta)), xyNT);   % X array pre-allocation
y_out  = fi(zeros(size(theta)), xyNT);   % Y array pre-allocation
z_out  = fi(zeros(size(theta)), z_NT);   % Z array pre-allocation

niters = 13; % Number of CORDIC iterations
inpLUT = fi(atan(2 .^ (-((0:(niters-1))'))) .* (2/pi), z_NT); % Normalized
AnGain = prod(sqrt(1+2.^(-2*(0:(niters-1))))); % CORDIC gain
inv_An = 1 / AnGain; % 1/A_n inverse of CORDIC gain

for idx = 1:length(theta)
    % CORDIC rotation kernel iterations
    [x_out(idx), y_out(idx), z_out(idx)] = ...
        fidemo.cordic_rotation_kernel(...
            fi(inv_An, xyNT), fi(0, xyNT), theta(idx), inpLUT, niters);
end

% Plot the CORDIC-approximated sine and cosine values
figure;
subplot(411);
plot(thNorm, x_out);
axis([-1 1 -1 1]);
title('Normalized X Values from CORDIC Rotation Kernel Iterations');
subplot(412);
thetaRadians = pi/2 .* thNorm; % real-world range [-pi/2 pi/2] angle values
plot(thNorm, cos(thetaRadians) - double(x_out));
title('Error between MATLAB COS Reference Values and X Values');
subplot(413);
plot(thNorm, y_out);
axis([-1 1 -1 1]);
title('Normalized Y Values from CORDIC Rotation Kernel Iterations');
subplot(414);
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plot(thNorm, sin(thetaRadians) - double(y_out));
title('Error between MATLAB SIN Reference Values and Y Values');

References

1 Jack E. Volder, The CORDIC Trigonometric Computing Technique, IRE Transactions on Electronic
Computers, Volume EC-8, September 1959, pp330-334.

2 Ray Andraka, A survey of CORDIC algorithm for FPGA based computers, Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays, Feb. 22-24, 1998,
pp191-200
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Perform QR Factorization Using CORDIC
This example shows how to write MATLAB® code that works for both floating-point and fixed-point
data types. The algorithm used in this example is the QR factorization implemented via CORDIC
(Coordinate Rotation Digital Computer).

A good way to write an algorithm intended for a fixed-point target is to write it in MATLAB using
builtin floating-point types so you can verify that the algorithm works. When you refine the algorithm
to work with fixed-point types, then the best thing to do is to write it so that the same code continues
working with floating-point. That way, when you are debugging, then you can switch the inputs back
and forth between floating-point and fixed-point types to determine if a difference in behavior is
because of fixed-point effects such as overflow and quantization versus an algorithmic difference.
Even if the algorithm is not well suited for a floating-point target (as is the case of using CORDIC in
the following example), it is still advantageous to have your MATLAB code work with floating-point
for debugging purposes.

In contrast, you may have a completely different strategy if your target is floating point. For example,
the QR algorithm is often done in floating-point with Householder transformations and row or column
pivoting. But in fixed-point it is often more efficient to use CORDIC to apply Givens rotations with no
pivoting.

This example addresses the first case, where your target is fixed-point, and you want an algorithm
that is independent of data type because it is easier to develop and debug.

In this example you will learn various coding methods that can be applied across systems. The
significant design patterns used in this example are the following:

• Data Type Independence: the algorithm is written in such a way that the MATLAB code is
independent of data type, and will work equally well for fixed-point, double-precision floating-
point, and single-precision floating-point.

• Overflow Prevention: method to guarantee not to overflow. This demonstrates how to prevent
overflows in fixed-point.

• Solving Systems of Equations: method to use computational efficiency. Narrow your code scope by
isolating what you need to define.

The main part in this example is an implementation of the QR factorization in fixed-point arithmetic
using CORDIC for the Givens rotations. The algorithm is written in such a way that the MATLAB code
is independent of data type, and will work equally well for fixed-point, double-precision floating-point,
and single-precision floating-point.

The QR factorization of M-by-N matrix A produces an M-by-N upper triangular matrix R and an M-by-
M orthogonal matrix Q such that A = Q*R. A matrix is upper triangular if it has all zeros below the
diagonal. An M-by-M matrix Q is orthogonal if Q'*Q = eye (M), the identity matrix.

The QR factorization is widely used in least-squares problems, such as the recursive least squares
(RLS) algorithm used in adaptive filters.

The CORDIC algorithm is attractive for computing the QR algorithm in fixed-point because you can
apply orthogonal Givens rotations with CORDIC using only shift and add operations.

Setup

So this example does not change your preferences or settings, we store the original state here, and
restore them at the end.
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originalFormat = get(0, 'format'); format short
originalFipref = get(fipref);      reset(fipref);
originalGlobalFimath = fimath;     resetglobalfimath;

Defining the CORDIC QR Algorithm

The CORDIC QR algorithm is given in the following MATLAB function, where A is an M-by-N real
matrix, and niter is the number of CORDIC iterations. Output Q is an M-by-M orthogonal matrix,
and R is an M-by-N upper-triangular matrix such that Q*R = A.

function [Q,R] = cordicqr(A,niter)
  Kn = inverse_cordic_growth_constant(niter);
  [m,n] = size(A);
  R = A;
  Q = coder.nullcopy(repmat(A(:,1),1,m)); % Declare type and size of Q
  Q(:) = eye(m);                          % Initialize Q
  for j=1:n
    for i=j+1:m
      [R(j,j:end),R(i,j:end),Q(:,j),Q(:,i)] = ...
          cordicgivens(R(j,j:end),R(i,j:end),Q(:,j),Q(:,i),niter,Kn);
    end
  end
end

This function was written to be independent of data type. It works equally well with builtin floating-
point types (double and single) and with the fixed-point fi object.

One of the trickiest aspects of writing data-type independent code is to specify data type and size for
a new variable. In order to preserve data types without having to explicitly specify them, the output R
was set to be the same as input A, like this:

    R = A;

In addition to being data-type independent, this function was written in such a way that MATLAB
Coder™ will be able to generate efficient C code from it. In MATLAB, you most often declare and
initialize a variable in one step, like this:

    Q = eye(m)

However, Q=eye(m) would always produce Q as a double-precision floating point variable. If A is
fixed-point, then we want Q to be fixed-point; if A is single, then we want Q to be single; etc.

Hence, you need to declare the type and size of Q in one step, and then initialize it in a second step.
This gives MATLAB Coder the information it needs to create an efficient C program with the correct
types and sizes. In the finished code you initialize output Q to be an M-by-M identity matrix and the
same data type as A, like this:

    Q = coder.nullcopy(repmat(A(:,1),1,m)); % Declare type and size of Q
    Q(:) = eye(m);                        % Initialize Q

The coder.nullcopy function declares the size and type of Q without initializing it. The expansion
of the first column of A with repmat won't appear in code generated by MATLAB; it is only used to
specify the size. The repmat function was used instead of A(:,1:m) because A may have more rows
than columns, which will be the case in a least-squares problem. You have to be sure to always assign
values to every element of an array when you declare it with coder.nullcopy, because if you don't
then you will have uninitialized memory.
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You will notice this pattern of assignment again and again. This is another key enabler of data-type
independent code.

The heart of this function is applying orthogonal Givens rotations in-place to the rows of R to zero out
sub-diagonal elements, thus forming an upper-triangular matrix. The same rotations are applied in-
place to the columns of the identity matrix, thus forming orthogonal Q. The Givens rotations are
applied using the cordicgivens function, as defined in the next section. The rows of R and columns
of Q are used as both input and output to the cordicgivens function so that the computation is
done in-place, overwriting R and Q.

[R(j,j:end),R(i,j:end),Q(:,j),Q(:,i)] = ...
    cordicgivens(R(j,j:end),R(i,j:end),Q(:,j),Q(:,i),niter,Kn);

Defining the CORDIC Givens Rotation

The cordicgivens function applies a Givens rotation by performing CORDIC iterations to rows
x=R(j,j:end), y=R(i,j:end) around the angle defined by x(1)=R(j,j) and y(1)=R(i,j)
where i>j, thus zeroing out R(i,j). The same rotation is applied to columns u = Q(:,j) and v =
Q(:,i), thus forming the orthogonal matrix Q.

function [x,y,u,v] = cordicgivens(x,y,u,v,niter,Kn)
  if x(1)<0
    % Compensation for 3rd and 4th quadrants
    x(:) = -x;  u(:) = -u;
    y(:) = -y;  v(:) = -v;
  end
  for i=0:niter-1
    x0 = x;
    u0 = u;
    if y(1)<0
      % Counter-clockwise rotation
      % x and y form R,         u and v form Q
      x(:) = x - bitsra(y, i);  u(:) = u - bitsra(v, i);
      y(:) = y + bitsra(x0,i);  v(:) = v + bitsra(u0,i);
    else
      % Clockwise rotation
      % x and y form R,         u and v form Q
      x(:) = x + bitsra(y, i);  u(:) = u + bitsra(v, i);
      y(:) = y - bitsra(x0,i);  v(:) = v - bitsra(u0,i);
    end
  end
  % Set y(1) to exactly zero so R will be upper triangular without round off
  % showing up in the lower triangle.
  y(1) = 0;
  % Normalize the CORDIC gain
  x(:) = Kn * x;  u(:) = Kn * u;
  y(:) = Kn * y;  v(:) = Kn * v;
end

The advantage of using CORDIC in fixed-point over the standard Givens rotation is that CORDIC does
not use square root or divide operations. Only bit-shifts, addition, and subtraction are needed in the
main loop, and one scalar-vector multiply at the end to normalize the CORDIC gain. Also, CORDIC
rotations work well in pipelined architectures.

The bit shifts in each iteration are performed with the bit shift right arithmetic (bitsra) function
instead of bitshift, multiplication by 0.5, or division by 2, because bitsra
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• generates more efficient embedded code,
• works equally well with positive and negative numbers,
• works equally well with floating-point, fixed-point and integer types, and
• keeps this code independent of data type.

It is worthwhile to note that there is a difference between sub-scripted assignment (subsasgn) into a
variable a(:) = b versus overwriting a variable a = b. Sub-scripted assignment into a variable like
this

x(:) = x + bitsra(y, i);

always preserves the type of the left-hand-side argument x. This is the recommended programming
style in fixed-point. For example fixed-point types often grow their word length in a sum, which is
governed by the SumMode property of the fimath object, so that the right-hand-side x +
bitsra(y,i) can have a different data type than x.

If, instead, you overwrite the left-hand-side like this

x = x + bitsra(y, i);

then the left-hand-side x takes on the type of the right-hand-side sum. This programming style leads
to changing the data type of x in fixed-point code, and is discouraged.

Defining the Inverse CORDIC Growth Constant

This function returns the inverse of the CORDIC growth factor after niter iterations. It is needed
because CORDIC rotations grow the values by a factor of approximately 1.6468, depending on the
number of iterations, so the gain is normalized in the last step of cordicgivens by a multiplication
by the inverse Kn = 1/1.6468 = 0.60725.

function Kn = inverse_cordic_growth_constant(niter)
  Kn = 1/prod(sqrt(1+2.^(-2*(0:double(niter)-1))));
end

Exploring CORDIC Growth as a Function of Number of Iterations

The function for CORDIC growth is defined as

growth = prod(sqrt(1+2.^(-2*(0:double(niter)-1))))

and the inverse is

inverse_growth = 1 ./ growth

Growth is a function of the number of iterations niter, and quickly converges to approximately
1.6468, and the inverse converges to approximately 0.60725. You can see in the following table that
the difference from one iteration to the next ceases to change after 27 iterations. This is because the
calculation hit the limit of precision in double floating-point at 27 iterations.

niter       growth            diff(growth)         1./growth        diff(1./growth)
  0    1.000000000000000                   0   1.000000000000000                   0
  1    1.414213562373095   0.414213562373095   0.707106781186547  -0.292893218813453
  2    1.581138830084190   0.166925267711095   0.632455532033676  -0.074651249152872
  3    1.629800601300662   0.048661771216473   0.613571991077896  -0.018883540955780
  4    1.642484065752237   0.012683464451575   0.608833912517752  -0.004738078560144
  5    1.645688915757255   0.003204850005018   0.607648256256168  -0.001185656261584

 Perform QR Factorization Using CORDIC

53-113



  6    1.646492278712479   0.000803362955224   0.607351770141296  -0.000296486114872
  7    1.646693254273644   0.000200975561165   0.607277644093526  -0.000074126047770
  8    1.646743506596901   0.000050252323257   0.607259112298893  -0.000018531794633
  9    1.646756070204878   0.000012563607978   0.607254479332562  -0.000004632966330
 10    1.646759211139822   0.000003140934944   0.607253321089875  -0.000001158242687
 11    1.646759996375617   0.000000785235795   0.607253031529134  -0.000000289560741
 12    1.646760192684695   0.000000196309077   0.607252959138945  -0.000000072390190
 13    1.646760241761972   0.000000049077277   0.607252941041397  -0.000000018097548
 14    1.646760254031292   0.000000012269320   0.607252936517010  -0.000000004524387
 15    1.646760257098622   0.000000003067330   0.607252935385914  -0.000000001131097
 16    1.646760257865455   0.000000000766833   0.607252935103139  -0.000000000282774
 17    1.646760258057163   0.000000000191708   0.607252935032446  -0.000000000070694
 18    1.646760258105090   0.000000000047927   0.607252935014772  -0.000000000017673
 19    1.646760258117072   0.000000000011982   0.607252935010354  -0.000000000004418
 20    1.646760258120067   0.000000000002995   0.607252935009249  -0.000000000001105
 21    1.646760258120816   0.000000000000749   0.607252935008973  -0.000000000000276
 22    1.646760258121003   0.000000000000187   0.607252935008904  -0.000000000000069
 23    1.646760258121050   0.000000000000047   0.607252935008887  -0.000000000000017
 24    1.646760258121062   0.000000000000012   0.607252935008883  -0.000000000000004
 25    1.646760258121065   0.000000000000003   0.607252935008882  -0.000000000000001
 26    1.646760258121065   0.000000000000001   0.607252935008881  -0.000000000000000
 27    1.646760258121065                   0   0.607252935008881                   0
 28    1.646760258121065                   0   0.607252935008881                   0
 29    1.646760258121065                   0   0.607252935008881                   0
 30    1.646760258121065                   0   0.607252935008881                   0
 31    1.646760258121065                   0   0.607252935008881                   0
 32    1.646760258121065                   0   0.607252935008881                   0

Comparing CORDIC to the Standard Givens Rotation

The cordicgivens function is numerically equivalent to the following standard Givens rotation
algorithm from Golub & Van Loan, Matrix Computations. In the cordicqr function, if you replace the
call to cordicgivens with a call to givensrotation, then you will have the standard Givens QR
algorithm.

function [x,y,u,v] = givensrotation(x,y,u,v)
  a = x(1); b = y(1);
  if b==0
    % No rotation necessary.  c = 1; s = 0;
    return;
  else
    if abs(b) > abs(a)
      t = -a/b; s = 1/sqrt(1+t^2); c = s*t;
    else
      t = -b/a; c = 1/sqrt(1+t^2); s = c*t;
    end
  end
  x0 = x;             u0 = u;
  % x and y form R,   u and v form Q
  x(:) = c*x0 - s*y;  u(:) = c*u0 - s*v;
  y(:) = s*x0 + c*y;  v(:) = s*u0 + c*v;
end

The givensrotation function uses division and square root, which are expensive in fixed-point, but
good for floating-point algorithms.

53 Fixed-Point Designer Examples

53-114



Example of CORDIC Rotations

Here is a 3-by-3 example that follows the CORDIC rotations through each step of the algorithm. The
algorithm uses orthogonal rotations to zero out the subdiagonal elements of R using the diagonal
elements as pivots. The same rotations are applied to the identity matrix, thus producing orthogonal
Q such that Q*R = A.

Let A be a random 3-by-3 matrix, and initialize R = A, and Q = eye(3).

  R = A = [-0.8201    0.3573   -0.0100
           -0.7766   -0.0096   -0.7048
           -0.7274   -0.6206   -0.8901]

      Q = [ 1         0         0
            0         1         0
            0         0         1]

The first rotation is about the first and second row of R and the first and second column of Q. Element
R(1,1) is the pivot and R(2,1) rotates to 0.

    R before the first rotation            R after the first rotation
x [-0.8201    0.3573   -0.0100]   ->    x [1.1294   -0.2528    0.4918]
y [-0.7766   -0.0096   -0.7048]   ->    y [     0    0.2527    0.5049]
   -0.7274   -0.6206   -0.8901            -0.7274   -0.6206   -0.8901

    Q before the first rotation            Q after the first rotation
    u         v                            u         v
   [1]       [0]        0                [-0.7261] [ 0.6876]        0
   [0]       [1]        0         ->     [-0.6876] [-0.7261]        0
   [0]       [0]        1                [      0] [      0]        1

In the following plot, you can see the growth in x in each of the CORDIC iterations. The growth is
factored out at the last step by multiplying it by Kn = 0.60725. You can see that y(1) iterates to 0.
Initially, the point [x(1), y(1)] is in the third quadrant, and is reflected into the first quadrant
before the start of the CORDIC iterations.
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The second rotation is about the first and third row of R and the first and third column of Q. Element
R(1,1) is the pivot and R(3,1) rotates to 0.

    R before the second rotation           R after the second rotation
x  [1.1294   -0.2528    0.4918]   ->    x [1.3434    0.1235    0.8954]
         0    0.2527    0.5049                  0    0.2527    0.5049
y [-0.7274]  -0.6206   -0.8901    ->    y [     0   -0.6586   -0.4820]

    Q before the second rotation           Q after the second rotation
    u                       v              u                   v
  [-0.7261]   0.6876       [0]           [-0.6105]   0.6876  [-0.3932]
  [-0.6876]  -0.7261       [0]    ->     [-0.5781]  -0.7261  [-0.3723]
  [      0]        0       [1]           [-0.5415]        0  [ 0.8407]
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The third rotation is about the second and third row of R and the second and third column of Q.
Element R(2,2) is the pivot and R(3,2) rotates to 0.

    R before the third rotation            R after the third rotation
    1.3434    0.1235    0.8954             1.3434    0.1235    0.8954
 x       0  [ 0.2527    0.5049]   ->    x       0   [0.7054    0.6308]
 y       0  [-0.6586   -0.4820]   ->    y       0   [     0    0.2987]

    Q before the third rotation            Q after the third rotation
              u         v                            u         v
   -0.6105  [ 0.6876] [-0.3932]           -0.6105  [ 0.6134] [ 0.5011]
   -0.5781  [-0.7261] [-0.3723]   ->      -0.5781  [ 0.0875] [-0.8113]
   -0.5415  [      0] [ 0.8407]           -0.5415  [-0.7849] [ 0.3011]
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This completes the QR factorization. R is upper triangular, and Q is orthogonal.

R =
   1.3434    0.1235    0.8954
        0    0.7054    0.6308
        0         0    0.2987

Q =
  -0.6105    0.6134    0.5011
  -0.5781    0.0875   -0.8113
  -0.5415   -0.7849    0.3011

You can verify that Q is within roundoff error of being orthogonal by multiplying and seeing that it is
close to the identity matrix.

Q*Q' =  1.0000    0.0000    0.0000
        0.0000    1.0000         0
        0.0000         0    1.0000

Q'*Q =  1.0000    0.0000   -0.0000
        0.0000    1.0000   -0.0000
       -0.0000   -0.0000    1.0000
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You can see the error difference by subtracting the identity matrix.

Q*Q' - eye(size(Q)) =           0   2.7756e-16   3.0531e-16
                       2.7756e-16   4.4409e-16            0
                       3.0531e-16            0   6.6613e-16

You can verify that Q*R is close to A by subtracting to see the error difference.

Q*R - A =  -3.7802e-11  -7.2325e-13  -2.7756e-17
           -3.0512e-10   1.1708e-12  -4.4409e-16
            3.6836e-10  -4.3487e-13  -7.7716e-16

Determining the Optimal Output Type of Q for Fixed Word Length

Since Q is orthogonal, you know that all of its values are between -1 and +1. In floating-point, there is
no decision about the type of Q: it should be the same floating-point type as A. However, in fixed-
point, you can do better than making Q have the identical fixed-point type as A. For example, if A has
word length 16 and fraction length 8, and if we make Q also have word length 16 and fraction length
8, then you force Q to be less accurate than it could be and waste the upper half of the fixed-point
range.

The best type for Q is to make it have full range of its possible outputs, plus accommodate the 1.6468
CORDIC growth factor in intermediate calculations. Therefore, assuming that the word length of Q is
the same as the word length of input A, then the best fraction length for Q is 2 bits less than the word
length (one bit for 1.6468 and one bit for the sign).

Hence, our initialization of Q in cordicqr can be improved like this.

if isfi(A) && (isfixed(A) || isscaleddouble(A))
      Q = fi(one*eye(m), get(A,'NumericType'), ...
             'FractionLength',get(A,'WordLength')-2);
else
  Q = coder.nullcopy(repmat(A(:,1),1,m));
  Q(:) = eye(m);
end

A slight disadvantage is that this section of code is dependent on data type. However, you gain a
major advantage by picking the optimal type for Q, and the main algorithm is still independent of data
type. You can do this kind of input parsing in the beginning of a function and leave the main algorithm
data-type independent.

Preventing Overflow in Fixed Point R

This section describes how to determine a fixed-point output type for R in order to prevent overflow.
In order to pick an output type, you need to know how much the magnitude of the values of R will
grow.

Given real matrix A and its QR factorization computed by Givens rotations without pivoting, an upper-
bound on the magnitude of the elements of R is the square-root of the number of rows of A times the
magnitude of the largest element in A. Furthermore, this growth will never be greater during an
intermediate computation. In other words, let [m,n]=size(A), and [Q,R]=givensqr(A). Then

max(abs(R(:))) <= sqrt(m) * max(abs(A(:))).

This is true because the each element of R is formed from orthogonal rotations from its
corresponding column in A, so the largest that any element R(i,j) can get is if all of the elements of
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its corresponding column A(:,j) were rotated to a single value. In other words, the largest possible
value will be bounded by the 2-norm of A(:,j). Since the 2-norm of A(:,j) is equal to the square-
root of the sum of the squares of the m elements, and each element is less-than-or-equal-to the
largest element of A, then

norm(A(:,j)) <= sqrt(m) * max(abs(A(:))).

That is, for all j

norm(A(:,j))  = sqrt(A(1,j)^2 + A(2,j)^2 + ... + A(m,j)^2)
             <= sqrt( m * max(abs(A(:)))^2)
              = sqrt(m) * max(abs(A(:))).

and so for all i,j

abs(R(i,j)) <= norm(A(:,j)) <= sqrt(m) * max(abs(A(:))).

Hence, it is also true for the largest element of R

max(abs(R(:))) <= sqrt(m) * max(abs(A(:))).

This becomes useful in fixed-point where the elements of A are often very close to the maximum value
attainable by the data type, so we can set a tight upper bound without knowing the values of A. This
is important because we want to set an output type for R with a minimum number of bits, only
knowing the upper bound of the data type of A. You can use fi method upperbound to get this value.

Therefore, for all i,j

abs(R(i,j)) <= sqrt(m) * upperbound(A)

Note that sqrt(m)*upperbound(A) is also an upper bound for the elements of A:

abs(A(i,j)) <= upperbound(A) <= sqrt(m)*upperbound(A)

Therefore, when picking fixed-point data types, sqrt(m)*upperbound(A) is an upper bound that
will work for both A and R.

Attaining the maximum is easy and common. The maximum will occur when all elements get rotated
into a single element, like the following matrix with orthogonal columns:

A = [7    -7     7     7
     7     7    -7     7
     7    -7    -7    -7
     7     7     7    -7];

Its maximum value is 7 and its number of rows is m=4, so we expect that the maximum value in R will
be bounded by max(abs(A(:)))*sqrt(m) = 7*sqrt(4) = 14. Since A in this example is
orthogonal, each column gets rotated to the max value on the diagonal.

niter = 52;
[Q,R] = cordicqr(A,niter)

Q =

    0.5000   -0.5000    0.5000    0.5000
    0.5000    0.5000   -0.5000    0.5000
    0.5000   -0.5000   -0.5000   -0.5000
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    0.5000    0.5000    0.5000   -0.5000

R =

   14.0000    0.0000   -0.0000   -0.0000
         0   14.0000   -0.0000    0.0000
         0         0   14.0000    0.0000
         0         0         0   14.0000

Another simple example of attaining maximum growth is a matrix that has all identical elements, like
a matrix of all ones. A matrix of ones will get rotated into 1*sqrt(m) in the first row and zeros
elsewhere. For example, this 9-by-5 matrix will have all 1*sqrt(9)=3 in the first row of R.

m = 9; n = 5;
A = ones(m,n)
niter = 52;
[Q,R] = cordicqr(A,niter)

A =

     1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1

Q =

  Columns 1 through 7

    0.3333    0.5567   -0.6784    0.3035   -0.1237    0.0503    0.0158
    0.3333    0.0296    0.2498   -0.1702   -0.6336    0.1229   -0.3012
    0.3333    0.2401    0.0562   -0.3918    0.4927    0.2048   -0.5395
    0.3333    0.0003    0.0952   -0.1857    0.2148    0.4923    0.7080
    0.3333    0.1138    0.0664   -0.2263    0.1293   -0.8348    0.2510
    0.3333   -0.3973   -0.0143    0.3271    0.4132   -0.0354   -0.2165
    0.3333    0.1808    0.3538   -0.1012   -0.2195         0    0.0824
    0.3333   -0.6500   -0.4688   -0.2380   -0.2400         0         0
    0.3333   -0.0740    0.3400    0.6825   -0.0331         0         0

  Columns 8 through 9

    0.0056   -0.0921
   -0.5069   -0.1799
    0.0359    0.3122
   -0.2351   -0.0175
   -0.2001    0.0610
   -0.0939   -0.6294
    0.7646   -0.2849
    0.2300    0.2820
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         0    0.5485

R =

    3.0000    3.0000    3.0000    3.0000    3.0000
         0    0.0000    0.0000    0.0000    0.0000
         0         0    0.0000    0.0000    0.0000
         0         0         0    0.0000    0.0000
         0         0         0         0    0.0000
         0         0         0         0         0
         0         0         0         0         0
         0         0         0         0         0
         0         0         0         0         0

As in the cordicqr function, the Givens QR algorithm is often written by overwriting A in-place with
R, so being able to cast A into R's data type at the beginning of the algorithm is convenient.

In addition, if you compute the Givens rotations with CORDIC, there is a growth-factor that converges
quickly to approximately 1.6468. This growth factor gets normalized out after each Givens rotation,
but you need to accommodate it in the intermediate calculations. Therefore, the number of additional
bits that are required including the Givens and CORDIC growth are log2(1.6468* sqrt(m)). The
additional bits of head-room can be added either by increasing the word length, or decreasing the
fraction length.

A benefit of increasing the word length is that it allows for the maximum possible precision for a
given word length. A disadvantage is that the optimal word length may not correspond to a native
type on your processor (e.g. increasing from 16 to 18 bits), or you may have to increase to the next
larger native word size which could be quite large (e.g. increasing from 16 to 32 bits, when you only
needed 18).

A benefit of decreasing fraction length is that you can do the computation in-place in the native word
size of A. A disadvantage is that you lose precision.

Another option is to pre-scale the input by right-shifting. This is equivalent to decreasing the fraction
length, with the additional disadvantage of changing the scaling of your problem. However, this may
be an attractive option to you if you prefer to only work in fractional arithmetic or integer arithmetic.

Example of Fixed Point Growth in R

If you have a fixed-point input matrix A, you can define fixed-point output R with the growth defined
in the previous section.

Start with a random matrix X.

X = [0.0513   -0.2097    0.9492    0.2614
     0.8261    0.6252    0.3071   -0.9415
     1.5270    0.1832    0.1352   -0.1623
     0.4669   -1.0298    0.5152   -0.1461];

Create a fixed-point A from X.

A = sfi(X)

A = 
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    0.0513   -0.2097    0.9492    0.2614
    0.8261    0.6252    0.3071   -0.9415
    1.5270    0.1832    0.1352   -0.1623
    0.4669   -1.0298    0.5152   -0.1461

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 14

m = size(A,1)

m =

     4

The growth factor is 1.6468 times the square-root of the number of rows of A. The bit growth is the
next integer above the base-2 logarithm of the growth.

bit_growth = ceil(log2(cordic_growth_constant * sqrt(m)))

bit_growth =

     2

Initialize R with the same values as A, and a word length increased by the bit growth.

R = sfi(A, get(A,'WordLength')+bit_growth, get(A,'FractionLength'))

R = 

    0.0513   -0.2097    0.9492    0.2614
    0.8261    0.6252    0.3071   -0.9415
    1.5270    0.1832    0.1352   -0.1623
    0.4669   -1.0298    0.5152   -0.1461

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 18
        FractionLength: 14

Use R as input and overwrite it.

niter = get(R,'WordLength') - 1
[Q,R] = cordicqr(R, niter)

niter =

    17

Q = 
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    0.0284   -0.1753    0.9110    0.3723
    0.4594    0.4470    0.3507   -0.6828
    0.8490    0.0320   -0.2169    0.4808
    0.2596   -0.8766   -0.0112   -0.4050

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 18
        FractionLength: 16

R = 

    1.7989    0.1694    0.4166   -0.6008
         0    1.2251   -0.4764   -0.3438
         0         0    0.9375   -0.0555
         0         0         0    0.7214

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 18
        FractionLength: 14

Verify that Q*Q' is near the identity matrix.

double(Q)*double(Q')

ans =

    1.0000   -0.0001    0.0000    0.0000
   -0.0001    1.0001    0.0000   -0.0000
    0.0000    0.0000    1.0000   -0.0000
    0.0000   -0.0000   -0.0000    1.0000

Verify that Q*R - A is small relative to the precision of A.

err = double(Q)*double(R) - double(A)

err =

   1.0e-03 *

   -0.1048   -0.2355    0.1829   -0.2146
    0.3472    0.2949    0.0260   -0.2570
    0.2776   -0.1740   -0.1007    0.0966
    0.0138   -0.1558    0.0417   -0.0362

Increasing Precision in R

The previous section showed you how to prevent overflow in R while maintaining the precision of A. If
you leave the fraction length of R the same as A, then R cannot have more precision than A, and your
precision requirements may be such that the precision of R must be greater.
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An extreme example of this is to define a matrix with an integer fixed-point type (i.e. fraction length is
zero). Let matrix X have elements that are the full range for signed 8 bit integers, between -128 and
+127.

 X = [-128  -128  -128   127
      -128   127   127  -128
       127   127   127   127
       127   127  -128  -128];

Define fixed-point A to be equivalent to an 8-bit integer.

A = sfi(X,8,0)

A = 

  -128  -128  -128   127
  -128   127   127  -128
   127   127   127   127
   127   127  -128  -128

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 8
        FractionLength: 0

m = size(A,1)

m =

     4

The necessary growth is 1.6468 times the square-root of the number of rows of A.

bit_growth = ceil(log2(cordic_growth_constant*sqrt(m)))

bit_growth =

     2

Initialize R with the same values as A, and allow for bit growth like you did in the previous section.

R = sfi(A, get(A,'WordLength')+bit_growth, get(A,'FractionLength'))

R = 

  -128  -128  -128   127
  -128   127   127  -128
   127   127   127   127
   127   127  -128  -128

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 10
        FractionLength: 0
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Compute the QR factorization, overwriting R.

niter = get(R,'WordLength') - 1;
[Q,R] = cordicqr(R, niter)

Q = 

   -0.5039   -0.2930   -0.4062   -0.6914
   -0.5039    0.8750    0.0039    0.0078
    0.5000    0.2930    0.3984   -0.7148
    0.4922    0.2930   -0.8203    0.0039

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 10
        FractionLength: 8

R = 

   257   126    -1    -1
     0   225   151  -148
     0     0   211   104
     0     0     0  -180

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 10
        FractionLength: 0

Notice that R is returned with integer values because you left the fraction length of R at 0, the same
as the fraction length of A.

The scaling of the least-significant bit (LSB) of A is 1, and you can see that the error is proportional to
the LSB.

err = double(Q)*double(R)-double(A)

err =

   -1.5039   -1.4102   -1.4531   -0.9336
   -1.5039    6.3828    6.4531   -1.9961
    1.5000    1.9180    0.8086   -0.7500
   -0.5078    0.9336   -1.3398   -1.8672

You can increase the precision in the QR factorization by increasing the fraction length. In this
example, you needed 10 bits for the integer part (8 bits to start with, plus 2 bits growth), so when you
increase the fraction length you still need to keep the 10 bits in the integer part. For example, you
can increase the word length to 32 and set the fraction length to 22, which leaves 10 bits in the
integer part.

R = sfi(A, 32, 22)

R = 
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  -128  -128  -128   127
  -128   127   127  -128
   127   127   127   127
   127   127  -128  -128

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 32
        FractionLength: 22

niter = get(R,'WordLength') - 1;
[Q,R] = cordicqr(R, niter)

Q = 

   -0.5020   -0.2913   -0.4088   -0.7043
   -0.5020    0.8649    0.0000    0.0000
    0.4980    0.2890    0.4056   -0.7099
    0.4980    0.2890   -0.8176    0.0000

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 32
        FractionLength: 30

R = 

  255.0020  127.0029    0.0039    0.0039
         0  220.5476  146.8413 -147.9930
         0         0  208.4793  104.2429
         0         0         0 -179.6037

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 32
        FractionLength: 22

Now you can see fractional parts in R, and Q*R-A is small.

err = double(Q)*double(R)-double(A)

err =

   1.0e-05 *

   -0.1234   -0.0014   -0.0845    0.0267
   -0.1234    0.2574    0.1260   -0.1094
    0.0720    0.0289   -0.0400   -0.0684
    0.0957    0.0818   -0.1034    0.0095

The number of bits you choose for fraction length will depend on the precision requirements for your
particular algorithm.
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Picking Default Number of Iterations

The number of iterations is dependent on the desired precision, but limited by the word length of A.
With each iteration, the values are right-shifted one bit. After the last bit gets shifted off and the
value becomes 0, then there is no additional value in continuing to rotate. Hence, the most precision
will be attained by choosing niter to be one less than the word length.

For floating-point, the number of iterations is bounded by the size of the mantissa. In double, 52
iterations is the most you can do to continue adding to something with the same exponent. In single,
it is 23. See the reference page for eps for more information about floating-point accuracy.

Thus, we can make our code more usable by not requiring the number of iterations to be input, and
assuming that we want the most precision possible by changing cordicqr to use this default for
niter.

function [Q,R] = cordicqr(A,varargin)
  if nargin>=2 && ~isempty(varargin{1})
     niter = varargin{1};
  elseif isa(A,'double') || isfi(A) && isdouble(A)
    niter = 52;
  elseif isa(A,'single') || isfi(A) && issingle(A)
    niter = single(23);
  elseif isfi(A)
    niter = int32(get(A,'WordLength') - 1);
  else
    assert(0,'First input must be double, single, or fi.');
  end

A disadvantage of doing this is that this makes a section of our code dependent on data type.
However, an advantage is that the function is much more convenient to use because you don't have to
specify niter if you don't want to, and the main algorithm is still data-type independent. Similar to
picking an optimal output type for Q, you can do this kind of input parsing in the beginning of a
function and leave the main algorithm data-type independent.

Here is an example from a previous section, without needing to specify an optimal niter.

A = [7    -7     7     7
     7     7    -7     7
     7    -7    -7    -7
     7     7     7    -7];
[Q,R] = cordicqr(A)

Q =

    0.5000   -0.5000    0.5000    0.5000
    0.5000    0.5000   -0.5000    0.5000
    0.5000   -0.5000   -0.5000   -0.5000
    0.5000    0.5000    0.5000   -0.5000

R =

   14.0000    0.0000   -0.0000   -0.0000
         0   14.0000   -0.0000    0.0000
         0         0   14.0000    0.0000
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         0         0         0   14.0000

Example: QR Factorization Not Unique

When you compare the results from cordicqr and the QR function in MATLAB, you will notice that
the QR factorization is not unique. It is only important that Q is orthogonal, R is upper triangular, and
Q*R - A is small.

Here is a simple example that shows the difference.

m = 3;
A = ones(m)

A =

     1     1     1
     1     1     1
     1     1     1

The built-in QR function in MATLAB uses a different algorithm and produces:

[Q0,R0] = qr(A)

Q0 =

   -0.5774   -0.5774   -0.5774
   -0.5774    0.7887   -0.2113
   -0.5774   -0.2113    0.7887

R0 =

   -1.7321   -1.7321   -1.7321
         0         0         0
         0         0         0

And the cordicqr function produces:

[Q,R] = cordicqr(A)

Q =

    0.5774    0.7495    0.3240
    0.5774   -0.6553    0.4871
    0.5774   -0.0942   -0.8110

R =

    1.7321    1.7321    1.7321
         0    0.0000    0.0000
         0         0   -0.0000
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Notice that the elements of Q from function cordicqr are different from Q0 from built-in QR.
However, both results satisfy the requirement that Q is orthogonal:

Q0*Q0'

ans =

    1.0000    0.0000         0
    0.0000    1.0000         0
         0         0    1.0000

Q*Q'

ans =

    1.0000    0.0000    0.0000
    0.0000    1.0000   -0.0000
    0.0000   -0.0000    1.0000

And they both satisfy the requirement that Q*R - A is small:

Q0*R0 - A

ans =

   1.0e-15 *

   -0.1110   -0.1110   -0.1110
   -0.1110   -0.1110   -0.1110
   -0.1110   -0.1110   -0.1110

Q*R - A

ans =

   1.0e-15 *

   -0.2220    0.2220    0.2220
    0.4441         0         0
    0.2220    0.2220    0.2220

Solving Systems of Equations Without Forming Q

Given matrices A and B, you can use the QR factorization to solve for X in the following equation:

A*X = B.

If A has more rows than columns, then X will be the least-squares solution. If X and B have more than
one column, then several solutions can be computed at the same time. If A = Q*R is the QR
factorization of A, then the solution can be computed by back-solving

R*X = C
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where C = Q'*B. Instead of forming Q and multiplying to get C = Q'*B, it is more efficient to
compute C directly. You can compute C directly by applying the rotations to the rows of B instead of
to the columns of an identity matrix. The new algorithm is formed by the small modification of
initializing C = B, and operating along the rows of C instead of the columns of Q.

  function [R,C] = cordicrc(A,B,niter)
    Kn = inverse_cordic_growth_constant(niter);
    [m,n] = size(A);
    R = A;
    C = B;
    for j=1:n
      for i=j+1:m
        [R(j,j:end),R(i,j:end),C(j,:),C(i,:)] = ...
            cordicgivens(R(j,j:end),R(i,j:end),C(j,:),C(i,:),niter,Kn);
      end
    end
  end

You can verify the algorithm with this example. Let A be a random 3-by-3 matrix, and B be a random
3-by-2 matrix.

A = [-0.8201    0.3573   -0.0100
     -0.7766   -0.0096   -0.7048
     -0.7274   -0.6206   -0.8901];

B = [-0.9286    0.3575
      0.6983    0.5155
      0.8680    0.4863];

Compute the QR factorization of A.

[Q,R] = cordicqr(A)

Q =

   -0.6105    0.6133    0.5012
   -0.5781    0.0876   -0.8113
   -0.5415   -0.7850    0.3011

R =

    1.3434    0.1235    0.8955
         0    0.7054    0.6309
         0         0    0.2988

Compute C = Q'*B directly.

[R,C] = cordicrc(A,B)

R =

    1.3434    0.1235    0.8955
         0    0.7054    0.6309
         0         0    0.2988
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C =

   -0.3068   -0.7795
   -1.1897   -0.1173
   -0.7706   -0.0926

Subtract, and you will see that the error difference is on the order of roundoff.

Q'*B - C

ans =

   1.0e-15 *

   -0.0555    0.3331
         0         0
    0.1110    0.2914

Now try the example in fixed-point. Declare A and B to be fixed-point types.

A = sfi(A)

A = 

   -0.8201    0.3573   -0.0100
   -0.7766   -0.0096   -0.7048
   -0.7274   -0.6206   -0.8901

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 15

B = sfi(B)

B = 

   -0.9286    0.3575
    0.6983    0.5155
    0.8680    0.4863

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 15

The necessary growth is 1.6468 times the square-root of the number of rows of A.

bit_growth = ceil(log2(cordic_growth_constant*sqrt(m)))

bit_growth =
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     2

Initialize R with the same values as A, and allow for bit growth.

R = sfi(A, get(A,'WordLength')+bit_growth, get(A,'FractionLength'))

R = 

   -0.8201    0.3573   -0.0100
   -0.7766   -0.0096   -0.7048
   -0.7274   -0.6206   -0.8901

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 18
        FractionLength: 15

The growth in C is the same as R, so initialize C and allow for bit growth the same way.

C = sfi(B, get(B,'WordLength')+bit_growth, get(B,'FractionLength'))

C = 

   -0.9286    0.3575
    0.6983    0.5155
    0.8680    0.4863

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 18
        FractionLength: 15

Compute C = Q'*B directly, overwriting R and C.

[R,C] = cordicrc(R,C)

R = 

    1.3435    0.1233    0.8954
         0    0.7055    0.6308
         0         0    0.2988

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 18
        FractionLength: 15

C = 

   -0.3068   -0.7796
   -1.1898   -0.1175
   -0.7706   -0.0926

          DataTypeMode: Fixed-point: binary point scaling
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            Signedness: Signed
            WordLength: 18
        FractionLength: 15

An interesting use of this algorithm is that if you initialize B to be the identity matrix, then output
argument C is Q'. You may want to use this feature to have more control over the data type of Q. For
example,

A = [-0.8201    0.3573   -0.0100
     -0.7766   -0.0096   -0.7048
     -0.7274   -0.6206   -0.8901];
B = eye(size(A,1))

B =

     1     0     0
     0     1     0
     0     0     1

[R,C] = cordicrc(A,B)

R =

    1.3434    0.1235    0.8955
         0    0.7054    0.6309
         0         0    0.2988

C =

   -0.6105   -0.5781   -0.5415
    0.6133    0.0876   -0.7850
    0.5012   -0.8113    0.3011

Then C is orthogonal

C'*C

ans =

    1.0000    0.0000    0.0000
    0.0000    1.0000   -0.0000
    0.0000   -0.0000    1.0000

and R = C*A

R - C*A

ans =

   1.0e-15 *
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    0.6661   -0.0139   -0.1110
    0.5551   -0.2220    0.6661
   -0.2220   -0.1110    0.2776

Links to the Documentation

Fixed-Point Designer™

• bitsra Bit shift right arithmetic
• fi Construct fixed-point numeric object
• fimath Construct fimath object
• fipref Construct fipref object
• get Property values of object
• globalfimath Configure global fimath and return handle object
• isfi Determine whether variable is fi object
• sfi Construct signed fixed-point numeric object
• upperbound Upper bound of range of fi object
• fiaccel Accelerate fixed-point code

MATLAB

• bitshift Shift bits specified number of places
• ceil Round toward positive infinity
• double Convert to double precision floating point
• eps Floating-point relative accuracy
• eye Identity matrix
• log2 Base 2 logarithm and dissect floating-point numbers into exponent and mantissa
• prod Product of array elements
• qr Orthogonal-triangular factorization
• repmat Replicate and tile array
• single Convert to single precision floating point
• size Array dimensions
• sqrt Square root
• subsasgn Subscripted assignment

Functions Used in this Example

These are the MATLAB functions used in this example.

CORDICQR computes the QR factorization using CORDIC.

• [Q,R] = cordicqr(A) chooses the number of CORDIC iterations based on the type of A.

• [Q,R] = cordicqr(A,niter) uses niter number of CORDIC iterations.

CORDICRC computes R from the QR factorization of A, and also returns C = Q'*B without
computing Q.
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• [R,C] = cordicrc(A,B) chooses the number of CORDIC iterations based on the type of A.

• [R,C] = cordicrc(A,B,niter) uses niter number of CORDIC iterations.

CORDIC_GROWTH_CONSTANT returns the CORDIC growth constant.

• cordic_growth = cordic_growth_constant(niter) returns the CORDIC growth constant
as a function of the number of CORDIC iterations, niter.

GIVENSQR computes the QR factorization using standard Givens rotations.

• [Q,R] = givensqr(A), where A is M-by-N, produces an M-by-N upper triangular matrix R and
an M-by-M orthogonal matrix Q so that A = Q*R.

CORDICQR_MAKEPLOTS makes the plots in this example by executing the following from the
MATLAB command line.

load A_3_by_3_for_cordicqr_demo.mat
niter=32;
[Q,R] = cordicqr_makeplots(A,niter)
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Cleanup

fipref(originalFipref);
globalfimath(originalGlobalFimath);
close all
set(0, 'format', originalFormat);
%#ok<*MNEFF,*NASGU,*NOPTS,*ASGLU>
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Convert Cartesian to Polar Using CORDIC Vectoring Kernel
This example shows how to convert Cartesian to polar coordinates using a CORDIC vectoring kernel
algorithm in MATLAB®. CORDIC-based algorithms are critical to many embedded applications,
including motor controls, navigation, signal processing, and wireless communications.

Introduction

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm (see [1,2]) is one of the most hardware efficient algorithms because it only requires
iterative shift-add operations. The CORDIC algorithm eliminates the need for explicit multipliers, and
is suitable for calculating a variety of functions, such as sine, cosine, arcsine, arccosine, arctangent,
vector magnitude, divide, square root, hyperbolic and logarithmic functions.

The fixed-point CORDIC algorithm requires the following operations:

• 1 table lookup per iteration
• 2 shifts per iteration
• 3 additions per iteration

CORDIC Kernel Algorithm Using the Vectoring Computation Mode

You can use a CORDIC vectoring computing mode algorithm to calculate atan(y/x), compute
cartesian-polar to cartesian conversions, and for other operations. In vectoring mode, the CORDIC
rotator rotates the input vector towards the positive X-axis to minimize the  component of the
residual vector. For each iteration, if the  coordinate of the residual vector is positive, the CORDIC
rotator rotates clockwise (using a negative angle); otherwise, it rotates counter-clockwise (using a
positive angle). Each rotation uses a progressively smaller angle value. If the angle accumulator is
initialized to 0, at the end of the iterations, the accumulated rotation angle is the angle of the original
input vector.

In vectoring mode, the CORDIC equations are:

 is the angle accumulator

where  if , and  otherwise;

, and  is the total number of iterations.

As  approaches  :

Where:
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.

Typically  is chosen to be a large-enough constant value. Thus,  may be pre-computed.

Efficient MATLAB Implementation of a CORDIC Vectoring Kernel Algorithm

A MATLAB code implementation example of the CORDIC Vectoring Kernel algorithm follows (for the
case of scalar x, y, and z). This same code can be used for both fixed-point and floating-point
operation.

CORDIC Vectoring Kernel

function [x, y, z] = cordic_vectoring_kernel(x, y, z, inpLUT, n)
% Perform CORDIC vectoring kernel algorithm for N iterations.
xtmp = x;
ytmp = y;
for idx = 1:n
    if y < 0
        x(:) = accumneg(x, ytmp);
        y(:) = accumpos(y, xtmp);
        z(:) = accumneg(z, inpLUT(idx));
    else
        x(:) = accumpos(x, ytmp);
        y(:) = accumneg(y, xtmp);
        z(:) = accumpos(z, inpLUT(idx));
    end
    xtmp = bitsra(x, idx); % bit-shift-right for multiply by 2^(-idx)
    ytmp = bitsra(y, idx); % bit-shift-right for multiply by 2^(-idx)
end

CORDIC-Based Cartesian to Polar Conversion Using Normalized Input Units

Cartesian to Polar Computation Using the CORDIC Vectoring Kernel

The judicious choice of initial values allows the CORDIC kernel vectoring mode algorithm to directly

compute the magnitude  and angle .

The input accumulators are initialized to the input coordinate values:

•

•

The angle accumulator is initialized to zero:

•

After  iterations, these initial values lead to the following outputs as  approaches :

•

•
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Other vectoring-kernel-based function approximations are possible via pre- and post-processing and
using other initial conditions (see [1,2]).

Example

Suppose that you have some measurements of Cartesian (X,Y) data, normalized to values between [-1,
1), that you want to convert into polar (magnitude, angle) coordinates. Also suppose that you have a
16-bit integer arithmetic unit that can perform add, subtract, shift, and memory operations. With
such a device, you could implement the CORDIC vectoring kernel to efficiently compute magnitude
and angle from the input (X,Y) coordinate values, without the use of multiplies or large lookup tables.

sumWL  = 16; % CORDIC sum word length
thNorm = -1.0:(2^-8):1.0; % Also using normalized [-1.0, 1.0] angle values
theta  = fi(thNorm, 1, sumWL); % Fixed-point angle values (best precision)
z_NT   = numerictype(theta);   % Data type for Z
xyCPNT = numerictype(1,16,15); % Using normalized X-Y range [-1.0, 1.0)
thetaRadians = pi/2 .* thNorm; % real-world range [-pi/2 pi/2] angle values
inXfix = fi(0.50 .* cos(thetaRadians), xyCPNT); % X coordinate values
inYfix = fi(0.25 .* sin(thetaRadians), xyCPNT); % Y coordinate values

niters = 13; % Number of CORDIC iterations
inpLUT = fi(atan(2 .^ (-((0:(niters-1))'))) .* (2/pi), z_NT); % Normalized
z_c2p  = fi(zeros(size(theta)), z_NT);   % Z array pre-allocation
x_c2p  = fi(zeros(size(theta)), xyCPNT); % X array pre-allocation
y_c2p  = fi(zeros(size(theta)), xyCPNT); % Y array pre-allocation

for idx = 1:length(inXfix)
    % CORDIC vectoring kernel iterations
    [x_c2p(idx), y_c2p(idx), z_c2p(idx)] = ...
        fidemo.cordic_vectoring_kernel(...
            inXfix(idx), inYfix(idx), fi(0, z_NT), inpLUT, niters);
end

% Get the Real World Value (RWV) of the CORDIC outputs for comparison
% and plot the error between the (magnitude, angle) values
AnGain       = prod(sqrt(1+2.^(-2*(0:(niters-1))))); % CORDIC gain
x_c2p_RWV    = (1/AnGain) .* double(x_c2p); % Magnitude (scaled by CORDIC gain)
z_c2p_RWV    =   (pi/2)   .* double(z_c2p); % Angles (in radian units)
[thRWV,rRWV] = cart2pol(double(inXfix), double(inYfix)); % MATLAB reference
magnitudeErr = rRWV - x_c2p_RWV;
angleErr     = thRWV - z_c2p_RWV;
figure;
subplot(411);
plot(thNorm, x_c2p_RWV);
axis([-1 1 0.25 0.5]);
title('CORDIC Magnitude (X) Values');
subplot(412);
plot(thNorm, magnitudeErr);
title('Error between Magnitude Reference Values and X Values');
subplot(413);
plot(thNorm, z_c2p_RWV);
title('CORDIC Angle (Z) Values');
subplot(414);
plot(thNorm, angleErr);
title('Error between Angle Reference Values and Z Values');
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Compute Square Root Using CORDIC
This example shows how to compute square root using a CORDIC kernel algorithm in MATLAB®.
CORDIC-based algorithms are critical to many embedded applications, including motor controls,
navigation, signal processing, and wireless communications.

Introduction

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm (see [1,2]) is one of the most hardware efficient algorithms because it only requires
iterative shift-add operations. The CORDIC algorithm eliminates the need for explicit multipliers, and
is suitable for calculating a variety of functions, such as sine, cosine, arcsine, arccosine, arctangent,
vector magnitude, divide, square root, hyperbolic and logarithmic functions.

The fixed-point CORDIC algorithm requires the following operations:

• 1 table lookup per iteration
• 2 shifts per iteration
• 3 additions per iteration

Note that for hyperbolic CORDIC-based algorithms, such as square root, certain iterations (i = 4, 13,
40, 121, ..., k, 3k+1, ...) are repeated to achieve result convergence.

CORDIC Kernel Algorithms Using Hyperbolic Computation Modes

You can use a CORDIC computing mode algorithm to calculate hyperbolic functions, such as
hyperbolic trigonometric, square root, log, exp, etc.

CORDIC EQUATIONS IN HYPERBOLIC VECTORING MODE

The hyperbolic vectoring mode is used for computing square root.

For the vectoring mode, the CORDIC equations are as follows:

where

 if , and  otherwise.

This mode provides the following result as  approaches :

•

•
•

where
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.

Typically  is chosen to be a large-enough constant value. Thus,  may be pre-computed.

Note also that for square root we will use only the  result.

MATLAB Implementation of a CORDIC Hyperbolic Vectoring Algorithm

A MATLAB code implementation example of the CORDIC Hyperbolic Vectoring Kernel algorithm
follows (for the case of scalar x, y, and z). This same code can be used for both fixed-point and
floating-point data types.

CORDIC Hyperbolic Vectoring Kernel

k = 4; % Used for the repeated (3*k + 1) iteration steps
for idx = 1:n
    xtmp = bitsra(x, idx); % multiply by 2^(-idx)
    ytmp = bitsra(y, idx); % multiply by 2^(-idx)
    if y < 0
        x(:) = x + ytmp;
        y(:) = y + xtmp;
        z(:) = z - atanhLookupTable(idx);
    else
        x(:) = x - ytmp;
        y(:) = y - xtmp;
        z(:) = z + atanhLookupTable(idx);
    end
    if idx==k
        xtmp = bitsra(x, idx); % multiply by 2^(-idx)
        ytmp = bitsra(y, idx); % multiply by 2^(-idx)
        if y < 0
            x(:) = x + ytmp;
            y(:) = y + xtmp;
            z(:) = z - atanhLookupTable(idx);
        else
            x(:) = x - ytmp;
            y(:) = y - xtmp;
            z(:) = z + atanhLookupTable(idx);
        end
        k = 3*k + 1;
    end
end % idx loop

CORDIC-Based Square Root Computation

Square Root Computation Using the CORDIC Hyperbolic Vectoring Kernel

The judicious choice of initial values allows the CORDIC kernel hyperbolic vectoring mode algorithm
to compute square root.

First, the following initialization steps are performed:

•  is set to .
•  is set to .
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After  iterations, these initial values lead to the following output as  approaches :

This may be further simplified as follows:

where  is the CORDIC gain as defined above.

Note: for square root,  and atanhLookupTable have no impact on the result. Hence,  and
atanhLookupTable are not used.

MATLAB Implementation of a CORDIC Square Root Kernel

A MATLAB code implementation example of the CORDIC Square Root Kernel algorithm follows (for
the case of scalar x and y). This same code can be used for both fixed-point and floating-point data
types.

CORDIC Square Root Kernel

k = 4; % Used for the repeated (3*k + 1) iteration steps

for idx = 1:n
    xtmp = bitsra(x, idx); % multiply by 2^(-idx)
    ytmp = bitsra(y, idx); % multiply by 2^(-idx)
    if y < 0
        x(:) = x + ytmp;
        y(:) = y + xtmp;
    else
        x(:) = x - ytmp;
        y(:) = y - xtmp;
    end

     if idx==k
         xtmp = bitsra(x, idx); % multiply by 2^(-idx)
         ytmp = bitsra(y, idx); % multiply by 2^(-idx)
         if y < 0
             x(:) = x + ytmp;
             y(:) = y + xtmp;
         else
             x(:) = x - ytmp;
             y(:) = y - xtmp;
         end
         k = 3*k + 1;
      end
 end % idx loop

This code is identical to the CORDIC Hyperbolic Vectoring Kernel implementation above, except
that z and atanhLookupTable are not used. This is a cost savings of 1 table lookup and 1 addition
per iteration.

Example

Use the CORDICSQRT function to compute the approximate square root of v_fix using ten CORDIC
kernel iterations:
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step  = 2^-7;
v_fix = fi(0.5:step:(2-step), 1, 20); % fixed-point inputs in range [.5, 2)
niter = 10; % number of CORDIC iterations
x_sqr = cordicsqrt(v_fix, niter);

% Get the Real World Value (RWV) of the CORDIC outputs for comparison
% and plot the error between the MATLAB reference and CORDIC sqrt values
x_cdc = double(x_sqr); % CORDIC results (scaled by An_hp)
v_ref = double(v_fix); % Reference floating-point input values
x_ref = sqrt(v_ref);   % MATLAB reference floating-point results
figure;
subplot(211);
plot(v_ref, x_cdc, 'r.', v_ref, x_ref, 'b-');
legend('CORDIC', 'Reference', 'Location', 'SouthEast');
title('CORDIC Square Root (In-Range) and MATLAB Reference Results');
subplot(212);
absErr = abs(x_ref - x_cdc);
plot(v_ref, absErr);
title('Absolute Error (vs. MATLAB SQRT Reference Results)');

Overcoming Algorithm Input Range Limitations

Many square root algorithms normalize the input value, , to within the range of [0.5, 2). This pre-
processing is typically done using a fixed word length normalization, and can be used to support
small as well as large input value ranges.
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The CORDIC-based square root algorithm implementation is particularly sensitive to inputs outside of
this range. The function CORDICSQRT overcomes this algorithm range limitation through a
normalization approach based on the following mathematical relationships:

, for some  and some even integer .

Thus:

In the CORDICSQRT function, the values for  and , described above, are found during
normalization of the input .  is the number of leading zero most significant bits (MSBs) in the
binary representation of the input . These values are found through a series of bitwise logic and
shifts. Note: because  must be even, if the number of leading zero MSBs is odd, one additional bit
shift is made to make  even. The resulting value after these shifts is the value .

 becomes the input to the CORDIC-based square root kernel, where an approximation to  is
calculated. The result is then scaled by  so that it is back in the correct output range. This is
achieved through a simple bit shift by  bits. The (left or right) shift direction depends on the sign
of .

Example

Compute the square root of 10-bit fixed-point input data with a small non-negative range using
CORDIC. Compare the CORDIC-based algorithm results to the floating-point MATLAB reference
results over the same input range.

step     = 2^-8;
u_ref    = 0:step:(0.5-step); % Input array (small range of values)
u_in_arb = fi(u_ref,0,10); % 10-bit unsigned fixed-point input data values
u_len    = numel(u_ref);
sqrt_ref = sqrt(double(u_in_arb)); % MATLAB sqrt reference results
niter    = 10;
results  = zeros(u_len, 2);
results(:,2) = sqrt_ref(:);

% Compute the equivalent Real World Value result for plotting.
% Plot the Real World Value (RWV) of CORDIC and MATLAB reference results.
x_out = cordicsqrt(u_in_arb, niter);
results(:,1) = double(x_out);
figure;
subplot(211);
plot(u_ref, results(:,1), 'r.', u_ref, results(:,2), 'b-');
legend('CORDIC', 'Reference', 'Location', 'SouthEast');
title('CORDIC Square Root (Small Input Range) and MATLAB Reference Results');
axis([0 0.5 0 0.75]);
subplot(212);
absErr = abs(results(:,2) - results(:,1));
plot(u_ref, absErr);
title('Absolute Error (vs. MATLAB SQRT Reference Results)');
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Example

Compute the square root of 16-bit fixed-point input data with a large positive range using CORDIC.
Compare the CORDIC-based algorithm results to the floating-point MATLAB reference results over
the same input range.

u_ref    = 0:5:2500;       % Input array (larger range of values)
u_in_arb = fi(u_ref,0,16); % 16-bit unsigned fixed-point input data values
u_len    = numel(u_ref);
sqrt_ref = sqrt(double(u_in_arb)); % MATLAB sqrt reference results
niter    = 16;
results  = zeros(u_len, 2);
results(:,2) = sqrt_ref(:);

% Compute the equivalent Real World Value result for plotting.
% Plot the Real World Value (RWV) of CORDIC and MATLAB reference results.
x_out = cordicsqrt(u_in_arb, niter);
results(:,1) = double(x_out);
figure;
subplot(211);
plot(u_ref, results(:,1), 'r.', u_ref, results(:,2), 'b-');
legend('CORDIC', 'Reference', 'Location', 'SouthEast');
title('CORDIC Square Root (Large Input Range) and MATLAB Reference Results');
axis([0 2500 0 55]);
subplot(212);
absErr = abs(results(:,2) - results(:,1));
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plot(u_ref, absErr);
title('Absolute Error (vs. MATLAB SQRT Reference Results)');
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Normalize Data for Lookup Tables
This example shows how to normalize data for use in lookup tables.

Lookup tables are a very efficient way to write computationally-intense functions for fixed-point
embedded devices. For example, you can efficiently implement logarithm, sine, cosine, tangent, and
square-root using lookup tables. You normalize the inputs to these functions to produce a smaller
lookup table, and then you scale the outputs by the normalization factor. This example shows how to
implement the normalization function that is used in examples Implement Fixed-Point Square Root
Using Lookup Table and Implement Fixed-Point Log2 Using Lookup Table.

Setup

To assure that this example does not change your preferences or settings, this code stores the
original state.

originalFormat = get(0,'format'); format long g
originalWarningState = warning('off','fixed:fi:underflow');
originalFiprefState = get(fipref); reset(fipref)

You will restore this state at the end of the example.

Example

Use the normalization function fi_normalize_unsigned_8_bit_byte, defined below, to
normalize the data in u.

u = fi(0.3,1,16,8);

In binary, u = 00000000.01001101_2 = 0.30078125 (the fixed-point value is not exactly 0.3
because of roundoff to 8 bits). The goal is to normalize such that

u = 1.001101000000000_2 * 2^(-2) = x * 2^n.

Start with u represented as an unsigned integer.

High byte Low byte

00000000 01001101 Start: u as unsigned integer.

The high byte is 0 = 00000000_2. Add 1 to make an index out of it: index = 0 + 1 = 1. The
number-of-leading-zeros lookup table at index 1 indicates that there are 8 leading zeros: NLZLUT(1)
= 8. Left shift by this many bits.

High byte Low byte

01001101 00000000 Left-shifted by 8 bits.

Iterate once more to remove the leading zeros from the next byte.

The high byte is 77 = 01001101_2. Add 1 to make an index out of it: index = 77 + 1 = 78. The
number-of-leading-zeros lookup table at index 78 indicates that there is 1 leading zero: NLZLUT(78)
= 1. Left shift by this many bits.

High byte Low byte

53 Fixed-Point Designer Examples

53-148

https://www.mathworks.com/help/fixedpoint/ug/implement-fixed-point-square-root-using-lookup-table.html
https://www.mathworks.com/help/fixedpoint/ug/implement-fixed-point-square-root-using-lookup-table.html
https://www.mathworks.com/help/fixedpoint/ug/implement-fixed-point-log2-using-lookup-table.html


100110100 0000000 Left-shifted by 1 additional bit, for a total of 9.

Reinterpret these bits as unsigned fixed-point with 15 fractional bits.

x = 1.001101000000000_2 = 1.203125

The value for n is the word-length of u, minus the fraction length of u, minus the number of left shifts,
minus 1.

n = 16-8-9-1 = -2

And so your result is:

[x,n] = fi_normalize_unsigned_8_bit_byte(u)

x = 
                  1.203125

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Unsigned
            WordLength: 16
        FractionLength: 15

n = int8
   -2

Comparing binary values, you can see that x has the same bits as u, left-shifted by 9 bits.

binary_representation_of_u = bin(u)

binary_representation_of_u = 
'0000000001001101'

binary_representation_of_x = bin(x)

binary_representation_of_x = 
'1001101000000000'

Cleanup

Restore original state.

set(0,'format',originalFormat);
warning(originalWarningState);
fipref(originalFiprefState);
%#ok<*NOPTS>

Function to Normalize Unsigned Data

This algorithm normalizes unsigned data with 8-bit bytes. Given input u > 0, the output x is
normalized such that

u = x*2^n

where 1 <= x < 2 and n is an integer. Note that n may be positive, negative, or zero.
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Function fi_normalize_unsigned_8_bit_byte looks at the 8 most-significant-bits of the input at
a time, and left shifts the bits until the most-significant bit is a 1. The number of bits to shift for each
8-bit byte is read from the number-of-leading-zeros lookup table, NLZLUT.

function [x,n] = fi_normalize_unsigned_8_bit_byte(u)
    assert(isscalar(u),'Input must be scalar');
    assert(all(u>0),'Input must be positive.');
    assert(isfi(u) && isfixed(u),'Input must be a fi object with fixed-point data type.');
    u = removefimath(u);
    NLZLUT = number_of_leading_zeros_look_up_table();
    word_length = u.WordLength;
    u_fraction_length = u.FractionLength;
    B = 8;
    leftshifts=int8(0);
    % Reinterpret the input as an unsigned integer.
    T_unsigned_integer = numerictype(0, word_length, 0);
    v = reinterpretcast(u,T_unsigned_integer);
    F = fimath('OverflowAction','Wrap',...
               'RoundingMethod','Floor',...
               'SumMode','KeepLSB',...
               'SumWordLength',v.WordLength);
    v = setfimath(v,F);
    % Unroll the loop in generated code so there will be no branching.
    for k = coder.unroll(1:ceil(word_length/B))
        % For each iteration, see how many leading zeros are in the high
        % byte of V, and shift them out to the left. Continue with the
        % shifted V for as many bytes as it has.
        %
        % The index is the high byte of the input plus 1 to make it a
        % one-based index.
        index = int32(bitsra(v,word_length-B) + uint8(1));
        % Index into the number-of-leading-zeros lookup table.  This lookup
        % table takes in a byte and returns the number of leading zeros in the
        % binary representation.
        shiftamount = NLZLUT(index);
        % Left-shift out all the leading zeros in the high byte.
        v = bitsll(v,shiftamount);
        % Update the total number of left-shifts
        leftshifts = leftshifts+shiftamount;
    end
    % The input has been left-shifted so the most-significant-bit is a 1.
    % Reinterpret the output as unsigned with one integer bit, so
    % that 1 <= x < 2.
    T_x = numerictype(0,word_length,word_length-1);
    x = reinterpretcast(v,T_x);
    x = removefimath(x);
    % Let Q = int(u).  Then u = Q*2^(-u_fraction_length),
    % and x = Q*2^leftshifts * 2^(1-word_length).  Therefore,
    % u = x*2^n, where n is defined as:
    n = word_length -  u_fraction_length - leftshifts - 1;
end

Number-of-Leading-Zeros Lookup Table

Function number_of_leading_zeros_look_up_table is used by
fi_normalize_unsigned_8_bit_byte and returns a table of the number of leading zero bits in an
8-bit word.
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The first element of NLZLUT is 8 and corresponds to u=0. In 8-bit value u = 00000000_2, where
subscript 2 indicates base-2, there are 8 leading zero bits.

The second element of NLZLUT is 7 and corresponds to u=1. There are 7 leading zero bits in 8-bit
value u = 00000001_2.

And so forth, until the last element of NLZLUT is 0 and corresponds to u=255. There are 0 leading
zero bits in the 8-bit value u=11111111_2.

The NLZLUT table was generated by:

>> B = 8; % Number of bits in a byte

>> NLZLUT = int8(B-ceil(log2((1:2^B))))

function NLZLUT = number_of_leading_zeros_look_up_table()
%   B = 8;  % Number of bits in a byte
%   NLZLUT = int8(B-ceil(log2((1:2^B))))
    NLZLUT = int8([8    7    6    6    5    5    5    5 ...
                   4    4    4    4    4    4    4    4 ...
                   3    3    3    3    3    3    3    3 ...
                   3    3    3    3    3    3    3    3 ...
                   2    2    2    2    2    2    2    2 ...
                   2    2    2    2    2    2    2    2 ...
                   2    2    2    2    2    2    2    2 ...
                   2    2    2    2    2    2    2    2 ...
                   1    1    1    1    1    1    1    1 ...
                   1    1    1    1    1    1    1    1 ...
                   1    1    1    1    1    1    1    1 ...
                   1    1    1    1    1    1    1    1 ...
                   1    1    1    1    1    1    1    1 ...
                   1    1    1    1    1    1    1    1 ...
                   1    1    1    1    1    1    1    1 ...
                   1    1    1    1    1    1    1    1 ...
                   0    0    0    0    0    0    0    0 ...
                   0    0    0    0    0    0    0    0 ...
                   0    0    0    0    0    0    0    0 ...
                   0    0    0    0    0    0    0    0 ...
                   0    0    0    0    0    0    0    0 ...
                   0    0    0    0    0    0    0    0 ...
                   0    0    0    0    0    0    0    0 ...
                   0    0    0    0    0    0    0    0 ...
                   0    0    0    0    0    0    0    0 ...
                   0    0    0    0    0    0    0    0 ...
                   0    0    0    0    0    0    0    0 ...
                   0    0    0    0    0    0    0    0 ...
                   0    0    0    0    0    0    0    0 ...
                   0    0    0    0    0    0    0    0 ...
                   0    0    0    0    0    0    0    0 ...
                   0    0    0    0    0    0    0    0]);
end
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Implement Fixed-Point Log2 Using Lookup Table
This example shows how to implement fixed-point log2 using a lookup table. Lookup tables generate
efficient code for embedded devices.

Setup

To ensure that this example does not change your preferences or settings, this code stores the
original state.

originalFormat = get(0,'format'); format long g
originalWarningState = warning('off','fixed:fi:underflow');
originalFiprefState = get(fipref); reset(fipref)

You will restore this state at the end of the example.

Log2 Implementation

The log2 algorithm, implemented in the function fi_log2lookup_8_bit_byte below, is
summarized here.

1 Declare the number of bits in a byte, B, as a constant. In this example, B=8.
2 Use function fi_normalize_unsigned_8_bit_byte() described in example Normalize Data

for Lookup Tables to normalize the input u>0 such that u = x*2^n and 1 <= x < 2.
3 Extract the upper B-bits of x. Let x_B denote the upper B-bits of x.
4 Generate lookup table, LOG2LUT, such that the integer i = x_B - 2^(B-1) + 1 is used as an

index to LOG2LUT so that log2(x_B) can be evaluated by looking up the index log2(x_B) =
LOG2LUT(i).

5 Use the remainder, r = x - x_B, interpreted as a fraction, to linearly interpolate between
LOG2LUT(i) and the next value in the table LOG2LUT(i+1). The remainder, r, is created by
extracting the lower w - B bits of x, where w denotes the word length of x. It is interpreted as a
fraction by using function reinterpretcast().

6 Finally, compute the output using the lookup table and linear interpolation:

log2(u) = log2(x*2^n)

= n + log2(x)

= n + LOG2LUT(i) + r*(LOG2LUT(i+1) - LOG2LUT(i))

Example

Use fi_log2lookup_8_bit_byte() to compute the fixed-point log2 using a lookup table. Compare
the fixed-point lookup table result to the logarithm calculated using log2 and double precision.

u = fi(linspace(0.001,20,100));
y = fi_log2lookup_8_bit_byte(u);
y_expected = log2(double(u));

Plot the results.

clf
subplot(211)
plot(u,y,u,y_expected)
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legend('Output','Expected output','Location','Best')

subplot(212)
plot(u,double(y)-y_expected,'r')
legend('Error')

figure(gcf)

Cleanup

Restore the original state.

set(0,'format',originalFormat);
warning(originalWarningState);
fipref(originalFiprefState);

fi_log2lookup_8_bit_byte Function Definition

function y = fi_log2lookup_8_bit_byte(u)
    % Load the lookup table
    LOG2LUT = log2_lookup_table();
    % Remove fimath from the input to insulate this function from math
    % settings declared outside this function.
    u = removefimath(u);
    % Declare the output
    y = coder.nullcopy(fi(zeros(size(u)),numerictype(LOG2LUT),fimath(LOG2LUT)));
    B = 8; % Number of bits in a byte
    w = u.WordLength;

 Implement Fixed-Point Log2 Using Lookup Table

53-153



    for k = 1:numel(u)
        assert(u(k)>0,'Input must be positive.');
        % Normalize the input such that u = x*2^n and 1 <= x < 2
        [x,n] = fi_normalize_unsigned_8_bit_byte(u(k));
        % Extract the high byte of x
        high_byte = storedInteger(bitsliceget(x, w, w - B + 1));
        % Convert the high byte into an index for LOG2LUT
        i = high_byte - 2^(B-1) + 1;
        % Interpolate between points.
        % The upper byte was used for the index into LOG2LUT
        % The remaining bits make up the fraction between points.
        T_unsigned_fraction = numerictype(0, w-B, w-B);
        r = reinterpretcast(bitsliceget(x,w-B,1), T_unsigned_fraction);
        y(k) = n + LOG2LUT(i) + ...
               r*(LOG2LUT(i+1) - LOG2LUT(i)) ;
    end
    % Remove fimath from the output to insulate the caller from math settings
    % declared inside this function.
    y = removefimath(y);
end

Log2 Lookup Table

The function log2_lookup_table loads the lookup table of log2 values. You can create the table by
running:

B = 8;

log2_table = log2((2^(B-1):2^(B))/2^(B-1))

function LOG2LUT = log2_lookup_table()
    B = 8;  % Number of bits in a byte
    % log2_table = log2((2^(B-1) : 2^(B)) / 2^(B - 1))
    log2_table = [0.000000000000000   0.011227255423254   0.022367813028454   0.033423001537450 ...
                  0.044394119358453   0.055282435501190   0.066089190457773   0.076815597050831 ...
                  0.087462841250339   0.098032082960527   0.108524456778169   0.118941072723507 ...
                  0.129283016944966   0.139551352398794   0.149747119504682   0.159871336778389 ...
                  0.169925001442312   0.179909090014934   0.189824558880017   0.199672344836364 ...
                  0.209453365628950   0.219168520462162   0.228818690495881   0.238404739325079 ...
                  0.247927513443586   0.257387842692652   0.266786540694901   0.276124405274238 ...
                  0.285402218862248   0.294620748891627   0.303780748177103   0.312882955284355 ...
                  0.321928094887362   0.330916878114617   0.339850002884625   0.348728154231078 ...
                  0.357552004618084   0.366322214245816   0.375039431346925   0.383704292474052 ...
                  0.392317422778760   0.400879436282184   0.409390936137702   0.417852514885898 ...
                  0.426264754702098   0.434628227636725   0.442943495848728   0.451211111832329 ...
                  0.459431618637297   0.467605550082997   0.475733430966398   0.483815777264256 ...
                  0.491853096329675   0.499845887083205   0.507794640198696   0.515699838284042 ...
                  0.523561956057013   0.531381460516312   0.539158811108031   0.546894459887637 ...
                  0.554588851677637   0.562242424221073   0.569855608330948   0.577428828035749 ...
                  0.584962500721156   0.592457037268080   0.599912842187128   0.607330313749611 ...
                  0.614709844115208   0.622051819456376   0.629356620079610   0.636624620543649 ...
                  0.643856189774725   0.651051691178929   0.658211482751795   0.665335917185176 ...
                  0.672425341971496   0.679480099505446   0.686500527183218   0.693486957499325 ...
                  0.700439718141092   0.707359132080883   0.714245517666123   0.721099188707185 ...
                  0.727920454563199   0.734709620225838   0.741466986401147   0.748192849589460 ...
                  0.754887502163469   0.761551232444479   0.768184324776926   0.774787059601173 ...
                  0.781359713524660   0.787902559391432   0.794415866350106   0.800899899920305 ...
                  0.807354922057604   0.813781191217037   0.820178962415188   0.826548487290915 ...
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                  0.832890014164742   0.839203788096944   0.845490050944375   0.851749041416058 ...
                  0.857980995127572   0.864186144654280   0.870364719583405   0.876516946565000 ...
                  0.882643049361841   0.888743248898259   0.894817763307943   0.900866807980749 ...
                  0.906890595608518   0.912889336229962   0.918863237274595   0.924812503605781 ...
                  0.930737337562886   0.936637939002571   0.942514505339240   0.948367231584678 ...
                  0.954196310386875   0.960001932068081   0.965784284662087   0.971543553950772 ...
                  0.977279923499916   0.982993574694310   0.988684686772166   0.994353436858858 ...
                  1.000000000000000];
     % Cast to fixed point with the most accurate rounding method
     WL = 4*B;  % Word length
     FL = 2*B;  % Fraction length
     LOG2LUT = fi(log2_table,1,WL,FL,'RoundingMethod','Nearest');
     % Set fimath for the most efficient math operations
     F = fimath('OverflowAction','Wrap',...
                'RoundingMethod','Floor',...
                'SumMode','SpecifyPrecision',...
                'SumWordLength',WL,...
                'SumFractionLength',FL,...
                'ProductMode','SpecifyPrecision',...
                'ProductWordLength',WL,...
                'ProductFractionLength',2*FL);
     LOG2LUT = setfimath(LOG2LUT,F);
 end
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Implement Fixed-Point Square Root Using Lookup Table
This example shows how to implement fixed-point square root using a lookup table. Lookup tables
generate efficient code for embedded devices.

Setup

To ensure that this example does not change your preferences or settings, this code stores the
original state.

originalFormat = get(0,'format'); format long g
originalWarningState = warning('off','fixed:fi:underflow');
originalFiprefState = get(fipref); reset(fipref)

You will restore this state at the end of the example.

Square Root Implementation

The square root algorithm is summarized here.

1 Declare the number of bits in a byte, B, as a constant. In this example, B = 8.
2 Use the function fi_normalize_unsigned_8_bit_byte(), described in the example

“Normalize Data for Lookup Tables” on page 53-148, to normalize the input u > 0 such that u =
x*2^n, 0.5 <= x < 2, and n is even.

3 Extract the upper B bits of x. Let x_B denote the upper B bits of x.
4 Generate a lookup table, SQRTLUT, such that the integer i = x_B- 2^(B-2) + 1 is used as an

index to SQRTLUT so that sqrt(x_B) can be evaluated by looking up the index sqrt(x_B) =
SQRTLUT(i).

5 Use the remainder, r = x - x_B, interpreted as a fraction, to linearly interpolate between
SQRTLUT(i) and the next value in the table SQRTLUT(i+1). The remainder, r, is created by
extracting the lower w - B bits of x, where w denotes the wordlength of x. It is interpreted as a
fraction by using function reinterpretcast().

6 Finally, compute the output using the lookup table and linear interpolation:

sqrt(u) = sqrt(x*2^n)

= sqrt(x)*2^(n/2)

= (SQRTLUT(i) + r*(SQRTLUT(i+1) - SQRTLUT(i)))*2^(n/2)

The function fi_sqrtlookup_8_bit_byte(), defined at the end of this example, implements this
algorithm.

Example

Use fi_sqrtlookup_8_bit_byte() to compute the fixed-point square root using a lookup table.
Compare the fixed-point lookup table result to the square root calculated using sqrt and double
precision.

u = fi(linspace(0,128,1000),0,16,12);
y = fi_sqrtlookup_8_bit_byte(u);
y_expected = sqrt(double(u));

Plot the results.
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clf
subplot(211)
plot(u,y,u,y_expected)
legend('Output','Expected output','Location','Best')

subplot(212)
plot(u,double(y)-y_expected,'r')
legend('Error')

figure(gcf)

Cleanup

Restore the original state.

set(0,'format',originalFormat);
warning(originalWarningState);
fipref(originalFiprefState);

sqrt_lookup_table Function Definition

The function sqrt_lookup_table loads the lookup table of square-root values. You can create the
table by running:

sqrt_table = sqrt((2^(B-2):2^(B))/2^(B-1));

function SQRTLUT = sqrt_lookup_table()
    B = 8;  % Number of bits in a byte
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    % sqrt_table = sqrt((2^(B-2):2^(B))/2^(B-1))
    sqrt_table = [0.707106781186548   0.712609640686961   0.718070330817254   0.723489806424389 ...
                  0.728868986855663   0.734208757779421   0.739509972887452   0.744773455488312 ...
                  0.750000000000000   0.755190373349661   0.760345316287277   0.765465544619743 ...
                  0.770551750371122   0.775604602874429   0.780624749799800   0.785612818123533 ...
                  0.790569415042095   0.795495128834866   0.800390529679106   0.805256170420320 ...
                  0.810092587300983   0.814900300650331   0.819679815537750   0.824431622392057 ...
                  0.829156197588850   0.833854004007896   0.838525491562421   0.843171097702003 ...
                  0.847791247890659   0.852386356061616   0.856956825050130   0.861503047005639 ...
                  0.866025403784439   0.870524267324007   0.875000000000000   0.879452954966893 ...
                  0.883883476483184   0.888291900221993   0.892678553567856   0.897043755900458 ...
                  0.901387818865997   0.905711046636840   0.910013736160065   0.914296177395487 ...
                  0.918558653543692   0.922801441264588   0.927024810886958   0.931229026609459 ...
                  0.935414346693485   0.939581023648307   0.943729304408844   0.947859430506444 ...
                  0.951971638232989   0.956066158798647   0.960143218483576   0.964203038783845 ...
                  0.968245836551854   0.972271824131503   0.976281209488332   0.980274196334883 ...
                  0.984250984251476   0.988211768802619   0.992156741649222   0.996086090656827 ...
                  1.000000000000000   1.003898650263063   1.007782218537319   1.011650878514915 ...
                  1.015504800579495   1.019344151893756   1.023169096484056   1.026979795322186 ...
                  1.030776406404415   1.034559084827928   1.038327982864759   1.042083250033317 ...
                  1.045825033167594   1.049553476484167   1.053268721647045   1.056970907830485 ...
                  1.060660171779821   1.064336647870400   1.068000468164691   1.071651762467640 ...
                  1.075290658380328   1.078917281352004   1.082531754730548   1.086134199811423 ...
                  1.089724735885168   1.093303480283494   1.096870548424015   1.100426053853688 ...
                  1.103970108290981   1.107502821666834   1.111024302164449   1.114534656257938 ...
                  1.118033988749895   1.121522402807898   1.125000000000000   1.128466880329237 ...
                  1.131923142267177   1.135368882786559   1.138804197393037   1.142229180156067 ...
                  1.145643923738960   1.149048519428140   1.152443057161611   1.155827625556683 ...
                  1.159202311936963   1.162567202358642   1.165922381636102   1.169267933366857 ...
                  1.172603939955857   1.175930482639174   1.179247641507075   1.182555495526531 ...
                  1.185854122563142   1.189143599402528   1.192424001771182   1.195695404356812 ...
                  1.198957880828180   1.202211503854459   1.205456345124119   1.208692475363357 ...
                  1.211919964354082   1.215138880951474   1.218349293101120   1.221551267855754 ...
                  1.224744871391589   1.227930169024281   1.231107225224513   1.234276103633219 ...
                  1.237436867076458   1.240589577579950   1.243734296383275   1.246871083953750 ...
                  1.250000000000000   1.253121103485214   1.256234452640111   1.259340104975618 ...
                  1.262438117295260   1.265528545707287   1.268611445636527   1.271686871835988 ...
                  1.274754878398196   1.277815518766305   1.280868845744950   1.283914911510884 ...
                  1.286953767623375   1.289985465034393   1.293010054098575   1.296027584582983 ...
                  1.299038105676658   1.302041665999979   1.305038313613819   1.308028096028522 ...
                  1.311011060212689   1.313987252601790   1.316956719106592   1.319919505121430 ...
                  1.322875655532295   1.325825214724777   1.328768226591831   1.331704734541407 ...
                  1.334634781503914   1.337558409939543   1.340475661845451   1.343386578762792 ...
                  1.346291201783626   1.349189571557681   1.352081728298996   1.354967711792425 ...
                  1.357847561400027   1.360721316067327   1.363589014329464   1.366450694317215 ...
                  1.369306393762915   1.372156150006259   1.375000000000000   1.377837980315538 ...
                  1.380670127148408   1.383496476323666   1.386317063301177   1.389131923180804 ...
                  1.391941090707505   1.394744600276337   1.397542485937369   1.400334781400505 ...
                  1.403121520040228   1.405902734900249   1.408678458698081   1.411448723829527 ...
                  1.414213562373095];
    % Cast to fixed point with the most accurate rounding method
    WL = 4*B;  % Word length
    FL = 2*B;  % Fraction length
    SQRTLUT = fi(sqrt_table,1,WL,FL,'RoundingMethod','Nearest');
    % Set fimath for the most efficient math operations
    F = fimath('OverflowAction','Wrap',...
               'RoundingMethod','Floor',...
               'SumMode','KeepLSB',...
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               'SumWordLength',WL,...
               'ProductMode','KeepLSB',...
               'ProductWordLength',WL);
    SQRTLUT = setfimath(SQRTLUT,F);
end

fi_sqrtlookup_8_bit_byte() Function Definition

function y = fi_sqrtlookup_8_bit_byte(u)
    % Load the lookup table
    SQRTLUT = sqrt_lookup_table();
    % Remove fimath from the input to insulate this function from math
    % settings declared outside this function.
    u = removefimath(u);
    % Declare the output
    y = coder.nullcopy(fi(zeros(size(u)),numerictype(SQRTLUT),fimath(SQRTLUT)));
    B = 8; % Number of bits in a byte
    w = u.WordLength;
    for k = 1:numel(u)
        assert(u(k)>=0,'Input must be non-negative.');
        if u(k)==0
            y(k)=0;
        else
            % Normalize the input such that u = x*2^n and 0.5 <= x < 2
            [x,n] = fi_normalize_unsigned_8_bit_byte(u(k));
            isodd = storedInteger(bitand(fi(1,1,8,0),fi(n)));
            x = bitsra(x,isodd);
            n = n + isodd;
            % Extract the high byte of x
            high_byte = storedInteger(bitsliceget(x,w,w-B+1));
            % Convert the high byte into an index for SQRTLUT
            i =  high_byte - 2^(B-2) + 1;
            % The upper byte was used for the index into SQRTLUT.
            % The remainder, r, interpreted as a fraction, is used to
            % linearly interpolate between points.
            T_unsigned_fraction = numerictype(0,w-B,w-B);
            r = reinterpretcast(bitsliceget(x,w-B,1),T_unsigned_fraction);
            y(k) = bitshift((SQRTLUT(i) + r*(SQRTLUT(i+1) - SQRTLUT(i))),...
                            bitsra(n,1));
        end
    end
    % Remove fimath from the output to insulate the caller from math settings
    % declared inside this function.
    y = removefimath(y);
end
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Convert Fast Fourier Transform (FFT) to Fixed Point
This example shows how to convert a textbook version of the Fast Fourier Transform (FFT) algorithm
into fixed-point MATLAB® code.

Run the following code to capture current states, and reset the global states.

FIPREF_STATE = get(fipref);
reset(fipref)

Textbook FFT Algorithm

FFT is a complex-valued linear transformation from the time domain to the frequency domain. For
example, if you construct a vector as the sum of two sinusoids and transform it with the FFT, you can
see the peaks of the frequencies in the FFT magnitude plot.

n = 64;                                     % Number of points
Fs = 4;                                     % Sampling frequency in Hz
t  = (0:(n-1))/Fs;                          % Time vector
f  = linspace(0,Fs,n);                      % Frequency vector
f0 = 0.2; f1 = 0.5;                         % Frequencies, in Hz
x0 = cos(2*pi*f0*t) + 0.55*cos(2*pi*f1*t);  % Time-domain signal
x0 = complex(x0);                           % The textbook algorithm requires the input to be complex
y0  = fft(x0);                              % Frequency-domain transformation fft() is a MATLAB built-in function

fi_fft_demo_ini_plot(t,x0,f,y0);            % Plot the results from fft and time-domain signal
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The peaks at 0.2 and 0.5 Hz in the frequency plot correspond to the two sinusoids of the time-domain
signal at those frequencies.

Note the reflected peaks at 3.5 and 3.8 Hz. When the input to an FFT is real-valued, as it is in this
case, then the output y is the conjugate-symmetric:

y k = conj y n− k
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There are many different implementations of the FFT, each having its own costs and benefits. You
may find that a different algorithm is better for your application than the one given here. This
algorithm provides you with an example of how you can begin your own exploration.

This example uses the decimation-in-time unit-stride FFT shown in Algorithm 1.6.2 on page 45 of the
book Computational Frameworks for the Fast Fourier Transform by Charles Van Loan.

In pseudo-code, the algorithm in the textbook is as follows:

Algorithm 1.6.2. If x is a complex vector of length n and n = 2t, then the following algorithm
overwrites x with Fnx.

x = Pnx

w = wn
long  (See Van Loan section 1.4.11.)

for q = 1: t

L = 2q; r = n/L; L* = L/2;

for k = 0:r − 1

for j = 0:L*− 1

τ = w L*− 1 + j ⋅ x kL + j + L*

x kL + j + L* = x kL + j − τ

x kL + j = x kL + j + τ

end

end

end

The textbook algorithm uses zero-based indexing. Fn is an n-by-n Fourier-transform matrix, Pn is an n-
by-n bit-reversal permutation matrix, and w is a complex vector of twiddle factors. The twiddle
factors, w, are complex roots of unity computed by the following algorithm:

function w = fi_radix2twiddles(n) 
%FI_RADIX2TWIDDLES  Twiddle factors for radix-2 FFT example.
%   W = FI_RADIX2TWIDDLES(N) computes the length N-1 vector W of
%   twiddle factors to be used in the FI_M_RADIX2FFT example code.
%
%   See also FI_RADIX2FFT_DEMO.

%   Reference:
%
%   Twiddle factors for Algorithm 1.6.2, p. 45, Charles Van Loan,
%   Computational Frameworks for the Fast Fourier Transform, SIAM,
%   Philadelphia, 1992.
%
%   Copyright 2003-2011 The MathWorks, Inc.
%     
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t = log2(n);
if floor(t) ~= t
  error('N must be an exact power of two.');
end

w = zeros(n-1,1);
k = 1;
L = 2;
% Equation 1.4.11, p. 34
while L <= n
  theta = 2*pi/L;
  % Algorithm 1.4.1, p. 23
  for j = 0:(L/2 - 1)
    w(k) = complex(cos(j*theta),-sin(j*theta));
    k = k + 1;
  end
  L = L*2;
end

figure(gcf)
clf
w0 = fi_radix2twiddles(n);
polarplot(angle(w0),abs(w0),'o')
title('Twiddle Factors: Complex roots of unity')
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Verify Floating-Point Code

To implement the algorithm in MATLAB®, you can use the fi_bitreverse function to bit-reverse
the input sequence. You must add one to the indices to convert them from zero-based to one-based.

function x = fi_m_radix2fft_algorithm1_6_2(x, w)
%FI_M_RADIX2FFT_ALGORITHM1_6_2  Radix-2 FFT example.
%   Y = FI_M_RADIX2FFT_ALGORITHM1_6_2(X, W) computes the radix-2 FFT of
%   input vector X with twiddle-factors W.  Input X is assumed to be
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%   complex.
%
%   The length of vector X must be an exact power of two.
%   Twiddle-factors W are computed via
%      W = fi_radix2twiddles(N)
%   where N = length(X).
%
%   This version of the algorithm has no scaling before the stages.
%
%   See also FI_RADIX2FFT_DEMO, FI_M_RADIX2FFT_WITHSCALING.

%   Reference:
%     Charles Van Loan, Computational Frameworks for the Fast Fourier
%     Transform, SIAM, Philadelphia, 1992, Algorithm 1.6.2, p. 45.
%
%   Copyright 2004-2015 The MathWorks, Inc.

    n = length(x);  t = log2(n);
    x = fi_bitreverse(x,n);
    for q=1:t
        L = 2^q; r = n/L; L2 = L/2;
        for k = 0:(r-1)
            for j = 0:(L2-1)
                temp          = w(L2-1+j+1) * x(k*L+j+L2+1);
                x(k*L+j+L2+1) = x(k*L+j+1)  - temp;
                x(k*L+j+1)    = x(k*L+j+1)  + temp;
            end
        end
    end
end

Visualization

To verify that you correctly implemented the algorithm in MATLAB®, run a known signal through it
and compare the results to the results produced by the MATLAB® FFT function.

As seen in the plot below, the error is within tolerance of the MATLAB® built-in FFT function,
verifying that you have correctly implemented the algorithm.

y = fi_m_radix2fft_algorithm1_6_2(x0, w0);

fi_fft_demo_plot(real(x0),y,y0,Fs,'Double data', ...
    {'FFT Algorithm 1.6.2','Built-in FFT'});

Convert Functions to use Types Tables

To separate data types from the algorithm:

1 Create a table of data type definitions.
2 Modify the algorithm code to use data types from that table.

This example shows the iterative steps by creating different files. In practice, you can make the
iterative changes to the same file.

Original types table

Create a types table using a structure with prototypes for the variables set to their original types. Use
the baseline types to validate that you made the initial conversion correctly, and to programmatically
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toggle your function between floating point and fixed point types. The index variables are
automatically converted to integers by MATLAB® Coder™, so you don't need to specify their types in
the table.

Specify the prototype values as empty ([ ]) since the data types are used, but not the values.

function T = fi_m_radix2fft_original_types()
%FI_M_RADIX2FFT_ORIGINAL_TYPES Types Table Example

%   Copyright 2015 The MathWorks, Inc.

    T.x = double([]);
    T.w = double([]);
    T.n = double([]);

end

Type-aware algorithm function

Add types table T as an input to the function and use it to cast variables to a particular type, while
keeping the body of the algorithm unchanged.

function x = fi_m_radix2fft_algorithm1_6_2_typed(x, w, T)
%FI_M_RADIX2FFT_ORIGINAL_TYPED Radix-2 FFT example.
%   Y = FI_M_RADIX2FFT_ALGORITHM1_6_2_TYPED(X, W, T) computes the radix-2
%   FFT of input vector X with twiddle-factors W.  Input X is assumed to be
%   complex.
%
%   The length of vector X must be an exact power of two.
%   Twiddle-factors W are computed via
%      W = fi_radix2twiddles(N)
%   where N = length(X).
%
%   T is a types table to cast variables to a particular type, while keeping
%   the body of the algorithm unchanged.
%
%   This version of the algorithm has no scaling before the stages.
%
%   See also FI_RADIX2FFT_DEMO, FI_M_RADIX2FFT_WITHSCALING.
%
%   Reference:
%     Charles Van Loan, Computational Frameworks for the Fast Fourier
%     Transform, SIAM, Philadelphia, 1992, Algorithm 1.6.2, p. 45.

%   Copyright 2015 The MathWorks, Inc.
%
%#codegen

    n = length(x);
    t = log2(n);
    x = fi_bitreverse_typed(x,n,T);
    LL = cast(2.^(1:t),'like',T.n);
    rr = cast(n./LL,'like',T.n);
    LL2 = cast(LL./2,'like',T.n);
    for q=1:t
        L = LL(q);
        r = rr(q);
        L2 = LL2(q);
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        for k = 0:(r-1)
            for j = 0:(L2-1)
                temp          = w(L2-1+j+1) * x(k*L+j+L2+1);
                x(k*L+j+L2+1) = x(k*L+j+1)  - temp;
                x(k*L+j+1)    = x(k*L+j+1)  + temp;
            end
        end
    end
end

Type-aware bit-reversal function

Add types table T as an input to the function and use it to cast variables to a particular type, while
keeping the body of the algorithm unchanged.

function x = fi_bitreverse_typed(x,n0,T)
%FI_BITREVERSE_TYPED  Bit-reverse the input.
%   X = FI_BITREVERSE_TYPED(x,n,T) bit-reverse the input sequence X, where
%   N=length(X).
%
%   T is a types table to cast variables to a particular type, while keeping
%   the body of the algorithm unchanged.
%
%   See also FI_RADIX2FFT_DEMO.

%   Copyright 2004-2015 The MathWorks, Inc.
%
%#codegen
n = cast(n0,'like',T.n);
nv2 = bitsra(n,1);
j = cast(1,'like',T.n);
for i = 1:(n-1)
  if i < j
    temp = x(j);
    x(j) = x(i);
    x(i) = temp;
  end
  k = nv2;
  while k < j
    j(:) = j-k;
    k = bitsra(k,1);
  end
  j(:) = j+k;
end

Validate modified function

Every time you modify your function, validate that the results still match your baseline. Since you
used the original types in the types table, the outputs should be identical. This validates that you
made the conversion to separate the types from the algorithm correctly.

T1 = fi_m_radix2fft_original_types(); % Get original data types declared in table

x = cast(x0,'like',T1.x);
w = cast(w0,'like',T1.w);

y = fi_m_radix2fft_algorithm1_6_2_typed(x, w, T1);
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fi_fft_demo_plot(real(x),y,y0,Fs,'Double data', ...
    {'FFT Algorithm 1.6.2','Built-in FFT'});

Create a Fixed-Point Types Table

Create a fixed-point types table using a structure with prototypes for the variables. Specify the
prototype values as empty ([ ]) since the data types are used, but not the values.

53 Fixed-Point Designer Examples

53-168



function T = fi_m_radix2fft_fixed_types()
%FI_M_RADIX2FFT_FIXED_TYPES Example function

%   Copyright 2015 The MathWorks, Inc.

    T.x = fi([],1,16,14); % Picked the following types to ensure that the
    T.w = fi([],1,16,14); % inputs have maximum precision and will not
                          % overflow
    T.n = int32([]);      % Picked int32 as n is an index

end

Identify Fixed-Point Issues

Now, try converting the input data to fixed-point and see if the algorithm still looks good. In this first
pass, you use all the defaults for signed fixed-point data by using the fi constructor.

T2 = fi_m_radix2fft_fixed_types(); % Get fixed point data types declared in table

x = cast(x0,'like',T2.x);
w = cast(w0,'like',T2.w);

Re-run the same algorithm with the fixed-point inputs.

y  = fi_m_radix2fft_algorithm1_6_2_typed(x,w,T2);
fi_fft_demo_plot(real(x),y,y0,Fs,'Fixed-point data', ...
    {'Fixed-point FFT Algorithm 1.6.2','Built-in FFT'});
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Note that the magnitude plot (center) of the fixed-point FFT does not resemble the plot of the built-in
FFT. The error (bottom plot) is much larger than what you would expect to see for round off error, so
it is likely that overflow has occurred.

Use Min/Max Instrumentation to Identify Overflows

To instrument the MATLAB® code, create a MEX function from the MATLAB® function using the
buildInstrumentedMex command. The inputs to buildInstrumentedMex are the same as the
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inputs to fiaccel, but buildInstrumentedMex has no fi object restrictions. The output of
buildInstrumentedMex is a MEX function with instrumentation inserted, so when the MEX
function is run, the simulated minimum and maximum values are recorded for all named variables
and intermediate values.

The '-o' option is used to name the MEX function that is generated. If the '-o' option is not used,
then the MEX function is the name of the MATLAB® function with '_mex' appended. You can also
name the MEX function the same as the MATLAB® function, but you need to remember that MEX
functions take precedence over MATLAB® functions and so changes to the MATLAB® function will
not run until either the MEX function is regenerated, or the MEX function is deleted and cleared.

Create the input with a scaled double data type so its values will attain full range and you can identify
potential overflows.

function T = fi_m_radix2fft_scaled_fixed_types()
%FI_M_RADIX2FFT_SCALED_FIXED_TYPES Example function

%   Copyright 2015 The MathWorks, Inc.

    DT = 'ScaledDouble';                % Data type to be used for fi
                                        % constructor
    T.x = fi([],1,16,14,'DataType',DT); % Picked the following types to
    T.w = fi([],1,16,14,'DataType',DT); % ensure that the inputs have
                                        % maximum precision and will not
                                        % overflow
    T.n = int32([]);                    % Picked int32 as n is an index

end

T3 = fi_m_radix2fft_scaled_fixed_types(); % Get fixed point data types declared in table

x_scaled_double = cast(x0,'like',T3.x);
w_scaled_double = cast(w0,'like',T3.w);

buildInstrumentedMex fi_m_radix2fft_algorithm1_6_2_typed ...
    -o fft_instrumented -args {x_scaled_double w_scaled_double T3}

Run the instrumented MEX function to record min/max values.

y_scaled_double = fft_instrumented(x_scaled_double,w_scaled_double,T3);

Show the instrumentation results.

showInstrumentationResults fft_instrumented
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You can see from the instrumentation results that there were overflows when assigning into the
variable x.

Modify the Algorithm to Address Fixed-Point Issues

The magnitude of an individual bin in the FFT grows, at most, by a factor of n, where n is the length
of the FFT. Hence, by scaling your data by 1/n, you can prevent overflow from occurring for any input.
When you scale only the input to the first stage of a length-n FFT by 1/n, you obtain a signal-to-noise
ratio proportional to n^2 [Oppenheim & Schafer 1989, equation 9.101], [Welch 1969]. However, if
you scale the input to each of the stages of the FFT by 1/2, you can obtain an overall scaling of 1/n
and produce a signal-to-noise ratio proportional to n [Oppenheim & Schafer 1989, equation 9.105],
[Welch 1969].

An efficient way to scale by 1/2 in fixed-point is to right-shift the data. To do this, you use the bit shift
right arithmetic function bitsra. After scaling each stage of the FFT, and optimizing the index
variable computation, your algorithm becomes:

function x = fi_m_radix2fft_withscaling_typed(x, w, T)
%FI_M_RADIX2FFT_WITHSCALING  Radix-2 FFT example with scaling at each stage.
%   Y = FI_M_RADIX2FFT_WITHSCALING_TYPED(X, W, T) computes the radix-2 FFT of
%   input vector X with twiddle-factors W with scaling by 1/2 at each stage.
%   Input X is assumed to be complex.
%
%   The length of vector X must be an exact power of two.
%   Twiddle-factors W are computed via
%      W = fi_radix2twiddles(N)
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%   where N = length(X).
%
%   T is a types table to cast variables to a particular type, while keeping
%   the body of the algorithm unchanged.
%
%   This version of the algorithm has no scaling before the stages.
%
%   See also FI_RADIX2FFT_DEMO.

%   Reference:
%     Charles Van Loan, Computational Frameworks for the Fast Fourier
%     Transform, SIAM, Philadelphia, 1992, Algorithm 1.6.2, p. 45.
%
%   Copyright 2004-2015 The MathWorks, Inc.
%
%#codegen

    n = length(x);  t = log2(n);
    x = fi_bitreverse(x,n);

    % Generate index variables as integer constants so they are not computed in
    % the loop.
    LL = cast(2.^(1:t),'like',T.n);
    rr = cast(n./LL,'like',T.n);
    LL2 = cast(LL./2,'like',T.n);
    for q = 1:t
        L = LL(q); r = rr(q); L2 = LL2(q);
        for k = 0:(r-1)
            for j = 0:(L2-1)
                temp          = w(L2-1+j+1) * x(k*L+j+L2+1);
                x(k*L+j+L2+1) = bitsra(x(k*L+j+1) - temp, 1);
                x(k*L+j+1)    = bitsra(x(k*L+j+1) + temp, 1);
            end
        end
    end
end

Run the scaled algorithm with fixed-point data.

x = cast(x0,'like',T3.x);
w = cast(w0,'like',T3.w);

y = fi_m_radix2fft_withscaling_typed(x,w,T3);

fi_fft_demo_plot(real(x), y, y0/n, Fs, 'Fixed-point data', ...
    {'Fixed-point FFT with scaling','Built-in FFT'});
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You can see that the scaled fixed-point FFT algorithm now matches the built-in FFT to a tolerance
that is expected for 16-bit fixed-point data.

Clean Up

Run the following code to restore the global states.

fipref(FIPREF_STATE);
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Set Data Types Using Min/Max Instrumentation
This example shows how to set fixed-point data types by instrumenting MATLAB® code for min/max
logging and using the tools to propose data types.

The functions you will use are:

• buildInstrumentedMex - Build MEX function with instrumentation enabled
• showInstrumentationResults - Show instrumentation results
• clearInstrumentationResults - Clear instrumentation results

The Unit Under Test

The function that you convert to fixed-point in this example is a second-order direct-form 2
transposed filter. You can substitute your own function in place of this one to reproduce these steps in
your own work.

function [y,z] = fi_2nd_order_df2t_filter(b,a,x,y,z)
    for i=1:length(x)
        y(i) = b(1)*x(i) + z(1);
        z(1) = b(2)*x(i) + z(2) - a(2) * y(i);
        z(2) = b(3)*x(i)        - a(3) * y(i);
    end
end

For a MATLAB® function to be instrumented, it must be suitable for code generation. For information
on code generation, see the reference page for buildInstrumentedMex. A MATLAB® Coder™
license is not required to use buildInstrumentedMex.

In this function the variables y and z are used as both inputs and outputs. This is an important
pattern because:

• You can set the data type of y and z outside the function, thus allowing you to re-use the function
for both fixed-point and floating-point types.

• The generated C code will create y and z as references in the function argument list. For more
information about this pattern, see the documentation under Code Generation from MATLAB® >
User's Guide > Generating Efficient and Reusable Code > Generating Efficient Code >
Eliminating Redundant Copies of Function Inputs.

Run the following code to copy the test function into a temporary directory so this example doesn't
interfere with your own work.

tempdirObj = fidemo.fiTempdir('fi_instrumentation_fixed_point_filter_demo');

copyfile(fullfile(matlabroot,'toolbox','fixedpoint','fidemos','+fidemo',...
                  'fi_2nd_order_df2t_filter.m'),'.','f');

Run the following code to capture current states, and reset the global states.

FIPREF_STATE = get(fipref);
reset(fipref)

Data Types Determined by the Requirements of the Design

In this example, the requirements of the design determine the data type of input x. These
requirements are signed, 16-bit, and fractional.
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N = 256;
x = fi(zeros(N,1),1,16,15);

The requirements of the design also determine the fixed-point math for a DSP target with a 40-bit
accumulator. This example uses floor rounding and wrap overflow to produce efficient generated
code.

F = fimath('RoundingMethod','Floor',...
           'OverflowAction','Wrap',...
           'ProductMode','KeepLSB',...
           'ProductWordLength',40,...
           'SumMode','KeepLSB',...
           'SumWordLength',40);

The following coefficients correspond to a second-order lowpass filter created by

[num,den] = butter(2,0.125)

The values of the coefficients influence the range of the values that will be assigned to the filter
output and states.

num = [0.0299545822080925  0.0599091644161849  0.0299545822080925];
den = [1                  -1.4542435862515900  0.5740619150839550];

The data type of the coefficients, determined by the requirements of the design, are specified as 16-
bit word length and scaled to best-precision. A pattern for creating fi objects from constant
coefficients is:

1. Cast the coefficients to fi objects using the default round-to-nearest and saturate overflow
settings, which gives the coefficients better accuracy.

2. Attach fimath with floor rounding and wrap overflow settings to control arithmetic, which leads to
more efficient C code.

b = fi(num,1,16); b.fimath = F;
a = fi(den,1,16); a.fimath = F;

Hard-code the filter coefficients into the implementation of this filter by passing them as constants to
the buildInstrumentedMex command.

B = coder.Constant(b);
A = coder.Constant(a);

Data Types Determined by the Values of the Coefficients and Inputs

The values of the coefficients and values of the inputs determine the data types of output y and state
vector z. Create them with a scaled double datatype so their values will attain full range and you can
identify potential overflows and propose data types.

yisd = fi(zeros(N,1),1,16,15,'DataType','ScaledDouble','fimath',F);
zisd = fi(zeros(2,1),1,16,15,'DataType','ScaledDouble','fimath',F);

Instrument the MATLAB® Function as a Scaled-Double MEX Function

To instrument the MATLAB® code, you create a MEX function from the MATLAB® function using the
buildInstrumentedMex command. The inputs to buildInstrumentedMex are the same as the
inputs to fiaccel, but buildInstrumentedMex has no fi-object restrictions. The output of
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buildInstrumentedMex is a MEX function with instrumentation inserted, so when the MEX
function is run, the simulated minimum and maximum values are recorded for all named variables
and intermediate values.

Use the '-o' option to name the MEX function that is generated. If you do not use the '-o' option,
then the MEX function is the name of the MATLAB® function with '_mex' appended. You can also
name the MEX function the same as the MATLAB® function, but you need to remember that MEX
functions take precedence over MATLAB® functions and so changes to the MATLAB® function will
not run until either the MEX function is re-generated, or the MEX function is deleted and cleared.

buildInstrumentedMex fi_2nd_order_df2t_filter ...
    -o filter_scaled_double ...
    -args {B,A,x,yisd,zisd}

Test Bench with Chirp Input

The test bench for this system is set up to run chirp and step signals. In general, test benches for
systems should cover a wide range of input signals.

The first test bench uses a chirp input. A chirp signal is a good representative input because it covers
a wide range of frequencies.

t = linspace(0,1,N);       % Time vector from 0 to 1 second
f1 = N/2;                  % Target frequency of chirp set to Nyquist
xchirp = sin(pi*f1*t.^2);  % Linear chirp from 0 to Fs/2 Hz in 1 second
x(:) = xchirp;             % Cast the chirp to fixed-point

Run the Instrumented MEX Function to Record Min/Max Values

The instrumented MEX function must be run to record minimum and maximum values for that
simulation run. Subsequent runs accumulate the instrumentation results until they are cleared with
clearInstrumentationResults.

Note that the numerator and denominator coefficients were compiled as constants so they are not
provided as input to the generated MEX function.

ychirp = filter_scaled_double(x,yisd,zisd);

The plot of the filtered chirp signal shows the lowpass behavior of the filter with these particular
coefficients. Low frequencies are passed through and higher frequencies are attenuated.

clf
plot(t,x,'c',t,ychirp,'bo-')
title('Chirp')
legend('Input','Scaled-double output')
figure(gcf); drawnow;

 Set Data Types Using Min/Max Instrumentation

53-179



Show Instrumentation Results with Proposed Fraction Lengths for Chirp

The showInstrumentationResults command displays the code generation report with
instrumented values. The input to showInstrumentationResults is the name of the instrumented
MEX function for which you wish to show results.

This is the list of options to the showInstrumentationResults command:

• -defaultDT T Default data type to propose for doubles, where T is a numerictype object, or
one of the strings {remainFloat, double, single, int8, int16, int32, int64,
uint8, uint16, uint32, uint64}. The default is remainFloat.

• -nocode Do not show MATLAB code in the printable report. Display only the logged variables
tables. This option only has effect in combination with the -printable option.

• -optimizeWholeNumbers Optimize the word length of variables whose simulation min/max logs
indicate that they were always whole numbers.

• -percentSafetyMargin N Safety margin for simulation min/max, where N represents a percent
value.

• -printable Create a printable report and open in the system browser.
• -proposeFL Propose fraction lengths for specified word lengths.
• -proposeWL Propose word lengths for specified fraction lengths.

Potential overflows are only displayed for fi objects with Scaled Double data type.
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This particular design is for a DSP, where the word lengths are fixed, so use the proposeFL flag to
propose fraction lengths.

showInstrumentationResults filter_scaled_double -proposeFL

Hover over expressions or variables in the instrumented code generation report to see the simulation
minimum and maximum values. In this design, the inputs fall between -1 and +1, and the values of all
variables and intermediate results also fall between -1 and +1. This suggests that the data types can
all be fractional (fraction length one bit less than the word length). However, this will not always be
true for this function for other kinds of inputs and it is important to test many types of inputs before
setting final fixed-point data types.

Test Bench with Step Input

The next test bench is run with a step input. A step input is a good representative input because it is
often used to characterize the behavior of a system.

xstep = [ones(N/2,1);-ones(N/2,1)];
x(:) = xstep;

Run the Instrumented MEX Function with Step Input

The instrumentation results are accumulated until they are cleared with
clearInstrumentationResults.

ystep = filter_scaled_double(x,yisd,zisd);

clf
plot(t,x,'c',t,ystep,'bo-')
title('Step')
legend('Input','Scaled-double output')
figure(gcf); drawnow;
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Show Accumulated Instrumentation Results

Even though the inputs for step and chirp inputs are both full range as indicated by x at 100 percent
current range in the instrumented code generation report, the step input causes overflow while the
chirp input did not. This is an illustration of the necessity to have many different inputs for your test
bench. For the purposes of this example, only two inputs were used, but real test benches should be
more thorough.

showInstrumentationResults filter_scaled_double -proposeFL
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Apply Proposed Fixed-Point Properties

To prevent overflow, set proposed fixed-point properties based on the proposed fraction lengths of 14-
bits for y and z from the instrumented code generation report.

At this point in the workflow, you use true fixed-point types (as opposed to the scaled double types
that were used in the earlier step of determining data types).

yi = fi(zeros(N,1),1,16,14,'fimath',F);
zi = fi(zeros(2,1),1,16,14,'fimath',F);

Instrument the MATLAB® Function as a Fixed-Point MEX Function

Create an instrumented fixed-point MEX function by using fixed-point inputs and the
buildInstrumentedMex command.

buildInstrumentedMex fi_2nd_order_df2t_filter ...
    -o filter_fixed_point ...
    -args {B,A,x,yi,zi}

Validate the Fixed-Point Algorithm

After converting to fixed-point, run the test bench again with fixed-point inputs to validate the design.

Validate with Chirp Input

Run the fixed-point algorithm with a chirp input to validate the design.

x(:) = xchirp;
[y,z] = filter_fixed_point(x,yi,zi);
[ysd,zsd] = filter_scaled_double(x,yisd,zisd);
err = double(y) - double(ysd);

 Set Data Types Using Min/Max Instrumentation

53-183



Compare the fixed-point outputs to the scaled-double outputs to verify that they meet your design
criteria.

clf
subplot(211);plot(t,x,'c',t,ysd,'bo-',t,y,'mx')
xlabel('Time (s)');
ylabel('Amplitude')
legend('Input','Scaled-double output','Fixed-point output');
title('Fixed-Point Chirp')
subplot(212);plot(t,err,'r');title('Error');xlabel('t'); ylabel('err');
figure(gcf); drawnow;

Inspect the variables and intermediate results to ensure that the min/max values are within range.

showInstrumentationResults filter_fixed_point
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Validate with Step Inputs

Run the fixed-point algorithm with a step input to validate the design.

Run the following code to clear the previous instrumentation results to see only the effects of running
the step input.

clearInstrumentationResults filter_fixed_point

Run the step input through the fixed-point filter and compare with the output of the scaled double
filter.

x(:) = xstep;
[y,z] = filter_fixed_point(x,yi,zi);
[ysd,zsd] = filter_scaled_double(x,yisd,zisd);
err = double(y) - double(ysd);

Plot the fixed-point outputs against the scaled-double outputs to verify that they meet your design
criteria.

clf
subplot(211);plot(t,x,'c',t,ysd,'bo-',t,y,'mx')
title('Fixed-Point Step');
legend('Input','Scaled-double output','Fixed-point output')
subplot(212);plot(t,err,'r');title('Error');xlabel('t'); ylabel('err');
figure(gcf); drawnow;
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Inspect the variables and intermediate results to ensure that the min/max values are within range.

showInstrumentationResults filter_fixed_point
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Run the following code to restore the global states.

fipref(FIPREF_STATE);
clearInstrumentationResults filter_fixed_point
clearInstrumentationResults filter_scaled_double
clear fi_2nd_order_df2t_filter_fixed_instrumented
clear fi_2nd_order_df2t_filter_float_instrumented

Run the following code to delete the temporary directory.

tempdirObj.cleanUp;
%#ok<*ASGLU>
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Implement FIR Filter Algorithm for Floating-Point and Fixed-
Point Types using cast and zeros

This example shows you how to convert a finite impulse-response (FIR) filter to fixed point by
separating the fixed-point type specification from the algorithm code.

Separating data type specification from algorithm code allows you to:

• Re-use your algorithm code with different data types
• Keep your algorithm uncluttered with data type specification and switch statements for different

data types
• Keep your algorithm code more readable
• Switch between fixed point and floating point to compare baselines
• Switch between variations of fixed-point settings without changing the algorithm code

Original Algorithm

This example converts MATLAB® code for a finite impulse response (FIR) filter to fixed point.

The formula for the nth output y(n) of an (FIR) filter given filter coefficients b and input x is:

y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(end)*x(n-length(b)+1)

Linear Buffer Implementation

There are several different ways to write an FIR filter. One way is with a linear buffer like in the
following function, where b is a row vector and z is a column vector the same length as b.

function [y,z] = fir_filt_linear_buff(b,x,z)
    y = zeros(size(x));
    for n=1:length(x)
        z = [x(n); z(1:end-1)];
        y(n) = b * z;
    end
end

The vector z is made up of the current and previous samples of x:

z = [x(n); x(n-1); .. ; x(n-length(b)+1)]

The vector z is called a state vector. It is used as both an input and an output. When it is an input, it is
the initial state of the filter. When it is an output, it is the final state of the filter. Defining the state
vector outside the function allows you to continuously stream data through the filter in a real-time
system, and to reuse the filter algorithm within the same project. The state vector is often named z
because it is synonymous with the delays  associated with the Z-transform. The Z-transform was
named in honor of Lotfi Zadeh for his seminal work in this area [1].

The linear buffer implementation takes advantage of MATLAB's convenient matrix syntax and is easy
to read and understand. However, it introduces a full copy of the state buffer for every sample of the
input.

Circular Buffer Implementation
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To implement the FIR filter more efficiently, you can store the states in a circular buffer, z, whose
elements are z(p) = x(n), where p=mod(n-1,length(b))+1, for n=1, 2, 3, ....

For example, let length(b) = 3, and initialize p and z to:

p = 0, z = [ 0    0    0  ]

Start with the first sample and fill the state buffer z in a circular manner.

n = 1, p = 1, z(1) = x(1), z = [x(1)  0    0  ]
y(1) = b(1)*z(1) + b(2)*z(3) + b(3)*z(2)

n = 2, p = 2, z(2) = x(2), z = [x(1) x(2)  0  ]
y(2) = b(1)*z(2) + b(2)*z(1) + b(3)*z(3)

n = 3, p = 3, z(3) = x(3), z = [x(1) x(2) x(3)]
y(3) = b(1)*z(3) + b(2)*z(2) + b(3)*z(1)

n = 4, p = 1, z(1) = x(4), z = [x(4) x(2) x(3)]
y(4) = b(1)*z(1) + b(2)*z(3) + b(3)*z(2)

n = 5, p = 2, z(2) = x(5), z = [x(4) x(5) x(3)]
y(5) = b(1)*z(2) + b(2)*z(1) + b(3)*z(3)

n = 6, p = 3, z(3) = x(6), z = [x(4) x(5) x(6)]
y(6) = b(1)*z(3) + b(2)*z(2) + b(3)*z(1)

...

You can implement the FIR filter using a circular buffer like the following MATLAB function.

function [y,z,p] = fir_filt_circ_buff_original(b,x,z,p)
    y = zeros(size(x));
    nx = length(x);
    nb = length(b);
    for n=1:nx
        p=p+1; if p>nb, p=1; end
        z(p) = x(n);
        acc = 0;
        k = p;
        for j=1:nb
            acc = acc + b(j)*z(k);
            k=k-1; if k<1, k=nb; end
        end
        y(n) = acc;
    end
end

Test File

Create a test file to validate that the floating-point algorithm works as expected before converting it
to fixed point. You can use the same test file to propose fixed-point data types and to compare fixed-
point results to the floating-point baseline after the conversion.

The test vectors should represent realistic inputs that exercise the full range of values expected by
your system. Realistic inputs are impulses, sums of sinusoids, and chirp signals, for which you can
verify that the outputs are correct using linear theory. Signals that produce maximum output are
useful for verifying that your system does not overflow.
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Set up

Run the following code to capture and reset the current state of global fixed-point math settings and
fixed-point preferences.

resetglobalfimath;
FIPREF_STATE = get(fipref);
resetfipref;

Run the following code to copy the test functions into a temporary folder so this example doesn't
interfere with your own work.

tempdirObj = fidemo.fiTempdir('fir_filt_circ_buff_fixed_point_conversion_example');

copyfile(fullfile(matlabroot,'toolbox','fixedpoint','fidemos','+fidemo',...
                  'fir_filt_*.m'),'.','f');

Filter coefficients

Use the following low-pass filter coefficients that were computed using the fir1 function from Signal
Processing Toolbox.

b = fir1(11,0.25);

b = [-0.004465461051254
    -0.004324228005260
    +0.012676739550326
    +0.074351188907780
    +0.172173206073645
    +0.249588554524763
    +0.249588554524763
    +0.172173206073645
    +0.074351188907780
    +0.012676739550326
    -0.004324228005260
    -0.004465461051254]';

Time vector

Use this time vector to create the test signals.

nx = 256;
t = linspace(0,10*pi,nx)';

Impulse input

The response of an FIR filter to an impulse input is the filter coefficients themselves.

x_impulse = zeros(nx,1); x_impulse(1) = 1;

Signal that produces the maximum output

The maximum output of a filter occurs when the signs of the inputs line up with the signs of the
filter's impulse response.

x_max_output = sign(fliplr(b))';
x_max_output = repmat(x_max_output,ceil(nx/length(b)),1);
x_max_output = x_max_output(1:nx);
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The maximum magnitude of the output is the 1-norm of its impulse response, which is norm(b,1) =
sum(abs(b)).

maximum_output_magnitude = norm(b,1) %#ok<*NOPTS>

maximum_output_magnitude =

    1.0352

Sum of sines

A sum of sines is a typical input for a filter and you can easily see the high frequencies filtered out in
the plot.

f0=0.1; f1=2;
x_sines = sin(2*pi*t*f0) + 0.1*sin(2*pi*t*f1);

Chirp

A chirp gives a good visual of the low-pass filter action of passing the low frequencies and attenuating
the high frequencies.

f_chirp = 1/16;                  % Target frequency
x_chirp = sin(pi*f_chirp*t.^2);  % Linear chirp

titles = {'Impulse', 'Max output', 'Sum of sines', 'Chirp'};
x = [x_impulse, x_max_output, x_sines, x_chirp];

Call the original function

Before starting the conversion to fixed point, call your original function with the test file inputs to
establish a baseline to compare to subsequent outputs.

y0 = zeros(size(x));
for i=1:size(x,2)
    % Initialize the states for each column of input
    p = 0;
    z = zeros(size(b));
    y0(:,i) = fir_filt_circ_buff_original(b,x(:,i),z,p);
end

Baseline Output

fir_filt_circ_buff_plot(1,titles,t,x,y0)
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Prepare for Instrumentation and Code Generation

The first step after the algorithm works in MATLAB is to prepare it for instrumentation, which
requires code generation. Before the conversion, you can use the coder.screener function to analyze
your code and identify unsupported functions and language features.

Entry-point function

When doing instrumentation and code generation, it is convenient to have an entry-point function
that calls the function to be converted to fixed point. You can cast the FIR filter's inputs to different
data types, and add calls to different variations of the filter for comparison. By using an entry-point
function you can run both fixed-point and floating-point variants of your filter, and also different
variants of fixed point. This allows you to iterate on your code more quickly to arrive at the optimal
fixed-point design.

function y = fir_filt_circ_buff_original_entry_point(b,x,reset)
    if nargin<3, reset = true; end
    % Define the circular buffer z and buffer position index p.
    % They are declared persistent so the filter can be called in a streaming
    % loop, each section picking up where the last section left off.
    persistent z p
    if isempty(z) || reset
        p = 0;
        z = zeros(size(b));
    end
    [y,z,p] = fir_filt_circ_buff_original(b,x,z,p);
end
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Test file

Your test file calls the compiled entry-point function.

function y = fir_filt_circ_buff_test(b,x)

     y = zeros(size(x));

     for i=1:size(x,2)
         reset = true;
         y(:,i) = fir_filt_circ_buff_original_entry_point_mex(b,x(:,i),reset);
     end

end

Build original function

Compile the original entry-point function with buildInstrumentedMex. This instruments your code for
logging so you can collect minimum and maximum values from the simulation and get proposed data
types.

reset = true;
buildInstrumentedMex fir_filt_circ_buff_original_entry_point -args {b, x(:,1), reset}

Run original function

Run your test file inputs through the algorithm to log minimum and maximum values.

y1 = fir_filt_circ_buff_test(b,x);

Show types

Use showInstrumentationResults to view the data types of all your variables and the minimum and
maximum values that were logged during the test file run. Look at the maximum value logged for the
output variable y and accumulator variable acc and note that they attained the theoretical maximum
output value that you calculated previously.

showInstrumentationResults fir_filt_circ_buff_original_entry_point_mex

To see these results in the instrumented Code Generation Report:

• Select function fir_filt_circ_buff_original
• Select the Variables tab
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Validate original function

Every time you modify your function, validate that the results still match your baseline.

fir_filt_circ_buff_plot2(2,titles,t,x,y0,y1)
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Convert Functions to use Types Tables

To separate data types from the algorithm, you:

1 Create a table of data type definitions.
2 Modify the algorithm code to use data types from that table.

This example shows the iterative steps by creating different files. In practice, you can make the
iterative changes to the same file.

Original types table

Create a types table using a structure with prototypes for the variables set to their original types. Use
the baseline types to validate that you made the initial conversion correctly, and also use it to
programmatically toggle your function between floating-point and fixed-point types. The index
variables j, k, n, nb, nx are automatically converted to integers by MATLAB Coder™, so you don't
need to specify their types in the table.

Specify the prototype values as empty ([ ]) since the data types are used, but not the values.

function T = fir_filt_circ_buff_original_types()
    T.acc=double([]);
    T.b=double([]);
    T.p=double([]);
    T.x=double([]);
    T.y=double([]);
    T.z=double([]);
end

Type-aware filter function

Prepare the filter function and entry-point function to be type-aware by using the cast and zeros
functions and the types table.

Use subscripted assignment acc(:)=..., p(:)=1, and k(:)=nb to preserve data types during assignment.
See the "Cast fi Objects" section in the Fixed-Point Designer documentation for more details about
subscripted assignment and preserving data types.

The function call y = zeros(size(x),'like',T.y) creates an array of zeros the same size as x with the
properties of variable T.y. Initially, T.y is a double defined in function fir_filt_circ_buff_original_types,
but it is re-defined as a fixed-point type later in this example.

The function call acc = cast(0,'like',T.acc) casts the value 0 with the same properties as variable T.acc.
Initially, T.acc is a double defined in function fir_filt_circ_buff_original_types, but it is re-defined as a
fixed-point type later in this example.

function [y,z,p] = fir_filt_circ_buff_typed(b,x,z,p,T)
    y = zeros(size(x),'like',T.y);
    nx = length(x);
    nb = length(b);
    for n=1:nx
        p(:)=p+1; if p>nb, p(:)=1; end
        z(p) = x(n);
        acc = cast(0,'like',T.acc);
        k = p;
        for j=1:nb
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            acc(:) = acc + b(j)*z(k);
            k(:)=k-1; if k<1, k(:)=nb; end
        end
        y(n) = acc;
    end
end

Type-aware entry-point function

The function call p1 = cast(0,'like',T1.p) casts the value 0 with the same properties as variable T1.p.
Initially, T1.p is a double defined in function fir_filt_circ_buff_original_types, but it is re-defined as an
integer type later in this example.

The function call z1 = zeros(size(b),'like',T1.z) creates an array of zeros the same size as b with the
properties of variable T1.z. Initially, T1.z is a double defined in function
fir_filt_circ_buff_original_types, but it is re-defined as a fixed-point type later in this example.

function y1 = fir_filt_circ_buff_typed_entry_point(b,x,reset)
   if nargin<3, reset = true; end
   %
   % Baseline types
   %
   T1 = fir_filt_circ_buff_original_types();
   % Each call to the filter needs to maintain its own states.
   persistent z1 p1
   if isempty(z1) || reset
       p1 = cast(0,'like',T1.p);
       z1 = zeros(size(b),'like',T1.z);
   end
   b1 = cast(b,'like',T1.b);
   x1 = cast(x,'like',T1.x);
   [y1,z1,p1] = fir_filt_circ_buff_typed(b1,x1,z1,p1,T1);
end

Validate modified function

Every time you modify your function, validate that the results still match your baseline. Since you
used the original types in the types table, the outputs should be identical. This validates that you
made the conversion to separate the types from the algorithm correctly.

buildInstrumentedMex fir_filt_circ_buff_typed_entry_point -args {b, x(:,1), reset}

y1 = fir_filt_circ_buff_typed_test(b,x);
fir_filt_circ_buff_plot2(3,titles,t,x,y0,y1)
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Propose data types from simulation min/max logs

Use the showInstrumentationResults function to propose fixed-point fraction lengths, given a default
signed fixed-point type and 16-bit word length.

showInstrumentationResults fir_filt_circ_buff_original_entry_point_mex ...
    -defaultDT numerictype(1,16) -proposeFL

In the instrumented Code Generation Report, select function fir_filt_circ_buff_original and the
Variables tab to see these results.
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Create a fixed-point types table

Use the proposed types from the Code Generation Report to guide you in choosing fixed-point types
and create a fixed-point types table using a structure with prototypes for the variables.

Use your knowledge of the algorithm to improve on the proposals. For example, you are using the acc
variable as an accumulator, so make it 32-bits. From the Code Generation Report, you can see that
acc needs at least 2 integer bits to prevent overflow, so set the fraction length to 30.

Variable p is used as an index, so you can make it a builtin 16-bit integer.

Specify the prototype values as empty ([ ]) since the data types are used, but not the values.

function T = fir_filt_circ_buff_fixed_point_types()
    T.acc=fi([],true,32,30);
    T.b=fi([],true,16,17);
    T.p=int16([]);
    T.x=fi([],true,16,14);
    T.y=fi([],true,16,14);
    T.z=fi([],true,16,14);
end

Add fixed point to entry-point function

Add a call to the fixed-point types table in the entry-point function:

T2 = fir_filt_circ_buff_fixed_point_types();
persistent z2 p2
if isempty(z2) || reset
    p2 = cast(0,'like',T2.p);
    z2 = zeros(size(b),'like',T2.z);
end
b2 = cast(b,'like',T2.b);
x2 = cast(x,'like',T2.x);
[y2,z2,p2] = fir_filt_circ_buff_typed(b2,x2,z2,p2,T2);

Build and run algorithm with fixed-point data types

buildInstrumentedMex fir_filt_circ_buff_typed_entry_point -args {b, x(:,1), reset}

[y1,y2] = fir_filt_circ_buff_typed_test(b,x);

showInstrumentationResults fir_filt_circ_buff_typed_entry_point_mex

To see these results in the instrumented Code Generation Report:

• Select the entry-point function, fir_filt_circ_buff_typed_entry_point
• Select fir_filt_circ_buff_typed in the following line of code:

[y2,z2,p2] = fir_filt_circ_buff_typed(b2,x2,z2,p2,T2);

• Select the Variables tab
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16-bit word length, full precision math

Validate that the results are within an acceptable tolerance of your baseline.

fir_filt_circ_buff_plot2(4,titles,t,x,y1,y2);

Your algorithm has now been converted to fixed-point MATLAB code. If you also want to convert to C-
code, then proceed to the next section.
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Generate C-Code

This section describes how to generate efficient C-code from the fixed-point MATLAB code from the
previous section.

Required products

You need MATLAB Coder™ to generate C-code, and you need Embedded Coder® for the hardware
implementation settings used in this example.

Algorithm tuned for most efficient C-code

The output variable y is initialized to zeros, and then completely overwritten before it is used.
Therefore, filling y with all zeros is unnecessary. You can use the coder.nullcopy function to declare a
variable without actually filling it with values, which makes the code in this case more efficient.
However, you have to be very careful when using coder.nullcopy because if you access an element of
a variable before it is assigned, then you are accessing uninitialized memory and its contents are
unpredictable.

A rule of thumb for when to use coder.nullcopy is when the initialization takes significant time
compared to the rest of the algorithm. If you are not sure, then the safest thing to do is to not use it.

function [y,z,p] = fir_filt_circ_buff_typed_codegen(b,x,z,p,T)
    % Use coder.nullcopy only when you are certain that every value of
    % the variable is overwritten before it is used.
    y = coder.nullcopy(zeros(size(x),'like',T.y));
    nx = length(x);
    nb = length(b);
    for n=1:nx
        p(:)=p+1; if p>nb, p(:)=1; end
        z(p) = x(n);
        acc = cast(0,'like',T.acc);
        k = p;
        for j=1:nb
            acc(:) = acc + b(j)*z(k);
            k(:)=k-1; if k<1, k(:)=nb; end
        end
        y(n) = acc;
    end
end

Native C-code types

You can set the fixed-point math properties to match the native actions of C. This generates the most
efficient C-code, but this example shows that it can create problems with overflow and produce less
accurate results which are corrected in the next section. It doesn't always create problems, though,
so it is worth trying first to see if you can get the cleanest possible C-code.

Set the fixed-point math properties to use floor rounding and wrap overflow because those are the
default actions in C.

Set the fixed-point math properties of products and sums to match native C 32-bit integer types, and
to keep the least significant bits (LSBs) of math operations.

Add these settings to a fixed-point types table.
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function T = fir_filt_circ_buff_dsp_types()
    F = fimath('RoundingMethod','Floor',...
               'OverflowAction','Wrap',...
               'ProductMode','KeepLSB',...
               'ProductWordLength',32,...
               'SumMode','KeepLSB',...
               'SumWordLength',32);
    T.acc=fi([],true,32,30,F);
    T.p=int16([]);
    T.b=fi([],true,16,17,F);
    T.x=fi([],true,16,14,F);
    T.y=fi([],true,16,14,F);
    T.z=fi([],true,16,14,F);
end

Test the native C-code types

Add a call to the types table in the entry-point function and run the test file.

[y1,y2,y3] = fir_filt_circ_buff_typed_test(b,x); %#ok<*ASGLU>

In the second row of plots, you can see that the maximum output error is twice the size of the input,
indicating that a value that should have been positive overflowed to negative. You can also see that
the other outputs did not overflow. This is why it is important to have your test file exercise the full
range of values in addition to other typical inputs.

fir_filt_circ_buff_plot2(5,titles,t,x,y1,y3);
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Scaled Double types to find overflows

Scaled double variables store their data in double-precision floating-point, so they carry out
arithmetic in full range. They also retain their fixed-point settings, so they are able to report when a
computation goes out of the range of the fixed-point type.

Change the data types to scaled double, and add these settings to a scaled-double types table.

function T = fir_filt_circ_buff_scaled_double_types()
    F = fimath('RoundingMethod','Floor',...
               'OverflowAction','Wrap',...
               'ProductMode','KeepLSB',...
               'ProductWordLength',32,...
               'SumMode','KeepLSB',...
               'SumWordLength',32);
    DT = 'ScaledDouble';
    T.acc=fi([],true,32,30,F,'DataType',DT);
    T.p=int16([]);
    T.b=fi([],true,16,17,F,'DataType',DT);
    T.x=fi([],true,16,14,F,'DataType',DT);
    T.y=fi([],true,16,14,F,'DataType',DT);
    T.z=fi([],true,16,14,F,'DataType',DT);
end

Add a call to the scaled-double types table to the entry-point function and run the test file.

[y1,y2,y3,y4] = fir_filt_circ_buff_typed_test(b,x); %#ok<*NASGU>

Show the instrumentation results with the scaled-double types.

showInstrumentationResults fir_filt_circ_buff_typed_entry_point_mex

To see these results in the instrumented Code Generation Report:

• Select the entry-point function, fir_filt_circ_buff_typed_entry_point
• Select fir_filt_circ_buff_typed_codegen in the following line of code:

[y4,z4,p4] = fir_filt_circ_buff_typed_codegen(b4,x4,z4,p4,T4);

• Select the Variables tab.
• Look at the variables in the table. None of the variables overflowed, which indicates that the
overflow occurred as the result of an operation.

• Hover over the operators in the report (+, -, *, =).
• Hover over the "+" in this line of MATLAB code in the instrumented Code Generation Report:

acc(:) = acc + b(j)*z(k);

The report shows that the sum overflowed:
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The reason the sum overflowed is that a full-precision product for b(j)*z(k) produces a
numerictype(true,32,31) because b has numerictype(true,16,17) and z has numerictype(true,16,14).
The sum type is set to "keep least significant bits" (KeepLSB), so the sum has
numerictype(true,32,31). However, 2 integer bits are necessary to store the minimum and maximum
simulated values of -1.0045 and +1.035, respectively.

Adjust to avoid the overflow

Set the fraction length of b to 16 instead of 17 so that b(j)*z(k) is numerictype(true,32,30), and so the
sum is also numerictype(true,32,30) following the KeepLSB rule for sums.

Leave all other settings the same, and set

T.b=fi([],true,16,16,F);

Then the sum in this line of MATLAB code no longer overflows:
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acc(:) = acc + b(j)*z(k);

Run the test file with the new settings and plot the results.

[y1,y2,y3,y4,y5] = fir_filt_circ_buff_typed_test(b,x);

You can see that the overflow has been avoided. However, the plots show a bias and a larger error
due to using C's natural floor rounding. If this bias is acceptable to you, then you can stop here and
the generated C-code is very clean.

fir_filt_circ_buff_plot2(6,titles,t,x,y1,y5);

Eliminate the bias

If the bias is not acceptable in your application, then change the rounding method to 'Nearest' to
eliminate the bias. Rounding to nearest generates slightly more complicated C-code, but it may be
necessary for you if you want to eliminate the bias and have a smaller error.

The final fixed-point types table with nearest rounding and adjusted coefficient fraction length is:

function T = fir_filt_circ_buff_dsp_nearest_types()
    F = fimath('RoundingMethod','Nearest',...
               'OverflowAction','Wrap',...
               'ProductMode','KeepLSB',...
               'ProductWordLength',32,...
               'SumMode','KeepLSB',...
               'SumWordLength',32);
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    T.acc=fi([],true,32,30,F);
    T.p=int16([]);
    T.b=fi([],true,16,16,F);
    T.x=fi([],true,16,14,F);
    T.y=fi([],true,16,14,F);
    T.z=fi([],true,16,14,F);
end

Call this types table from the entry-point function and run and plot the output.

[y1,y2,y3,y4,y5,y6] = fir_filt_circ_buff_typed_test(b,x);
fir_filt_circ_buff_plot2(7,titles,t,x,y1,y6);

Code generation command

Run this build function to generate C-code. It is a best practice to create a build function so you can
generate C-code for your core algorithm without the entry-point function or test file so the C-code for
the core algorithm can be included in a larger project.

function fir_filt_circ_buff_build_function()
    %
    % Declare input arguments
    %
    T = fir_filt_circ_buff_dsp_nearest_types();
    b = zeros(1,12,'like',T.b);
    x = zeros(256,1,'like',T.x);
    z = zeros(size(b),'like',T.z);
    p = cast(0,'like',T.p);
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    %
    % Code generation configuration
    %
    h = coder.config('lib');
    h.PurelyIntegerCode = true;
    h.SaturateOnIntegerOverflow = false;
    h.SupportNonFinite = false;
    h.HardwareImplementation.ProdBitPerShort = 8;
    h.HardwareImplementation.ProdBitPerInt = 16;
    h.HardwareImplementation.ProdBitPerLong = 32;
    %
    % Generate C-code
    %
    codegen fir_filt_circ_buff_typed_codegen -args {b,x,z,p,T} -config h -launchreport
end

Generated C-Code

Using these settings, MATLAB Coder generates the following C-code:

void fir_filt_circ_buff_typed_codegen(const int16_T b[12], const int16_T x[256],
  int16_T z[12], int16_T *p, int16_T y[256])
{
  int16_T n;
  int32_T acc;
  int16_T k;
  int16_T j;
  for (n = 0; n < 256; n++) {
    (*p)++;
    if (*p > 12) {
      *p = 1;
    }
    z[*p - 1] = x[n];
    acc = 0L;
    k = *p;
    for (j = 0; j < 12; j++) {
      acc += (int32_T)b[j] * z[k - 1];
      k--;
      if (k < 1) {
        k = 12;
      }
    }
    y[n] = (int16_T)((acc >> 16) + ((acc & 32768L) != 0L));
  }
}

Run the following code to restore the global states.

fipref(FIPREF_STATE);
clearInstrumentationResults fir_filt_circ_buff_original_entry_point_mex
clearInstrumentationResults fir_filt_circ_buff_typed_entry_point_mex
clear fir_filt_circ_buff_original_entry_point_mex
clear fir_filt_circ_buff_typed_entry_point_mex

Run the following code to delete the temporary folder.

tempdirObj.cleanUp;
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Accelerate Fixed-Point Simulation
This example shows how to accelerate fixed-point algorithms using fiaccel function. You generate a
MEX function from MATLAB® code, run the generated MEX function, and compare the execution
speed with MATLAB code simulation.

Description of the Example

This example uses a first-order feedback loop. It also uses a quantizer to avoid infinite bit growth. The
output signal is delayed by one sample and fed back to dampen the input signal.

Copy Required File

You need this MATLAB-file to run this example. Copy it to a temporary directory. This step requires
write-permission to the system's temporary directory.

tempdirObj = fidemo.fiTempdir('fiaccelbasicsdemo');
fiacceldir = tempdirObj.tempDir;
fiaccelsrc = ...
    fullfile(matlabroot,'toolbox','fixedpoint','fidemos','+fidemo','fiaccelFeedback.m');
copyfile(fiaccelsrc,fiacceldir,'f');

Inspect the MATLAB Feedback Function Code

The MATLAB function that performs the feedback loop is in the file fiaccelFeedback.m. This code
quantizes the input, and performs the feedback loop action :

type(fullfile(fiacceldir,'fiaccelFeedback.m'))

function [y,w] = fiaccelFeedback(x,a,y,w)
%FIACCELFEEDBACK Quantizer and feedback loop used in FIACCELBASICSDEMO.

% Copyright 1984-2013 The MathWorks, Inc.
%#codegen

for n = 1:length(x)
    y(n) =  quantize(x(n) - a*w, true, 16, 12, 'floor', 'wrap');
    w    = y(n);    
end

The following variables are used in this function:
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• x is the input signal vector.
• y is the output signal vector.
• a is the feedback gain.
• w is the unit-delayed output signal.

Create the Input Signal and Initialize Variables

rng('default');                      % Random number generator
x = fi(2*rand(1000,1)-1,true,16,15); % Input signal
a = fi(.9,true,16,15);               % Feedback gain
y = fi(zeros(size(x)),true,16,12);   % Initialize output. Fraction length
                                     % is chosen to prevent overflow
w = fi(0,true,16,12);                % Initialize delayed output
A = coder.Constant(a);               % Declare "a" constant for code
                                     % generation

Run Normal Mode

tic,
y = fiaccelFeedback(x,a,y,w);
t1 = toc;

Build the MEX Version of the Feedback Code

fiaccel fiaccelFeedback -args {x,A,y,w} -o fiaccelFeedback_mex

Run the MEX Version

tic
y2 = fiaccelFeedback_mex(x,y,w);
t2 = toc;

Acceleration Ratio

Code acceleration provides optimizations for accelerating fixed-point algorithms through MEX file
generation. Fixed-Point Designer™ provides a convenience function fiaccel to convert your
MATLAB code to a MEX function, which can greatly accelerate the execution speed of your fixed-
point algorithms.

r = t1/t2

r =

    3.5182

Clean up Temporary Files

clear fiaccelFeedback_mex;
tempdirObj.cleanUp;
%#ok<*NOPTS>
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Fixed-Point Fuel Rate Control System
This example shows how to perform a floating-point and a fixed-point simulation of a fuel rate control
system designed using Simulink® and Stateflow®. The controller leverages Simulink numeric types
to switch easily between the floating-point and fixed-point simulation. To familiarize yourself with the
fuel rate control model see “Modeling a Fault-Tolerant Fuel Control System”.

Open and Compile the Model

The sldemo_fuelsys model is a closed-loop system containing a "plant" and "controller". In this
example, the plant is the root model and the controller is the "fuel_rate_control" subsystem. The plant
is used to continuously validate the design of the controller. This plant also facilitates the conversion
of floating-point to fixed-point type. Initially, the model is configured for a floating-point simulation, as
is seen by the data type display on the signal lines. Let's take a look at the data types for first two
levels of hierarchy.

Open sldemo_fuelsys via fxpdemo_fuelsys and compile the diagram to see see the signal data types.
Initially, the controller is configured to use single precision data types.

fxpdemo_fuelsys

sldemo_fuelsys([],[],[],'compile');
sldemo_fuelsys([],[],[],'term');

View the Floating-Point Fuel Rate Control System

open_system('sldemo_fuelsys/fuel_rate_control');
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View the Floating-Point Airflow Calculation

open_system('sldemo_fuelsys/fuel_rate_control/airflow_calc');

View the Floating-Point Fuel Calculation

open_system('sldemo_fuelsys/fuel_rate_control/fuel_calc');
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View the Floating-Point Control Logic

open_system('sldemo_fuelsys/fuel_rate_control/control_logic');

53 Fixed-Point Designer Examples

53-212



Now let's remove the window clutter.

close_system('sldemo_fuelsys/fuel_rate_control/airflow_calc');

close_system('sldemo_fuelsys/fuel_rate_control/fuel_calc');

close_system('sldemo_fuelsys/fuel_rate_control/control_logic');
hDemo.rt=sfroot;hDemo.m=hDemo.rt.find('-isa','Simulink.BlockDiagram');
hDemo.c=hDemo.m.find('-isa','Stateflow.Chart','-and','Name','control_logic');
hDemo.c.visible=false;

close_system('sldemo_fuelsys/fuel_rate_control');

Switch Data Types from Floating-Point to Fixed-Point

The Fixed-Point Advisor was utilized to convert the controller from a floating-point implementation to
an equivalent fixed-point implementation. See fxpdemo_fpa for details of the Fixed-Point Advisor. You
can also optimize and explore the fixed-point design using the Fixed-Point Tool. See
fxpdemo_feedback for details of the Fixed-Point Tool.

The plant simulates using double precision data types. As mentioned, the "fuel_rate_control"
subsystem is configured such that it is easy to switch between floating-point and fixed-point data
types. This is done by configuring blocks to reference Simulink numeric types in the MATLAB®
workspace.

This model uses four scalings for its computations:

• u8En7 (unsigned 8-bit, binary point 7 scaling)
• s16En3 (signed 16-bit, binary point 3 scaling)
• s16En7 (signed 16-bit, binary point 7 scaling)
• s16En15 (signed 16-bit, binary point 15 scaling)

View these objects in the MATLAB® Workspace.

whos u8En7 s16En3 s16En7 s16En15

  Name         Size            Bytes  Class                   Attributes

  s16En15      1x1                91  Simulink.NumericType              
  s16En3       1x1                91  Simulink.NumericType              
  s16En7       1x1                91  Simulink.NumericType              
  u8En7        1x1                91  Simulink.NumericType              

For a floating-point simulation the numeric types are set to single precision. The DataTypeMode
property of the Simulink numeric object is set to use 'Single'. Alternatively, you can set them to
double.

u8En7   = fixdt('single');
s16En3  = fixdt('single'); %#ok
s16En7  = fixdt('single'); %#ok
s16En15 = fixdt('single'); %#ok
disp(u8En7)

  NumericType with properties:

    DataTypeMode: 'Single'
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         IsAlias: 0
       DataScope: 'Auto'
      HeaderFile: ''
     Description: ''

The model is configured to log simulation data for the top-level signals, whereby the result of a
simulation is stored into workspace variable sldemo_fuelsys_output. We'll save the result of the
simulation in hDemo.flt_out for later comparison with the fixed-point simulation.

set_param('sldemo_fuelsys','StopTime','8')
sim('sldemo_fuelsys')
hDemo.flt_out = sldemo_fuelsys_output;

To switch to a fixed-point simulation the Simulink numeric types are set to fixed-point values.
Specifically, the DataTypeMode is set to use binary point scaling.

u8En7   = fixdt(0,8,7);
s16En3  = fixdt(1,16,3);
s16En7  = fixdt(1,16,7);
s16En15 = fixdt(1,16,15);
disp(u8En7)

  NumericType with properties:

      DataTypeMode: 'Fixed-point: binary point scaling'
        Signedness: 'Unsigned'
        WordLength: 8
    FractionLength: 7
           IsAlias: 0
         DataScope: 'Auto'
        HeaderFile: ''
       Description: ''

Rerun the simulation for the fixed-point implementation. You can see the fixed-point data types on the
signals. We'll store the result of the simulation in hDemo.fxp_out.

if ~hasFixedPointDesigner()
    DAStudio.error('Simulink:fixedandfloat:FxDLicenseRequired');
end
sim('sldemo_fuelsys')
hDemo.fxp_out = sldemo_fuelsys_output;

View the Fixed-Point Fuel Rate Control System

open_system('sldemo_fuelsys/fuel_rate_control');
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View the Fixed-Point Airflow Calculation

open_system('sldemo_fuelsys/fuel_rate_control/airflow_calc');

View the Fixed-Point Fuel Calculation

open_system('sldemo_fuelsys/fuel_rate_control/fuel_calc');
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Compare the Floating-Point to Fixed-Point Result

Let's compare the result of the simulation for the fuel flow rate and the air fuel ratio.

figure('Tag','CloseMe');
subplot(2,1,1);
plot(hDemo.flt_out.get('fuel').Values.Time, hDemo.flt_out.get('fuel').Values.Data,'r-');
hold
plot(hDemo.fxp_out.get('fuel').Values.Time, hDemo.fxp_out.get('fuel').Values.Data,'b-');
ylabel('FuelFlowRate (g/sec)');
title('Fuel Control System: Floating-Point vs. Fixed-Point Comparison');
legend('float','fixed')
axis([0 8 .75 2.25]);
subplot(2,1,2);
plot(hDemo.flt_out.get('air_fuel_ratio').Values.Time, hDemo.flt_out.get('air_fuel_ratio').Values.Data,'r-');
hold
plot(hDemo.fxp_out.get('air_fuel_ratio').Values.Time, hDemo.fxp_out.get('air_fuel_ratio').Values.Data,'b-');
ylabel('Air/Fuel Ratio');
xlabel('Time (sec)')
legend('float','fixed','Location','SouthEast')
axis([0 8 11 16]);

Current plot held
Current plot held
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Use a Flexible Data Typing Strategy

You have seen that a model can be configured to switch between floating point and fixed-point data
using Simulink numeric types. Inside a closed-loop model, such as this one, care must be taken to
have such flexibility. In this example, double precision data is converted to and from the plant using
data type conversion blocks. On both sides of the controller, the output data type of the conversion
blocks are set to Inherit: Inherit via back propagation. This allows the control system to change
data type implementation without conflicting with the plant data types.

Special Considerations for Simulink Bus Signals

Also noteworthy is the configuration of the data types for the Simulink bus object used in this model:
EngSensors. Individual bus element data types are specified using the same Simulink numeric objects
as previously discussed. This bus has four elements.

disp(EngSensors.Elements(1))
disp(EngSensors.Elements(2))
disp(EngSensors.Elements(3))
disp(EngSensors.Elements(4))

  BusElement with properties:

              Name: 'throttle'
        Complexity: 'real'
        Dimensions: 1
          DataType: 's16En3'
               Min: []
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               Max: []
    DimensionsMode: 'Fixed'
              Unit: 'deg'
       Description: ''

  BusElement with properties:

              Name: 'speed'
        Complexity: 'real'
        Dimensions: 1
          DataType: 's16En3'
               Min: []
               Max: []
    DimensionsMode: 'Fixed'
              Unit: 'rad/s'
       Description: ''

  BusElement with properties:

              Name: 'ego'
        Complexity: 'real'
        Dimensions: 1
          DataType: 's16En7'
               Min: []
               Max: []
    DimensionsMode: 'Fixed'
              Unit: 'V'
       Description: ''

  BusElement with properties:

              Name: 'map'
        Complexity: 'real'
        Dimensions: 1
          DataType: 'u8En7'
               Min: []
               Max: []
    DimensionsMode: 'Fixed'
              Unit: 'bar'
       Description: ''

View the Controller Input Conversion

Data Type Conversion blocks isolate the plant from the controller. The sample time is also converted
from continuous to discrete using a Rate Transition Block.

open_system('sldemo_fuelsys/To Controller')
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View the Controller Output Conversion

A Data Type Conversion block isolates the controller from the plant. The sample time is also
converted from discrete to continuous time using a Rate Transition Block.

open_system('sldemo_fuelsys/To Plant')

Close the model, figures and workspace variables associated with example

close_system('sldemo_fuelsys',0);
close(findobj(0,'Tag','CloseMe'));
clear hDemo

Closing Remarks

You can generate production C/C++ code using Embedded Coder®. For related fixed-point examples
using sldemo_fuelsys, see

• Production C/C++ code generation - “Air-Fuel Ratio Control System with Stateflow Charts”
(Embedded Coder)

• Fixed-point production C/C++ code generation - “Air-Fuel Ratio Control System with Fixed-
Point Data” (Embedded Coder)
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Double to Fixed-Point Conversion
This model shows how to convert signals between built-in and fixed-point data types and illustrates
how fixed-point data types affect the representable precision and range. The fixed-point data type
used in this model is fixdt(1,5,2), which is a signed 5-bit number with 2 bits to the right of the binary
point:

  Precision = (2^-2) = 0.25
  Representable minimum = -(2^-2)*(2^4)   = -4
  Representable maximum =  (2^-2)*(2^4-1) = 3.75

Open the Data Type Conversion block 'Dbl-to-FixPt' to modify the attributes of the fixed-point data
type and see how they impact the range and precision of the resulting fixed-point signal.

Tips for specifying fixed-point data types:

• Click the >> button to open the Data Type Assistant.
• You can specify the output minimum/maximum and use these values to calculate the "best-

precision scaling", which maximizes the precision while covering the specified range.
• Once you are familiar with the syntax for fixdt, you can enter the expression directly into the data

type parameter without using the Data Type Assistant.
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Fixed-Point to Fixed-Point Conversion
This example shows how to convert from one fixed-point data type to another fixed-point data type. In
this case the conversion is between sfix32_En2 and ufix8_En1, meaning:

• a signed 32-bit quantity with 2 bits to the right of the binary point
• an unsigned 8-bit quantity with 1 bit to the right of the binary point
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Fixed-Point to Fixed-Point Inherited Conversion
This example shows how to use the FixPt To FixPt Inherited block. Because Simulink® propagates
data types throughout a block diagram, fixed-point utility modeling can be templatized for multiple
use scenarios. The data type inheritance capability can be given additional information through the
use of various relative-type specifications. The FixPt To FixPt Inherited block provides a way to
specify that "this signal should have the same fixed-point data type as that signal" by wiring it up to
the signals of interest.
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Fixed-Point Prelookup and Interpolation
This example shows some of the features of Prelookup and Interpolation Using Prelookup blocks.

• Prelookup and Interpolation Using Prelookup blocks support both floating-point data types and
fixed-point data types.

• The algorithms that perform fraction calculation and evenly-spaced index search do not saturate.
Therefore, the Prelookup block does not have a saturation parameter. Press Ctrl+b to generate
code for the example. Observe the saturation-free algorithms in the generated code.

• Even if the Saturate on integer overflow parameter is checked, the algorithms that perform
interpolation will saturate only when the Intermediate results data type cannot hold the
intermediate results, or the Output data type cannot hold the result. Press Ctrl+b to generate
code for the example model. Observe the saturation-free algorithms in the generated code.

• Prelookup and Interpolation Using Prelookup blocks support all rounding modes, including
Simplest rounding mode. Double-click the blocks to open their dialogs and specify the rounding
modes.

• When evenly-spaced index search is used with breakpoints spaced apart by a power of two in
Prelookup blocks, the division needed to calculate indices is optimized using an efficient shift
operation in the generated code.

• Simulink® always checks dimensional consistency between the Breakpoint data parameter of
the Prelookup block and the Table data parameter of the Interpolation Using Prelookup block.

• Prelookup and Interpolation Using Prelookup blocks support two different indexing conventions,
specified by the Use last breakpoint for input at or above upper limit parameter in the
Prelookup block and the Valid index input may reach last index parameter in the Interpolation
Using Prelookup block. Simulink® always checks the consistency of indexing conventions between
these blocks.
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Sharing Parameters in Prelookup and Interpolation Blocks
This example shows how Prelookup and Interpolation blocks share their parameter data in generated
code.

The Prelookup and Interpolation Using Prelookup blocks have support for specifying the data type for
the breakpoints and table parameters. This makes it possible for blocks that have different port data
types to share their parameter data in the generated code. One way of doing this is to specify the
parameter with the same values and data types in multiple blocks. This is done in the Prelookup
blocks in this model. Another way is to use a Simulink.Parameter object to define the blocks' shared
parameter. This is done for the Interpolation blocks. The Table data type must be set to: Inherit:
Inherit from 'Table data'.

For parameter sharing to take effect, the Default parameter behavior must be Inlined in the
Optimization pane of the Configuration Parameters dialog box.

To see this in the generated code, open the model and build it.
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High Precision Calculations in Interpolation Block
This example shows how to perform high precision calculations in the Interpolation Using Prelookup
block using internal rules. The Interpolation block allows the data type for intermediate results to be
set.

In this model, the table is stored using an 8-bit data type, and the calculations are performed using a
16-bit data type. The default Intermediate results data type is Inherit: Inherit via
internal rule that tries to maximize the precision of the intermediate results.

To see this in the generated code, open the model and build it.
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Shared Utility Functions for Prelookup Blocks
This example shows how Prelookup blocks share utility functions. The utility functions generated by
the Prelookup block are determined by the target data type of the block's inputs, outputs, and
breakpoint parameter, as well as the Index search method and Integer rounding mode. Even if
the two Prelookup blocks in this model have different data types, they fulfill the above requirements
and share their utility functions.

To see this in the generated code, open the model and build it.
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Fixed-Point Multiword Operations In Generated Code
This example shows how to control generation of multiword operations in generated code.

In this example you will learn:

• How to generate code for big data types using multiword operations
• How to prevent multiword code when it is not expected

Simple Multiword Operation

This model shows how wide integer and fixed-point operations become multiword in the generated C
code. Multiword code is normally triggered by using parameters or signals with data types wider than
C 'long'.

open_system('fxpdemo_multiword_example1');
set_param('fxpdemo_multiword_example1','SimulationCommand','Update');

Generate code for the model:

evalc('slbuild(''fxpdemo_multiword_example1'');'); % Suppress output

In the generated code, multiword operations are implemented using functions. These functions will
have "MultiWord" in their name.

Review one of the multiword functions that was generated: MultiWordAdd()

fid = fopen('fxpdemo_multiword_example1_grt_rtw/fxpdemo_multiword_example1.c') ; ctext = fread(fid, '*char')'; fclose(fid);
match = regexp(ctext, 'void MultiWordAdd.*?\n\}', 'match'); disp(match{1});

void MultiWordAdd(const uint32_T u1[], const uint32_T u2[], uint32_T y[],
                  int32_T n)
{
  int32_T i;
  uint32_T carry = 0U;
  uint32_T u1i;
  uint32_T yi;
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  for (i = 0; i < n; i++) {
    u1i = u1[i];
    yi = (u1i + u2[i]) + carry;
    y[i] = yi;
    carry = carry != 0U ? (uint32_T)(yi <= u1i) : (uint32_T)(yi < u1i);
  }
}

This function implements multiword addition in C. The two operands and the result all have the same
number of words, and the addition is performed one word at a time.

close_system('fxpdemo_multiword_example1', 0);

Relational Operator Block

In the Relational Operator Block example below, you would expect to get multiword functions in the
generated code. The two input data types are uint32 and ufix32_En3. A good type for comparison
is ufix35_En3, because this type can represent all the real world values of both operands.

We expect the data type ufix35_En3 to be implemented using a 64-bit two-word data type.

open_system('fxpdemo_multiword_example2');
set_param('fxpdemo_multiword_example2','SimulationCommand','Update');

This model is configured for a CPU with 32-bit C type long. A 64-bit data type will be a multiword
type.

get_param(bdroot, 'ProdBitPerLong')

ans =

    32

Generate code for the model and review:
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evalc('slbuild(''fxpdemo_multiword_example2'');'); % Suppress output
fid = fopen('fxpdemo_multiword_example2_grt_rtw/fxpdemo_multiword_example2.c') ; ctext = fread(fid, '*char')'; fclose(fid);
match = regexp(ctext, 'void fxpdemo_multiword_example2_step.*?\n\}', 'match'); disp(match{1});

void fxpdemo_multiword_example2_step(void)
{
  /* RelationalOperator: '<Root>/LessThan' incorporates:
   *  Inport: '<Root>/In1'
   *  Inport: '<Root>/In2'
   */
  Y = (U1 < ((U2 & 4U) != 0U) + (U2 >> 3));
}

Multiword code was not generated. This code is single-word and uses a comparison data type of
uint32. As a result, precision loss in the comparison may occur.

Simulink balances the requirements for the internal data type for comparison. In this case, because
all data types are single word, it implements an efficient data type that produces small, fast code
rather than a more precise, cumbersome computation.

close_system('fxpdemo_multiword_example2', 0);

To improve the precision of this calculation, do one of the following steps:

• Pick input data types that can be compared with full precision using a single word comparison
type. For example, 16-bit types, or two identical types.

• Force Simulink to use a multiword type (during both simulation and code generation) by
specifying a multiword type for at least one of the inputs. This signals Simulink that you want to
use multiword operations for this block.

• Configure the model for a 64-bit system.

MATLAB Function Block

The MATLAB Function Block example below showcases an all-single-word calculation. Multiword
code is not expected.

open_system('fxpdemo_multiword_example3');
set_param('fxpdemo_multiword_example3','SimulationCommand','Update');
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mfb = get_param('fxpdemo_multiword_example3/MATLAB Function','MATLABFunctionConfiguration'); mfb.FunctionScript

ans =

    'function y = fcn(u1, u2)
     %#codegen
     
     y = fi(u1 * u2, 0, 32, 0);'

Generate code for the model:

evalc('slbuild(''fxpdemo_multiword_example3'');'); % Suppress output
fid = fopen('fxpdemo_multiword_example3_grt_rtw/fxpdemo_multiword_example3.c') ; ctext = fread(fid, '*char')'; fclose(fid);
match = regexp(ctext, 'void fxpdemo_multiword_example3_step.*?\n\}', 'match'); disp(match{1});

void fxpdemo_multiword_example3_step(void)
{
  uint64m_T tmp;
  uint64m_T tmp_0;

  /* MATLAB Function: '<Root>/MATLAB Function' incorporates:
   *  Inport: '<Root>/In1'
   *  Inport: '<Root>/In2'
   */
  /* MATLAB Function 'MATLAB Function': '<S1>:1' */
  /* '<S1>:1:4' */
  uMultiWordMul(&U1, 1, &U2, 1, &tmp_0.chunks[0U], 2);
  uMultiWordShrNear(&tmp_0.chunks[0U], 2, 3U, &tmp.chunks[0U], 2);

  /* Outport: '<Root>/Out1' incorporates:
   *  MATLAB Function: '<Root>/MATLAB Function'
   */
  fxpdemo_multiword_example3_Y.Out1 = uMultiWord2uLongSat(&tmp.chunks[0U], 2);
}

close_system('fxpdemo_multiword_example3', 0);

Even though all the data types in the model were single-word, you still got three calls to multiword
functions, and two multiword variables as well.

Fixed-point operations in the MATLAB Function Block are controlled by fimath property settings.

fimath

ans = 

        RoundingMethod: Nearest
        OverflowAction: Saturate
           ProductMode: FullPrecision
               SumMode: FullPrecision

This fimath specifies full precision ProductMode. Therefore multiplications are performed in a way
that preserves as much precision as possible. The product data type, which is uint64_En3, is
implemented as a multiword type.
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You can control multiword in code generation for MATLAB code by manipulating the fimath. For
example:

• Adjusting fimath properties to meet efficient code requirements. In this example, set
'ProductMode' to 'KeepLSB' and 'OverflowAction' to 'Wrap'.

• Defining local fimaths in the MATLAB Function Block that are tailored for the specific calculations,
and not relying on the global fimath.

load_system('fxpdemo_multiword_example4'); % No need to show this model. Only show the MATLAB code.
mfb = get_param('fxpdemo_multiword_example4/MATLAB Function','MATLABFunctionConfiguration'); mfb.FunctionScript

ans =

    'function y = fcn(u1, u2)
     %#codegen
     F = fimath('ProductMode','KeepLSB',...
         'ProductWordLength',32,...
         'OverflowAction','Wrap');
     u1 = setfimath(u1,F);
     u2 = setfimath(u2,F);
     y = fi(u1 * u2,0,32,0);
     '

This fimath will result in this generated code:

evalc('slbuild(''fxpdemo_multiword_example4'');'); % Suppress output
fid = fopen('fxpdemo_multiword_example4_grt_rtw/fxpdemo_multiword_example4.c') ; ctext = fread(fid, '*char')'; fclose(fid);
match = regexp(ctext, 'void fxpdemo_multiword_example4_step.*?\n\}', 'match'); disp(match{1});

void fxpdemo_multiword_example4_step(void)
{
  uint32_T tmp;

  /* MATLAB Function: '<Root>/MATLAB Function' incorporates:
   *  Inport: '<Root>/In1'
   *  Inport: '<Root>/In2'
   */
  /* MATLAB Function 'MATLAB Function': '<S1>:1' */
  /* '<S1>:1:6' */
  /* '<S1>:1:7' */
  /* '<S1>:1:8' */
  tmp = U1 * U2;
  Y1 = ((tmp & 4U) != 0U) + (tmp >> 3);
}

close_system('fxpdemo_multiword_example4', 0);

clear ctext fid match mfb
clear ans

See Also
MATLABFunctionConfiguration | fimath
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Fixed-Point Multiplication Helper Functions in Generated Code
This example shows how to control the generation of multiplication helper functions in the generated
code.

In this example you will learn:

• Under what circumstances these helpers are generated
• What approaches are available to eliminate them

Example 1 - Helper Function Due To Range Of Output

The following model creates helper functions for multiplication because the range of the ideal
product exceeds the range of a single word data type.

open_system('fxpdemo_mulhelpers_example1');
set_param('fxpdemo_mulhelpers_example1', 'SimulationCommand', 'Update');

Generate code for the model and review it:

evalc('slbuild(''fxpdemo_mulhelpers_example1'');'); % Suppress output
fid = fopen('fxpdemo_mulhelpers_example1_grt_rtw/fxpdemo_mulhelpers_example1.c') ; ctext = fread(fid, '*char')'; fclose(fid);

Two helper functions were generated: mul_wide_u32() and mul_u32_loSR().

The step function calls the outer helper function mul_u32_loSR():

match = regexp(ctext, 'void fxpdemo_mulhelpers_example1_step.*?\n\}', 'match'); disp(match{1});

void fxpdemo_mulhelpers_example1_step(void)
{
  /* Product: '<Root>/MulHelper1' incorporates:
   *  Inport: '<Root>/In1'
   *  Inport: '<Root>/In2'
   */
  Y = mul_u32_loSR(U1, U2, 5U);
}

The outer helper function calls an inner helper function mul_wide_u32():

match = regexp(ctext, 'uint32_T mul_u32_loSR.*?\n\}', 'match'); disp(match{1});
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uint32_T mul_u32_loSR(uint32_T a, uint32_T b, uint32_T aShift)
{
  uint32_T result;
  uint32_T u32_chi;
  mul_wide_u32(a, b, &u32_chi, &result);
  return u32_chi << (32U - aShift) | result >> aShift;
}

The inner helper function mul_wide_u32() is also generated in the file:

match = regexp(ctext, 'void mul_wide_u32.*?\n\}', 'match'); disp(match{1});

void mul_wide_u32(uint32_T in0, uint32_T in1, uint32_T *ptrOutBitsHi, uint32_T
                  *ptrOutBitsLo)
{
  uint32_T in0Hi;
  uint32_T in0Lo;
  uint32_T in1Hi;
  uint32_T in1Lo;
  uint32_T outBitsLo;
  uint32_T productHiLo;
  uint32_T productLoHi;
  in0Hi = in0 >> 16U;
  in0Lo = in0 & 65535U;
  in1Hi = in1 >> 16U;
  in1Lo = in1 & 65535U;
  productHiLo = in0Hi * in1Lo;
  productLoHi = in0Lo * in1Hi;
  in0Lo *= in1Lo;
  in1Lo = 0U;
  outBitsLo = (productLoHi << 16U) + in0Lo;
  if (outBitsLo < in0Lo) {
    in1Lo = 1U;
  }

  in0Lo = outBitsLo;
  outBitsLo += productHiLo << 16U;
  if (outBitsLo < in0Lo) {
    in1Lo++;
  }

  *ptrOutBitsHi = (((productLoHi >> 16U) + (productHiLo >> 16U)) + in0Hi * in1Hi)
    + in1Lo;
  *ptrOutBitsLo = outBitsLo;
}

Why Was A Helper Function Generated For Example 1?

Multiplying two 32-bit numbers yields a 64-bit ideal result. In example1, the type of the ideal result is
uint64.

The actual output type of ufix32_E5 uses only bits 5 to 36 from these 64 bits.

bits = 0:63;
ideal_product_bits = ones(1,64);
most_significant_word = [ones(1,32) NaN*ones(1,32)];
least_significant_word = [NaN*ones(1,32) ones(1,32)];
output_bits = [NaN*ones(1, 27) ones(1,32) NaN*ones(1,5)];
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plot(bits, ideal_product_bits, '.r');
set(gca, 'YLim', [-1 5]);
set(gca, 'YTick', 1:3);
set(gca, 'YTickLabel', {'ideal result', 'MSB | LSB', 'output data type'});
set(gca, 'XTick', 1:64);

% "Move" interesting tick labels so they're readable and show
set(gca, 'xTickLabel', {'63','','','','','','','',  '','','','','','','','', ...
                          '','','','','','','','',  '','','','','','','32','', ...
                          '31','','','','','','','',  '','','','','','','','', ...
                          '','','','','','','','',  '','','','','','','','0'});
set(get(gca,'XLabel'),'String','Bit positions')
hold on
plot(bits, most_significant_word*2, '.b');
plot(bits, least_significant_word*2, '.m');
plot(bits, output_bits*3, '.g');
legend('ideal result', 'most significant word', 'least significant word', 'output ufix32\_E5') % Escape _ to avoid subscripting the E
plot([31.5 31.5], [0 4]); % MSB-LSB boundary
clear bits ideal_product_bits most_significant_word least_significant_word output_bits

The output data type includes bits from both most and least significant words of the ideal product
type. Even though the input and output data types are single word, it takes two words to construct
the ideal result, so it can be converted to the output type. Helper functions are generated to
manipulate this wide ideal product.
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Why Are There Two Helper Functions?

The combination of the double-word multiplication and the cast is encoded in the two helper
functions. The inner function, mul_wide_u32() performs long multiplication of two 32-bit operands
into a 64-bit result. The outer function mul_u32_loSR() performs data type conversion from the raw
uint64 result to the desired output data type.

close_system('fxpdemo_mulhelpers_example1', 0);
close all;

Example 2: Helper Functions Due To Saturation

The following model creates helper functions for multiplication, in order to implement saturation.

open_system('fxpdemo_mulhelpers_example2');
set_param('fxpdemo_mulhelpers_example2', 'SimulationCommand', 'Update');

evalc('slbuild(''fxpdemo_mulhelpers_example2'');'); % Suppress output
fid = fopen('fxpdemo_mulhelpers_example2_grt_rtw/fxpdemo_mulhelpers_example2.c') ; ctext = fread(fid, '*char')'; fclose(fid);
match = regexp(ctext, 'void fxpdemo_mulhelpers_example2_step.*?\n\}', 'match'); disp(match{1});

void fxpdemo_mulhelpers_example2_step(void)
{
  /* Product: '<Root>/MulHelper1' incorporates:
   *  Inport: '<Root>/In1'
   *  Inport: '<Root>/In2'
   */
  Y = mul_us32_sat(U1, U2);
}

This model does not have the range problem that the model in example 1 had. The output type fits
within the least significant word of the ideal product.

In this model, the ideal type can be negative but the output is unsigned. To saturate negative values
to 0, the sign bit needs to be computed. This sign bit resides in the most significant word of the ideal
result. Coder again generates two helpers, one to compute the raw 64-bit result, and one to perform a
saturating cast.

close_system('fxpdemo_mulhelpers_example2', 0);
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Avoiding Helper Functions By Changing Numerical Properties

It is possible to avoid generating the multiplication helpers by:

• Using wrapping multiplications
• Using output types that don't exceed the range of the least significant word
• Multiplying smaller data types with a single word ideal product

open_system('fxpdemo_mulhelpers_example3');
set_param('fxpdemo_mulhelpers_example3', 'SimulationCommand', 'Update');

evalc('slbuild(''fxpdemo_mulhelpers_example3'');'); % Suppress output
fid = fopen('fxpdemo_mulhelpers_example3_grt_rtw/fxpdemo_mulhelpers_example3.c') ; ctext = fread(fid, '*char')'; fclose(fid);
match = regexp(ctext, 'void fxpdemo_mulhelpers_example3_step.*?\n\}', 'match'); disp(match{1});

void fxpdemo_mulhelpers_example3_step(void)
{
  /* Product: '<Root>/Mul1' incorporates:
   *  Inport: '<Root>/In1'
   *  Inport: '<Root>/In2'
   */
  Y1 = (U1 * U2) << 3;
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  /* Product: '<Root>/Mul2' incorporates:
   *  Inport: '<Root>/In3'
   *  Inport: '<Root>/In4'
   */
  Y2 = (uint16_T)(((uint32_T)U3 * U4) >> 5);
}

close_system('fxpdemo_mulhelpers_example3', 0);

Avoiding Helper Functions By Specifying Design Ranges

If large multiplicands are a necessity but the range of possible values on the operands is small
enough, it may be possible to avoid the helper functions by specifying design ranges.

Note: This feature requires an Embedded Coder license.

Let's review a model similar to the one in example 1:

open_system('fxpdemo_mulhelpers_example4');
set_param('fxpdemo_mulhelpers_example4', 'SimulationCommand', 'Update');

Note that we selected the 'Optimize using the specified minimum and maximum values' checkbox on
the optimization pane of the model configuration dialog.

get_param(bdroot, 'UseSpecifiedMinMax')

ans =

    'on'

Examine the step function in the generated code:

evalc('slbuild(''fxpdemo_mulhelpers_example4'');'); % Suppress output
fid = fopen('fxpdemo_mulhelpers_example4_ert_rtw/fxpdemo_mulhelpers_example4.c') ; ctext = fread(fid, '*char')'; fclose(fid);
match = regexp(ctext, 'void fxpdemo_mulhelpers_example4_step.*?\n\}', 'match'); disp(match{1});
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void fxpdemo_mulhelpers_example4_step(void)
{
  /* Product: '<Root>/Mul1' incorporates:
   *  Inport: '<Root>/In1'
   *  Inport: '<Root>/In2'
   */
  Y = (U1 * U2) >> 5;
}

The range of the possible values of the ideal product is from 0 to 500. A single word data type is
sufficient to express this product.

close_system('fxpdemo_mulhelpers_example4', 0);

Caution: If, while running the generated code, values on the signals exceed the design
ranges, incorrect results may be computed.

Avoiding Helper Functions Using CRL Operator Replacement

You can customize code generation by replacing the cumbersome multiplication operators with your
own C macros or custom functions. You may want to do this if, for example, your CPU has resources
to implement wide multiplications more efficiently.

References:

• Create Code Replacement Tables:

helpview([docroot '/ecoder/helptargets.map'], 'tfl_mapi')

• Register Code Replacement Libraries:

helpview([docroot '/ecoder/helptargets.map'], 'tfl_registration')

clear ctext fid match
clear ans
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Fixed-Point Integrators
This example shows a comparison between various fixed-point integrator realizations and an
equivalent floating point realization.
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Fixed-Point Derivatives
This model shows how sample implementations of filtered and unfiltered fixed-point derivative
algorithms compare with their floating-point implementations.
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Fixed-Point State Space
This model shows sample implementations of fixed-point state space realizations with a comparison to
floating-point implementations.
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Fixed-Point Optimizations Using Specified Minimum and
Maximum Values

This example shows how to optimize fixed-point operations in generated code using minimum and
maximum values that you specify in a model.

Overview

Minimum and maximum values can represent environmental limits or mechanical limits, such as the
output ranges of sensors. The code generation software can use these values to create more efficient
code by eliminating unreachable code branches and unnecessary utility functions.

Note: You must ensure that the specified minimum and maximum values are accurate and
trustworthy. Otherwise, optimization might result in numerical mismatch with simulation.

The benefits of optimizing the generated code are:

• Reducing the ROM and RAM consumption.
• Improving the execution speed.

Open Model

Open the model fxpdemo_min_max_optimization.

open_system('fxpdemo_min_max_optimization');
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Inspect Model

In this model, there are minimum and maximum values specified at the input ports upstream of the
various fixed-point blocks. By utilizing these values, every fixed-point operation in the model is
optimized in some way.

Generate Code without Optimization

First, without using the specified minimum and maximum values, generate code for this model.
Double-click the blue button.
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rtwbuild('fxpdemo_min_max_optimization');

### Starting build procedure for: fxpdemo_min_max_optimization
### Successful completion of code generation for: fxpdemo_min_max_optimization

Build Summary

Top model targets built:

Model                         Action          Rebuild Reason                                    
================================================================================================
fxpdemo_min_max_optimization  Code generated  Code generation information file does not exist.  

1 of 1 models built (0 models already up to date)
Build duration: 0h 2m 28.1s

Inspect Code without Optimization

An HTML Code Generation Report opens. Examine the code corresponding to the block "Product with
reduced fraction length output data type". Right-click on this block and select Code Generation >
Navigate to code....

rtwtrace('fxpdemo_min_max_optimization/Product with reduced fraction length output data type');

The generated code is:

rtY.Out1 = mul_u32_u32_u32_sr10(rtU.In1, rtU.In2);

To implement this fixed-point multiplication operation, the code generation software must generate a
utility function mul_u32_u32_u32_sr10. Also, to implement mul_u32_u32_u32_sr10, it must
generate a second utility function, mul_wide_u32. These functions consist of many lines of code and
require several temporary variables.

Enable Optimization

1 Double-click the yellow button to open the Configuration Parameters dialog box.
2 In this dialog box, under Code generation, select Optimize using specified minimum and

maximum values.

set_param('fxpdemo_min_max_optimization', 'UseSpecifiedMinMax', 'on');

Generate Code with Optimization

Now regenerate the code using the specified minimum and maximum values.

Double-click the blue button.

rtwbuild('fxpdemo_min_max_optimization');

### Starting build procedure for: fxpdemo_min_max_optimization
### Successful completion of code generation for: fxpdemo_min_max_optimization

Build Summary

Top model targets built:

Model                         Action          Rebuild Reason                   
===============================================================================
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fxpdemo_min_max_optimization  Code generated  Generated code was out of date.  

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 45.908s

Examine Optimized Code

Right-click on block "Product with reduced fraction length output data type" and select Code
Generation > Navigate to code....

rtwtrace('fxpdemo_min_max_optimization/Product with reduced fraction length output data type');

The generated code is:

rtY.Out1 = rtU.In1 * rtU.In2 >> 10;

Using the specified minimum and maximum values, the code generation software determines that it
can safely implement the reduced fraction length at the output with a right shift, and does not
generate utility functions.

Examine Other Operations

Examine other operations in the generated code to see how the code generation software uses the
specified minimum and maximum values. The code generation software now implements each fixed-
point operation with simple C operations and eliminates unnecessary helper functions and code
branches.
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Fixed-Point Filters
This model shows bit-true implementations of fixed-point direct type I and II filters with time-varying
and time-invariant coefficients. These filters use the fundamental capabilities in Fixed-Point
Designer™ and work with the autoscaling tools.

Note: the DSP System Toolbox™ leverages this capability and extends it by providing high level
design tools and multirate implementations for complex real-time signal processing applications.
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Fixed-Point Lead and Lag Filters
This example shows sample fixed-point implementations of a discrete lead filter and a discrete lag
filter along with reference implementations in floating point.
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Fixed-Point Direct Form Filter
This example shows how to implement a direct form filter in fixed point using fundamental building
blocks such as Gain, Delay, and Sum.
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Fixed-Point Parallel Form Filter
This example shows how to implement a parallel form filter in fixed point using fundamental building
blocks such as Gain, Delay, and Sum.
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Fixed-Point Series Cascade Form Filter
This example shows how to construct a fixed-point series cascade form filter using the fundamental
building blocks of delay, sum, and gain.
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Fixed-Point Function Approximation
When a fixed-point library function is not available, fixed-point applications require an approximation
of the function. Often, an interpolated look up table is used to store an approximation of the function
over a specified range.

This example shows how to approximate the function y = sin(2*pi*x) over a specified input range
using a lookup table.

See also: FunctionApproximation.Problem, FunctionApproximation.Options

In this example, the input uses an unsigned 16-bit data type, fixdt(0,16,16), and the output uses
a signed 16-bit data type, fixdt(1,16,14).

The goal of this example is to create an approximation that is accurate to 8 bits to the right of the
binary point. This means that the worst case error should be less than 2^(-8).

There are many sets of lookup table data points that would meet this goal. Different implementations
can be chosen depending on goals such as memory usage and speed of computation. This example
finds a solution that meets this accuracy goal with the minimal number of data points.

Approximate Function

Use the FunctionApproximation.Options object to specify accuracy and word length
constraints.

options = FunctionApproximation.Options();
options.AbsTol = 2^-8;
options.RelTol = 0;
options.WordLengths = [8 16 32];
options.MemoryUnits = 'bytes';
options.OnCurveTableValues = true;

Specify the function to approximate and the input ranges and data types in the
FunctionApproximation.Problem object.

functionToApproximate = @(x) sin(2*pi*x);

problem = FunctionApproximation.Problem(functionToApproximate, 'Options', options);
problem.InputTypes = numerictype(0,16,16);
problem.InputLowerBounds = 0;
problem.InputUpperBounds = 0.25;
problem.OutputType = numerictype(1,16,14);

% Create a LUT solution
solution = solve(problem);

% Change breakpoint specification to EvenPow2Spacing and create a LUT
% solution again
problem.Options.BreakpointSpecification = 'EvenPow2Spacing';
bestEvenPow2SpacingSolution = solve(problem);

|  ID | Memory (bytes) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification |             Error(Max,Current) | 
|   0 |     4.0000e+00 |        0 |          2 |               8 |            8 |             EvenSpacing |     3.906250e-03, 2.105137e-01 |
|   1 |     1.9000e+01 |        0 |         17 |               8 |            8 |             EvenSpacing |     3.906250e-03, 4.257483e-03 |
|   2 |     3.5000e+01 |        1 |         33 |               8 |            8 |             EvenSpacing |     3.906250e-03, 3.848536e-03 |
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|   3 |     2.8000e+01 |        1 |         26 |               8 |            8 |             EvenSpacing |     3.906250e-03, 3.768435e-03 |
|   4 |     2.4000e+01 |        1 |         22 |               8 |            8 |             EvenSpacing |     3.906250e-03, 3.596819e-03 |
|   5 |     2.1000e+01 |        1 |         19 |               8 |            8 |             EvenSpacing |     3.906250e-03, 3.589720e-03 |
|   6 |     1.5000e+01 |        0 |         13 |               8 |            8 |             EvenSpacing |     3.906250e-03, 7.812500e-03 |
|   7 |     1.7000e+01 |        1 |         15 |               8 |            8 |             EvenSpacing |     3.906250e-03, 3.824648e-03 |
|   8 |     1.2000e+01 |        0 |         10 |               8 |            8 |             EvenSpacing |     3.906250e-03, 4.677033e-03 |
|   9 |     1.1000e+01 |        0 |          9 |               8 |            8 |             EvenSpacing |     3.906250e-03, 6.957420e-03 |
|  10 |     1.4000e+01 |        1 |         12 |               8 |            8 |             EvenSpacing |     3.906250e-03, 3.687388e-03 |
|  11 |     1.3000e+01 |        0 |         11 |               8 |            8 |             EvenSpacing |     3.906250e-03, 7.812500e-03 |
|  12 |     9.0000e+00 |        0 |          7 |               8 |            8 |             EvenSpacing |     3.906250e-03, 7.818172e-03 |
|  13 |     6.0000e+00 |        0 |          2 |              16 |            8 |             EvenSpacing |     3.906250e-03, 2.105137e-01 |
|  14 |     1.3000e+01 |        0 |          9 |              16 |            8 |             EvenSpacing |     3.906250e-03, 6.957420e-03 |
|  15 |     6.0000e+00 |        0 |          2 |               8 |           16 |             EvenSpacing |     3.906250e-03, 2.105137e-01 |
|  16 |     4.0000e+00 |        0 |          2 |               8 |            8 |         EvenPow2Spacing |     3.906250e-03, 2.105137e-01 |
|  17 |     1.1000e+01 |        0 |          9 |               8 |            8 |         EvenPow2Spacing |     3.906250e-03, 6.957420e-03 |
|  18 |     6.0000e+00 |        0 |          2 |              16 |            8 |         EvenPow2Spacing |     3.906250e-03, 2.105137e-01 |
|  19 |     1.3000e+01 |        0 |          9 |              16 |            8 |         EvenPow2Spacing |     3.906250e-03, 6.957420e-03 |
|  20 |     6.0000e+00 |        0 |          2 |               8 |           16 |         EvenPow2Spacing |     3.906250e-03, 2.105137e-01 |
|  21 |     8.0000e+00 |        0 |          2 |              16 |           16 |         EvenPow2Spacing |     3.906250e-03, 2.105137e-01 |
|  22 |     1.4000e+01 |        1 |          7 |               8 |            8 |          ExplicitValues |     3.906250e-03, 3.830054e-03 |
|  23 |     3.5000e+01 |        1 |         33 |               8 |            8 |         EvenPow2Spacing |     3.906250e-03, 3.848536e-03 |

Best Solution
|  ID | Memory (bytes) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification |             Error(Max,Current) |
|  10 |     1.4000e+01 |        1 |         12 |               8 |            8 |             EvenSpacing |     3.906250e-03, 3.687388e-03 |

|  ID | Memory (bytes) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification |             Error(Max,Current) | 
|   0 |     4.0000e+00 |        0 |          2 |               8 |            8 |         EvenPow2Spacing |     3.906250e-03, 2.105137e-01 |
|   1 |     1.9000e+01 |        0 |         17 |               8 |            8 |         EvenPow2Spacing |     3.906250e-03, 4.257483e-03 |
|   2 |     3.5000e+01 |        1 |         33 |               8 |            8 |         EvenPow2Spacing |     3.906250e-03, 3.848536e-03 |
|   3 |     1.1000e+01 |        0 |          9 |               8 |            8 |         EvenPow2Spacing |     3.906250e-03, 6.957420e-03 |
|   4 |     6.0000e+00 |        0 |          2 |              16 |            8 |         EvenPow2Spacing |     3.906250e-03, 2.105137e-01 |
|   5 |     2.1000e+01 |        0 |         17 |              16 |            8 |         EvenPow2Spacing |     3.906250e-03, 4.257483e-03 |
|   6 |     1.3000e+01 |        0 |          9 |              16 |            8 |         EvenPow2Spacing |     3.906250e-03, 6.957420e-03 |
|   7 |     6.0000e+00 |        0 |          2 |               8 |           16 |         EvenPow2Spacing |     3.906250e-03, 2.105137e-01 |
|   8 |     2.0000e+01 |        0 |          9 |               8 |           16 |         EvenPow2Spacing |     3.906250e-03, 4.856432e-03 |

Best Solution
|  ID | Memory (bytes) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification |             Error(Max,Current) |
|   2 |     3.5000e+01 |        1 |         33 |               8 |            8 |         EvenPow2Spacing |     3.906250e-03, 3.848536e-03 |

Explore Solutions

%The software returns several implementations that meet the requirements
%specified in the |FunctionApproximation.Problem| and
%|FunctionApproximation.Options| objects. You can explore these different
%implementations.

feasibleSolutions = solution.FeasibleSolutions;
tableDataVec = [feasibleSolutions.TableData];
evenSpacingSolutions = find([tableDataVec.IsEvenSpacing]);
unevenSpacingSolutions = find(~[tableDataVec.IsEvenSpacing]);

evenSolutionsMemoryUsage   = arrayfun(@(x) x.totalMemoryUsage(), feasibleSolutions(evenSpacingSolutions));
unevenSolutionsMemoryUsage = arrayfun(@(x) x.totalMemoryUsage(), feasibleSolutions(unevenSpacingSolutions));

bestEvenSpacingSolution  = feasibleSolutions(evenSpacingSolutions(evenSolutionsMemoryUsage == min(evenSolutionsMemoryUsage)));
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bestUnevenSpacingSolution = feasibleSolutions(unevenSpacingSolutions(unevenSolutionsMemoryUsage == min(unevenSolutionsMemoryUsage)));

xeven = bestEvenSpacingSolution.TableData.BreakpointValues{1};
yeven = bestEvenSpacingSolution.TableData.TableValues;

xuneven = bestUnevenSpacingSolution.TableData.BreakpointValues{1};
yuneven = bestUnevenSpacingSolution.TableData.TableValues;

xpow2 = bestEvenPow2SpacingSolution.TableData.BreakpointValues{1};
ypow2 = bestEvenPow2SpacingSolution.TableData.TableValues;

Compare Memory Usage

Compare the memory used by the lookup tables.

memoryValues = [...
    totalMemoryUsage(bestEvenPow2SpacingSolution), ...
    totalMemoryUsage(bestEvenSpacingSolution), ...
    totalMemoryUsage(bestUnevenSpacingSolution)];

figure();
xTickLabels = {'Even pow2 spacing \newline(fastest)','Even spacing \newline(faster)','Uneven spacing \newline(fast)'};
hMemory = bar(memoryValues);
title('Comparison of memory usage obtained by different \newline breakpoint specification options');
hMemory.Parent.XTickLabel = xTickLabels;
hMemory.Parent.XTickLabelRotation = 45;
hMemory.Parent.YLabel.String = 'Memory (bytes)';
hMemory.Parent.Box = 'on';
hMemory.Parent.YGrid = 'on';
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The amount of memory used by the tables using even spacing and uneven spacing are the same, but
the number of points are different. This is because when storing the breakpoints for tables using even
spacing, only the first point and spacing are stored. In contrast, all breakpoints are stored for tables
using uneven spacing.

Even pow2 spacing stores more than double the points stored for even spacing. From a memory
usage perspective, even pow2 spacing is the least optimal for this function. However, computations
for even pow2 spacing are performed using arithmetic shifts instead of multiplication, which can lead
to faster execution times.

Compare Solutions to Original Function

Compare the solution using even pow2 spacing to the original function.

[~, hEvenPow2Spacing] = compare(bestEvenPow2SpacingSolution);
hEvenPow2Spacing.Children(4).Title.String = [hEvenPow2Spacing.Children(4).Title.String ' (Even pow2 spacing)'];
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Compare the solution using even spacing to the original function.

[~, hEvenSpacing] = compare(bestEvenSpacingSolution);
hEvenSpacing.Children(4).Title.String = [hEvenSpacing.Children(4).Title.String ' (Even spacing)'];
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Compare the solution using uneven spacing to the original function.

[~, hUnevenSpacing] = compare(bestUnevenSpacingSolution);
hUnevenSpacing.Children(4).Title.String = [hUnevenSpacing.Children(4).Title.String ' (Uneven spacing)'];
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Use the Approximation in a Simulink® Model

You can use this approximation directly in a Simulink® Lookup Table (n-D) block.

modelName = 'fxpdemo_approx';
open_system(modelName)

modelWorkspace = get_param(modelName, 'ModelWorkspace');

modelWorkspace.assignin('xevenFirstPoint'     , xeven(1)  );
modelWorkspace.assignin('xevenSpacing'        , diff(xeven(1:2))  );
modelWorkspace.assignin('yeven'               , yeven  );
modelWorkspace.assignin('TableDTeven'         , bestEvenSpacingSolution.TableData.TableDataType      );
modelWorkspace.assignin('BreakpointDTeven'    , bestEvenSpacingSolution.TableData.BreakpointDataTypes);

modelWorkspace.assignin('xuneven'             , xuneven);
modelWorkspace.assignin('yuneven'             , yuneven);
modelWorkspace.assignin('TableDTuneven'       , bestUnevenSpacingSolution.TableData.TableDataType      );
modelWorkspace.assignin('BreakpointDTuneven'  , bestUnevenSpacingSolution.TableData.BreakpointDataTypes);

modelWorkspace.assignin('xpow2FirstPoint'     , xpow2(1)  );
modelWorkspace.assignin('xpow2Spacing'        , diff(xpow2(1:2))  );
modelWorkspace.assignin('ypow2'               , ypow2  );
modelWorkspace.assignin('TableDTpow2'         , bestEvenPow2SpacingSolution.TableData.TableDataType      );
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modelWorkspace.assignin('BreakpointDTpow2'    , bestEvenPow2SpacingSolution.TableData.BreakpointDataTypes);

set_param(modelName, 'Dirty', 'off');

Summary

The ideal function and the three approximations are used in the model fxpdemo_approx. If you have
Simulink® Coder™ installed, you can generate code for the model. If inline parameters is ON, the
generated code will show the large efficiency differences in the implementation of unevenly spaced,
evenly spaced, and power of 2 spacing.

sim(modelName)
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Clean up

close_system(modelName, 0);
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Fixed-Point Conversion Using Fixed-Point Tool and Derived
Range Analysis

This example shows how to use derived range analysis to collect ranges that then can be used by the
Fixed-Point Tool to propose fixed-point scaling.

Overview

The Fixed-Point Tool can collect range data either by simulating the model and logging range
information or by running derived range analysis. Range information obtained from simulation is
completely dependent on the input to the simulation. Accurate range information can be obtained
only if the inputs exercise the system over its full operating range. Unlike range collection using
simulation logging, derived range analysis does not depend on sample inputs. Instead it uses formal
methods to generate range information.

The benefits of derived range analysis over simulation logging are:

• Accurate results regardless of quality of input data
• Faster analysis times

Open and Inspect Model

Open the ex_fxpdemo_corner_detection model.

This model implements a corner detection algorithm based on the Harris corner detection method.
The top level of the model includes blocks required to run the simulation. Note that the input to the
simulation is a checker board image and the output is a 2 by n workspace matrix variable,
cornerMarks, that contains locations of all found corners. The Corner Detector subsystem
implements the algorithm. Within the Corner Detector subsystem, the Sobel Edge block applies Sobel
operator to the input data, and the Corner Metric subsystem calculates the Harris corner metric. This
example focuses on analyzing ranges of the Corner Metric subsystem using the Fixed-Point Tool.

Note: Design ranges on inputs to the Corner Metric subsystem have been explicitly specified by the
user prior to running the analysis. Those design ranges can be obtained either from running derived
range analysis, simulating the model with logging on the system, or inferred from the model.

Simulate Model

Some blocks inside the Corner Metric subsystem have fixed-point types manually specified. However,
some of the types were chosen poorly, and the model fails to detect corners correctly. Simulate the
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model by clicking the Simulate button. Observe that numerous overflows occur and that most of the
corners are not marked.

In the Fixed-Point Tool, in the Visualization of Simulation Data pane, overflow markers indicate
the blocks in the model that overflowed during simulation. The Fixed-Point Tool shows overflows
occurred in the Gaussian Filter Accumulators.

Prepare Model For Conversion

To open the Fixed-Point Tool, right click on the Corner Metric subsystem and select Fixed-Point
Tool .

Run Derived Range Analysis

The Fixed-Point Tool derives ranges by analyzing the generated code. Fixed-point data types generate
more code and can make it harder for the analysis to derive accurate ranges. To improve the
accuracy of the results, derive ranges of models using double-precision data types.

In the Fixed-Point Tool, in the Collect Ranges section of the tool-strip, click the Derived Ranges
button to specify the range collection method. To begin the range analysis click the Collect Ranges
button. This action overrides the data types in the model with double-precision types before
performing the analysis to improve the accuracy of the results. After the analysis finishes, the Fixed-
Point Tool displays collected range information.
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Propose Fixed-Point Data Types

Range information obtained from derived range analysis can be used by the Fixed-Point Tool to
propose fixed-point data types for blocks in the model. This can be done by clicking Propose Data
Types button in the Fixed-Point Tool.

Apply Proposed Data Types

To apply the proposed data types, click the Apply Data Types button. By default, the Fixed-Point Tool
applies all of the proposed data types. To apply a subset of the proposals, use the Accept check box
to specify the proposals that you want to apply.

Verify Proposed Data Types

Proposed types should handle all possible inputs correctly. Set the model to use the newly applied
types, simulate the model, and observe that all of the corners are now detected.

Note: Applying proposed data types updates the data type visualization and removes the
corresponding overflow indicators
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Fixed-Point Advisor
This example shows how you can use the Fixed-Point Advisor (FPA) to prepare a floating-point model
or subsystem for conversion to fixed point. After preparation, use the Fixed-Point Tool to convert the
floating-point model or subsystem to an equivalent fixed-point representation.
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Fixed-Point Tool
This example uses the fxpdemo_feedback model to demonstrate how to use the Iterative Fixed-
Point Conversion workflow in the Fixed-Point Tool. The iterative workflow in the tool automates
common tasks of collecting min-max range data during simulations for use in automatically selecting
fixed-point data types for blocks. You can configure any fixed-point capable block in Simulink® to
accept the fixed-point data types proposed by the tool. You can manually specify data types for key
blocks such as input ports and selectively disable automated scaling in a model on a block-by-block
basis. This gives the Fixed-Point Tool more information to work with and results in automatically
selected fixed-point scalings that are compatible with the key manually selected scalings.

Open the fxpdemo_feedback Model

The fxpdemo_feedback model contains a digital controller with initial guesses for fixed-point data
types already specified in the Controller subsystem. In this example, you specify a known tolerance
for the plant output, propose new fixed-point data types for the Controller subsystem, then apply
the proposed data types to the model.

Open the Fixed-Point Tool

On the Simulink® Apps tab, under Code Generation, click the app icon.

Start the iterative Fixed-Point Conversion workflow. In the Fixed-Point Tool, click New > Iterative
Fixed-Point Conversion.

Set Up the Model for Conversion to Fixed-Point

1 Select the subsystem that you want to convert. Under System Under Design (SUD), select the
Controller subsystem.

2 Choose the range collection method to use. Under Range Collection Mode, select Simulation
ranges.

3 Specify Simulation Inputs. For this example, use the default model inputs for simulation.
4 Specify signal tolerances for logged signals. Set the Absolute Tolerance of the Plant Output

signal to 0.1.
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Prepare for Conversion to Fixed-Point

To prepare the model for fixed-point conversion, click Prepare. The Fixed-Point Tool creates a backup
version of the model and checks the model for compatibility with the conversion process. For more
information about preparation checks, see “Use the Fixed-Point Tool to Prepare a System for
Conversion” on page 38-2.

53 Fixed-Point Designer Examples

53-268



Collect Ranges

To collect ranges, click the Collect Ranges button arrow and select Double precision. Click
Collect Ranges to start the range collection simulation.
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When you select Double precision as the range collection mode, the tool simulates the
fxpdemo_feedback model with data type override enabled. Data type override performs a global
override of the fixed-point data types in the model, thereby avoiding quantization effects. This enables
you to establish an ideal floating-point baseline for the behavior of your model.

The results of range collection are stored in BaselineRun. The Results spreadsheet displays a
summary of the statistics collected during the range collection simulation, including the currently
specified data types on the model (SpecifiedDT), simulation minimum, and simulation maximum
values. The compiled data type (CompiledDT) column displays double for all objects in the
Controller subsystem, indicating that data type override was applied during the range collection
simulation.

You can click on any result to view additional details in the Results Details pane. The Visualization
of Simulation Data pane displays a summary of histograms of the bits used by each object in your
model. You can customize the information displayed in the Results spreadsheet, or use the Explore
tab to sort and filter these results based on additional criteria. For more information, see “Control
Views in the Fixed-Point Tool” on page 39-12.
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Propose Fixed-Point Data Types

To configure the settings to use for data type proposals, expand the Settings button arrow. For this
example, use the default settings.
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To propose data types based on the ranges collected and the data type proposal settings specified,
click Propose Data Types. The tool uses all available range data to calculate data type proposals
which can include design minimum or maximum values, simulation minimum or maximum values, and
derived minimum or maximum values. Data types are proposed for all objects in the system under
design whose Lock output data type setting against changes by the fixed-point tools
parameter is cleared.

The Results spreadsheet updates to show the proposed data types in the ProposedDT column. The
Fixed-Point Tool allows you to selectively apply data type proposals to objects in your model. In the
spreadsheet, use the Accept check boxes to specify the proposed data types that you want to apply to
your model. By default, the app accepts all data type proposals which differ from the currently
specified data types. For this example, use the default.
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Apply Fixed-Point Data Types to the Model and Verify New Settings

To write the proposed data types to the model, click Apply Data Types. The tool updates the
SpecifiedDT column to show that the data types have been applied to the model.

Simulate the model using the applied fixed-point data types. Expand the Simulate with Embedded
Types button arrow and select Specified data types. Then click Simulate with Embedded Types.
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Next, simulate the model using the fixed-point data types currently specified on the model. Expand
the Simulate with Embedded Types button arrow and select Specified data types, then click
Simulate with Embedded Types.

The Fixed-Point Tool simulates the model using the new fixed-point data types and logs minimum and
maximum values and overflow data for all objects in the system under design. This information is
stored in a new run named EmbeddedRun. The icon next to EmbeddedRun displays a pass status,
indicating that all signals in the system under design meet the specified tolerances. The
Visualization of Simulation Data pane updates to display the new EmbeddedRun data.

53 Fixed-Point Designer Examples

53-274



To compare the ideal results stored in BaselineRun with the newly applied fixed-point data types,
select EmbeddedRun from the Run to compare in SDI drop down menu. Then click Compare
Results to open the Simulation Data Inspector.

In the Simulation Data Inspector, select PlantOutput as the signal to compare.
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The plot of the plant output signal for EmbeddedRun is within the specified tolerance band.

If the behavior of the converted system does not meet your requirements or if you wish to explore the
effect of additional data type selections, you can propose new data types after applying new proposal
settings. Continue iterating until you find settings for which the fixed-point behavior of the system is
acceptable.

After the conversion process, if you want to restore your model to its state at the start of the
conversion process, click Restore Original Model. Any changes made to your model after the
preparation stage of conversion are removed.

See Also
Fixed-Point Tool
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Fixed-Point S-Functions: Querying Properties
This example shows several ways to use S-functions to probe signal properties. Use this model for
simulation only; it does not support code generation.
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Fixed-Point S-Functions: Arithmetic Shift
This example shows a custom C language S-function written to perform an arithmetic shift. This
operation is available in Simulink® with the "Shift Arithmetic" block, which can be used for
comparison with this S-function example.

To see the source code for the S-function, use the right-click context menu to select "Look under
mask". When the dialog box appears, press the Edit button.
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Fixed-Point S-Functions: Fixed-Point Source
This example shows a custom C language S-function written to generate a constant value. This
operation is available in Simulink® with the "Constant" block, which can be used for comparison with
this S-function example.

To see the source code for the S-function, use the right-click context menu to select "Look Under
Mask". When the dialog box appears, press the Edit button.
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Fixed-Point S-Functions: Data Type Propagation
This model shows how to propagate fixed-point data types in fixed-point S-Functions. It exercises a
custom C language S-function written to enforce data types across multiple signals. This operation is
available in Simulink® with the "Data Type Propagation" block, which can be used for comparison
with this S-function example.

To see the source code for the S-function, use the right-click context menu to select "Block
Parameters". When the dialog box appears, press the Edit button.
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Fixed-Point S-Functions: Product and Sum
This model shows how to exercise a custom C language S-function written to compute a fixed-point
"product and sum" operation. To see the source code for the S-function, use the right-click context
menu to select "Block Parameters". When the dialog box appears, press the Edit button.
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How to Use HDL Optimized Normalized Reciprocal
This example shows how and when to use the normalizedReciprocal function and the Normalized
Reciprocal HDL Optimized block to compute the normalized reciprocal of an input.

The reciprocal of a value can have a large range, and fixed-point types have limited range compared
to floating-point types. If an input value u is small, then 1/u is large, and if u is large, then 1/u is
small. Therefore, a fixed-point type for 1/u must have high precision and large range which requires a
large word length.

In applications where the range of a product of a reciprocal and another variable is known, then it is
efficient to compute a normalized reciprocal, multiply it by the other variable, and then apply a shift
to the final output. For example, this is the case in least-squares applications where a division by a
pivot element is required in back-substitution.

Calculating the Normalized Reciprocal

Given an input u, Normalized Reciprocal computes the normalized reciprocal, y, and exponent, e,
such that

       (2.^e).*y = 1./u,

and

       0.5 < |y| <= 1.

If u = 0 and u is fixed-point or scaled-double, then y = 2 - eps(y).

If u = 0 and u is a floating-point type, then y = inf.

If u~=0, this function returns the equivalent of

      [y,e] = log2(1./abs(double(u)))
      y(u<0) = -y(u<0)

except that it is computed using only shifts and adds.

Choose the MATLAB Function or the Simulink Block

For C code generation and system design, use the MATLAB function normalizedReciprocal. This
function does not compute with latency. For simulation, compile the function into a MEX file for speed
using fiaccel, buildInstrumentedMex, or codegen.

To generate optimized HDL code, use the Normalized Reciprocal HDL Optimized block. This
block is optimized for high throughput and small area in HDL, and simulates with the same latency
present in the generated HDL code.

The block and function produce identical numerical outputs.

Compute the Normalized Reciprocal Using MATLAB

Compute the normalized reciprocal of a fixed-point input, u, then compare this value to the actual
value of the reciprocal.

u = fi([-pi,0.01,pi])
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u = 

   -3.1416    0.0100    3.1416

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 13

[y,e] = normalizedReciprocal(u)

y = 

   -0.6367    0.7806    0.6367

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 14

e =

  1x3 int32 row vector

   -1    7   -1

computed_reciprocal = 2.^double(e).* double(y)

computed_reciprocal =

   -0.3183   99.9141    0.3183

actual_reciprocal = 1./double(u)

actual_reciprocal =

   -0.3183   99.9024    0.3183

You can see that the normalized reciprocal and the actual reciprocal are close in value.

Define Inputs for Simulink Model

Define a fixed-point input, u, to take the normalized reciprocal of using the Normalized Reciprocal
HDL Optimized block.

x = linspace(0.001,100,100);
x = [fliplr(-x),x];
u = fi(x,1,18);

Latency of the Normalized Reciprocal HDL Optimized block

The Normalized Reciprocal HDL Optimized block works by normalizing the input using a binary
search, which has a latency of approximately log2 of the word length of the input, followed by a
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CORDIC reciprocal kernel, which has a latency approximately the same as the word length of the
input.

The Normalized Reciprocal HDL Optimized block is always ready to accept data. After the initial
latency, valid samples are output every sample. The latency in samples for a fixed-point input u is

       D = ceil(log2(u.WordLength)) + u.WordLength + 5

You can use the function normalizedReciprocalLatency, included in this example, to compute
the latency for inputs with fixed point, double, or single numeric types.

To align the input samples with the output of the Normalized Reciprocal HDL Optimized block, use
the latency D in a delay.

D = normalizedReciprocalLatency(u)

D =

    28

Run the Normalized Reciprocal Simulink Model

As a simple example where the range of a product of a reciprocal and another variable is known,
compute the normalized reciprocal of a value and multiply it by itself, so the final product should be
equal to one. Even though the input value and reciprocal have large ranges, the product of the value
and its reciprocal have a known range.

Note that the product u*y can be computed in the same type as u because 0.5 < abs(y) <= 1,
and so the product does not grow larger in magnitude.

model = 'NormalizedReciprocalModel';
open_system(model)
out = sim(model);
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Analyze the Results of the Normalized Reciprocal Simulink Model

In the following plots, you can see that the input u and the reciprocal 1/u have large ranges, but the
normalized reciprocal y is in the range -1 to 1.

The input, u, is a vector of fi values which span the range of -100 to 100.

normalizedReciprocalPlot(1,u,out.y,out.e,out.z);

The actual value of the reciprocal, 1/u, is nearly identical to the normalized reciprocal, (2.^e).*y.
The reciprocal 1/u has a large range, which means that to compute a straight reciprocal in fixed
point would require a data type with a high dynamic range (i.e. large word length and large fraction
length).

normalizedReciprocalPlot(2,u,out.y,out.e,out.z);
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The normalized reciprocal, y, is in the range

       0.5 < |y| <= 1

and can be efficiently and accurately stored in a data type with the same word length as u. The
numeric type of y has a fraction length equal to two less than the word length of u. This additional
integer bit ensures that y can be positive or negative, and can also exactly represent the values -1
and +1.

normalizedReciprocalPlot(3,u,out.y,out.e,out.z);
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The normalized exponent, e, and the magnitude of the input, u, have an inverse relationship. When u
is large in magnitude, then e is a large negative value. When u is close to zero, then e is a large
positive value. The relationship is

       (2.^e).*y = 1./u,

normalizedReciprocalPlot(4,u,out.y,out.e,out.z);
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The model multiplies the normalized reciprocal y by the input u and then scales the result by shifting
by e. Since y has a magnitude less than 1, the product can be done in the fixed-point type of u. The
output, z = 2^e (y * u), is approximately equal to 1.

normalizedReciprocalPlot(5,u,out.y,out.e,out.z);
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The output, z, has a small roundoff error as a result of computing the normalized reciprocal with
fixed-point data types.

normalizedReciprocalPlot(6,u,out.y,out.e,out.z);
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Implement Hardware-Efficient Real Divide HDL Optimized
This example demonstrates how to perform the division of real numbers using hardware-efficient
MATLAB® code embedded in Simulink® models. The model used in this example is suitable for HDL
code generation for fixed-point inputs. The algorithm employs a fully pipelined architecture, which is
suitable for FPGA or ASIC devices where throughput is of concern. This implementation also uses
available on-chip resources judiciously, making it suitable for resource-conscious designs as well.

Division of Real Numbers

The division operation for two real numbers a and b, where b ≠ 0, is defined as a
b = c, such that

a = b ⋅ c.

The CORDIC Algorithm

CORDIC is an acronym for COordinate Rotation DIgital Computer, and can be used to efficiently
compute many trigonometric, hyperbolic, and arithmetic functions. For a detailed explanation of the
CORDIC algorithm and its application in the calculation of a trigonometric function, see Compute
Sine and Cosine Using CORDIC Rotation Kernel.

Fully Pipelined Fixed-Point Computations

The Real Divide HDL Optimized block supports HDL code generation for fixed-point data with binary-
point scaling. It is designed with this application in mind, and employs hardware specific semantics
and optimizations. One of these optimizations is pipelining its entire internal circuitry to maintain a
very high throughput.

When deploying intricate algorithms to FPGA or ASIC devices, there is often a trade-off between
resource usage and total throughput for a given computation. Resource-sharing often reduces the
resources consumed by a design, but also reduces the throughput in the process. Simple arithmetic
and trigonometic computations, which typically form parts of bigger computations, require high
throughput to drive circuits further in the design. Thus, fully pipelined implementations consume
more on-chip resources but are beneficial in large designs.

All of the key computational units in the Real Divide HDL Optimized block are fully pipelined
internally. This includes not only the CORDIC circuitry used to perform the Givens rotations, but also
the adders and shifters used elsewhere in the design, thus ensuring maximum throughput.

How to Interface with the Real Divide HDL Optimized Block

Because of its fully pipelined nature, the Real Divide HDL Optimized block is able to accept input
data on any cycle, including consecutive cycles. To send input data to the block, the validIn signal
must be true. When the block has finished the computation and is ready to send the output, it will
change validOut to true for one clock cycle. For inputs sent on consecutive cycles, validOut will
also be set to true on consecutive cycles. Both the numerator and the denominator must be sent
together on the same cycle.
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Open the Model and Define Input Data

To open the example model, at the command line, enter:

mdl = 'fxpdemo_realDivide';
open_system(mdl)

The model contains the Real Divide HDL Optimized block connected to a data source which takes in
arrays of inputs (numerators and denominators) and passes an input value from each array to the
block on consecutive cycles. The output computed for each value is stored in a workspace variable.
The simulation terminates when all inputs have been processed.

Define arrays of inputs realDivideNumerators and realDivideDenominators. For this example,
the inputs are doubles. Note that both the numerator and the denominator should have the same
datatype.

rng('default');
realDivideNumerators = 9*rand(1000,1) + 1;
realDivideDenominators = 9*rand(1000,1) + 1;

Define the output datatype to be used in the model. For this example, the outputs are also doubles.
Note that fixed-point type outputs can only be used with fixed-point type inputs.

OutputType = 'double';

Simulate the Model and Examine the Output

Simulate the model.

sim(mdl);

When the simulation is complete, a new workspace variable, realDivideOutputs, is created to hold
the computed value for each pair of inputs.

To examine the error of the calculation, compare the output of the Real Divide HDL Optimized block
to that of the built-in MATLAB® divide function.

expectedOutput = realDivideNumerators./realDivideDenominators;
actualOutput = realDivideOutputs;
maxError = max(abs(expectedOutput - actualOutput))

maxError = 0

 Implement Hardware-Efficient Real Divide HDL Optimized

53-297



Implement Hardware-Efficient Complex Divide HDL Optimized
This example demonstrates how to perform the division of complex numbers using hardware-efficient
MATLAB® code embedded in Simulink® models. The model used in this example is suitable for HDL
code generation for fixed-point inputs. The algorithm employs a fully pipelined architecture, which is
suitable for FPGA or ASIC devices where throughput is of concern. This implementation also uses
available on-chip resources judiciously, making it suitable for resource-conscious designs as well.

Division of Complex Numbers

The division operation for two complex numbers a + bi and c + di, where b ≠ 0, is defined as
z = a + bi

c + di . After multiplying the denominator by its complex conjugate, this can be re-written as

z = (ac + bd) + (bc− ad)i
c2 + d2 .

The CORDIC Algorithm

CORDIC is an acronym for COordinate Rotation DIgital Computer, and can be used to efficiently
compute many trigonometric, hyperbolic, and arithmetic functions. For a detailed explanation of the
CORDIC algorithm and its application in the calculation of a trigonometric function, see Compute
Sine and Cosine Using CORDIC Rotation Kernel.

Fully Pipelined Fixed-Point Computations

The Complex Divide HDL Optimized block supports HDL code generation for fixed-point data with
binary-point scaling. It is designed with this application in mind, and employs hardware specific
semantics and optimizations. One of these optimizations is pipelining its entire internal circuitry to
maintain a very high throughput.

When deploying intricate algorithms to FPGA or ASIC devices, there is often a trade-off between
resource usage and total throughput for a given computation. Resource-sharing often reduces the
resources consumed by a design, but also reduces the throughput in the process. Simple arithmetic
and trigonometic computations, which typically form parts of bigger computations, require high
throughput to drive circuits further in the design. Thus, fully pipelined implementations consume
more on-chip resources but are beneficial in large designs.

All of the key computational units in the Complex Divide HDL Optimized block are fully pipelined
internally. This includes not only the CORDIC circuitry used to perform the Givens rotations, but also
the adders and shifters used elsewhere in the design, thus ensuring maximum throughput.

Interfacing with the Complex Divide HDL Optimized Block

Because of its fully pipelined nature, the Complex Divide HDL Optimized block is able to accept input
data on any cycle, including consecutive cycles. To send input data to the block, the validIn signal
must be set to true. When the block has finished the computation and is ready to send the output, it
will set validOut to true for one clock cycle. For inputs sent on consecutive cycles, validOut will
also be set to true on consecutive cycles. Both the numerator and the denominator must be sent
together on the same cycle.
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Open the Model and Define Input Data

To open the example model, at the command line, enter:

mdl = 'fxpdemo_complexDivide';
open_system(mdl)

The model contains the Complex Divide HDL Optimized block connected to a data source which takes
in arrays of inputs (numerators and denominators) and passes an input value from each array to the
block on consecutive cycles. The output computed for each value is stored in a workspace variable.
The simulation terminates when all inputs have been processed.

Define arrays of inputs complexDivideNumerators and complexDivideDenominators. For this
example, the inputs are doubles. Note that both the numerator and the denominator should have the
same datatype.

rng('default');
complexDivideNumerators = (9*rand(1000,1) + 1) + (9*rand(1000,1) + 1)*1i;
complexDivideDenominators = (9*rand(1000,1) + 1) + (9*rand(1000,1) + 1)*1i;

Define the output dataype to be used in the model. For this example, the outputs are also doubles.
Note that fixed-point type outputs can only be used with fixed-point type inputs.

OutputType = 'double';

Simulate the Model and Examine the Output

Simulate the model.

sim(mdl);

When the simulation is complete, a new workspace variable, complexDivideOutputs, is created to
hold the computed value for each pair of inputs.

Examine the error of the calculation by comparing the output of the Complex Divide HDL Optimized
block to that of the built-in MATLAB® divide function.

expectedOutput = complexDivideNumerators./complexDivideDenominators;
actualOutput = complexDivideOutputs;
maxError = max(abs(expectedOutput - actualOutput))

maxError = 3.5958e-15
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Implement Hardware-Efficient Hyperbolic Tangent
This example demonstrates how to compute the hyperbolic tangent of a given real-valued set of data
using hardware-efficient MATLAB® code embedded in Simulink® models. The model used in this
example is suitable for HDL code generation for fixed-point inputs. The algorithm employs an
architecture that shares computational and memory units across different steps, which is beneficial
when deploying to FPGA or ASIC devices with constrained resources. This implementation thus has a
smaller throughput than a fully pipelined implementation, but it also has a smaller on-chip footprint,
making it suitable for resource-conscious designs.

The Hyperbolic Tangent

The hyperbolic tangent function is the hyperbolic analogue of the circular tan function, and is defined
as the ratio of the hyperbolic sine and hyperbolic cosine functions for a given angle α.

tanh α = sinh α
cosh α

The CORDIC Algorithm

CORDIC is an acronym for COordinate Rotation DIgital Computer, and can be used to efficiently
compute many trigonometric and hyperbolic functions. For a detailed explanation of the CORDIC
algorithm and its application in the calculation of a trigonometric function, see Compute Sine and
Cosine Using CORDIC Rotation Kernel.

Hardware Efficient Fixed-Point Computations

The Hyperbolic Tangent HDL Optimized block supports HDL code generation for fixed-point data with
binary-point scaling. It is designed with this application in mind, and employs hardware specific
semantics and optimizations. One of these optimizations is resource sharing.

When deploying intricate algorithms to FPGA or ASIC devices, there is often a trade-off between
resource usage and total throughput for a given computation. Fully pipelined and parallelized
algorithms have the greatest throughput, but they are often too resource intensive to deploy on real
devices. By implementing scheduling logic around one or several core computational circuits, it is
possible to reuse resources throughout a computation. The result is an implementation with a much
smaller footprint, at the cost of a reduced total throughput. This is often an acceptable trade-off, as
resource shared designs can still meet overall latency requirements.

All of the key computational units in the Hyperbolic Tangent HDL Optimized block are reused
throughout the computation life cycle. This includes not only the CORDIC circuitry used to perform
the Givens rotations, but also the adders and multipliers used for updating the angles. This saves
both DSP and fabric resources when deploying to FPGA or ASIC devices.

Supported Datatypes

Single, double, binary-point scaled fixed-point, and binary-point scaled-double data types are
supported for simulation. However, only binary-point scaled fixed-point data types are supported for
HDL code generation.

Interfacing with the Hyperbolic Tangent HDL Optimized Block

The Hyperbolic Tangent HDL Optimized block accepts data when the ready output is high, indicating
that the block is ready to begin a new computation. To send input data to the block, the validIn
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signal must be asserted. If the block successfully registers the input value it will de-assert the ready
signal, and the user must then wait until the signal is asserted again to send a new input. This
protocol is summarized in the following wave diagram. Note how the first valid input to the block is
discarded because the block was not ready to accept input data.

When the block has finished the computation and is ready to send the output, it will assert validOut
for one clock cycle. Then ready will be asserted, indicating that the block is ready to accept a new
input value.

Simulate the Example Model

Open the example model by entering at the command line:

mdl = 'fxpdemo_tanh';
open_system(mdl)

The model contains the Hyperbolic Tangent HDL Optimized block connected to a data source which
takes in an array of inputs and passes an input value from the array to the Hyperbolic Tangent HDL
Optimized block when it is ready to accept a new input. The output computed for each value is stored
in a workspace variable. The simulation terminates when all inputs have been processed.

Define an array of inputs, tanhInput. For this example, inputs are doubles.

tanhInput = -10:0.05:10;

Simulate the model.

sim(mdl);

When the simulation is complete, a new workspace variable, tanhOutput, is created to hold the
computed value for each input.

Plot the Output

Plot the error of the calculation by comparing the output of the Hyperbolic Tangent HDL Optimized
block to that of the MATLAB® tanh function.

figure(1);
plot(tanhInput, tanhOutput - tanh(tanhInput'));
xlabel('x');
ylabel('error');
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Implement HDL Optimized Modulo By Constant
This example shows how to use the Modulo by Constant HDL Optimized block.

The modulo operation,

is an important building block for many mathematical algorithms. However, this formula for
 is computationally inefficient for fixed-point and integer inputs. Many embedded

processors lack instructions for integer division. Those that do have them require many clock cycles
to compute the answer. Division is also inefficient in commercially-available FPGAs, whose arithmetic
circuits are designed for efficient multiplication, addition, and subtraction. Finally, for fixed-point
modulo operations, it is difficult to optimize the word length of internal data types used for the
calculation because the division operation is unbounded, even for small-wordlength inputs.

The denominator in the modulo problem is a compile-time constant, so the block can compute the
floored division by using a multiplication followed by a cast. Rewriting the division operation as

shows this. The constant  is calculated to the precision necessary to maintain both accuracy and
computational efficiency. The cast that follows discards any fractional bits, which is an efficient
operation on both microprocessors and FPGAs.

The following example shows how to use the Modulo by Constant HDL Optimized block to perform
this operation and provides sample resource usage and performance statistics.

How to Use the Modulo by Constant HDL Optimized Block

The Modulo by Constant HDL Optimized block computes the modulo operation using the general
strategy described above. The block requires you to specify the Denominator parameter as shown
below.
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The block is shown below when Denominator is set to 10. The block icon displays both the
mathematical expression for the modulo operation and the latency of the block.

From the value of Denominator and the datatype of X, the block can compute all necessary
constants and datatypes. Since it is designed for FPGA deployment, it uses the control signals
validIn and validOut to indicate when X and Y are valid. Additionally, it simulates with the same
latency as the generated HDL code.

To use the block, first create fixed-point input data. The format shown below is consumable by the
From Workspace block.

>> X.time = (0:1:200).';
>> X.signals.values = fi(0:0.125:25,0,18,2).';
>> X.signals.dimensions = 1;

Using the same format, create a boolean validIn signal that toggles from false to true repeatedly.

>> validIn.time = (0:1:200).';
>> validIn.signals.values = [false; repmat([true false]', 100, 1)];
>> validIn.signals.dimensions = 1;

To finish setting up the data for the problem, set D equal to the constant denominator to use for the
modulo operation.

>> D = 10;

Open the model.

>> open_system('modulo_by_constant_block_example')

The DUT_FXP subsystem computes  for fixed-point inputs using the Modulo by Constant
HDL Optimized block.
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The DUT_FLT subsystem computes  using a Math Function block with the Function
parameter set to mod. Because the Simulink mod operation only supports floating-point and integer
inputs, the input data is cast to single precision before being input to the Math Function block. It
additionally adds in a delay to match the latency of the DUT_FXP subsystem.

The Compare and Plot subsystem plots all outputs and computes the difference between the fixed-
point computation and the floating-point ideal.

Simulate the model and examine the scope to compare the fixed-point and floating-point results.

>> sim('modulo_by_constant_block_example')

The results from the Modulo by Constant HDL Optimized and Math Function blocks agree exactly, as
the plot below shows. Note that this plot displays the latency in the system, as there is a delay
between the start of the simulation and the first time validOut goes high.
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Generate HDL Code

If you have an HDL Coder license, you can generate and deploy HDL Code for the DUT_FXP
subsystem as shown below.

>> makehdl('modulo_by_constant_block_example/DUT_FXP');

Implemented HDL Statistics

Sample statistics for resource usage on a Xilinx® Virtex®-7 XC7VX485 FFG1157-1 device are shown
below. The implemented design is able to run at greater than 500MHz on this device.

       Resources       Usage
    _______________    _____

    LUT                 33  
    LUTRAM              8   
    Slice Registers     57  
    DSP48               1   
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Fixed-Point HDL-Optimized Minimum-Variance Distortionless-
Response (MVDR) Beamformer

This example shows how to implement a fixed-point HDL-optimized minimum-variance distortionless-
response (MVDR) beamformer, also known as Capon's method [5] and robust adaptive beamforming
(RAB) [6]. For more information on beamformers, see “Conventional and Adaptive Beamformers”
(Phased Array System Toolbox).

MVDR Objective

The MVDR beamformer preserves the gain in the direction of arrival of a desired signal and
attenuates interference from other directions [1], [2].

Given readings from a sensor array, such as the uniform linear array (ULA) in the following diagram,
form data matrix  from samples of the array, where  is an -by-1 column vector of readings from
the array sampled at time , and  is one row of matrix . Many more samples are taken than
there are elements in the array. This results in the number of rows in  being much greater than the
number of columns. An estimate of the covariance matrix is , where  is the Hermitian or
complex-conjugate transpose of .

Compute the MVDR beamformer response by solving the following equation for , where  is a
steering vector pointing in the direction of the desired signal.

The MVDR weight vector  is computed from  and  using the following equation, which normalizes
 to preserve the gain in the direction of arrival of the desired signal.

 Fixed-Point HDL-Optimized Minimum-Variance Distortionless-Response (MVDR) Beamformer

53-307



The MVDR system response is the inner product between the MVDR weight vector  and a current
sample from the sensor array .

HDL-Optimized MVDR

The three equations in the previous section are implemented by the three main blocks in the
following model. The rate changes give the matrix solve additional clock cycles to update before the
next input sample. The number of clock cycles between a valid input and when the complex matrix
solve block is ready is twice its input wordlength to allow time for CORDIC iterations, plus 15 cycles
for internal delays.

load_system('MVDRBeamformerHDLOptimizedModel');
open_system('MVDRBeamformerHDLOptimizedModel/MVDR - HDL Optimized');

Instead of forming data matrix  and computing the Cholesky factorization of covariance matrix
, the upper-triangular matrix of the QR decomposition of  is computed directly and updated as

each data vector  streams in from the sensor array. Because the data is updated indefinitely, a
forgetting factor is applied after each factorization. To integrate with an equivalent of a matrix of 
rows, the forgetting factor  should be set to

This example simulates the equivalent of a matrix with  rows, so the forgetting factor is set
to 0.9983.

The Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting
Factor block is implemented using the method found in [3]. The upper-triangular matrix  from the
QR decomposition of  is identical to the Cholesky factorization of  except the signs of values on
the diagonal. Solving the matrix equation  by computing the Cholesky factorization of

 is not as efficient or as numerically sound as computing the QR decomposition of  directly [4].

Run Model

Open and simulate the model.

open_system('MVDRBeamformerHDLOptimizedModel');
sim('MVDRBeamformerHDLOptimizedModel');
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The desired rectangular pulse appears when the noise sources are nulled. This example simulates
with the same latency as the hardware, so you can see the signal settle over time as the simulation
starts and when the directions are changed.

When the signal direction and steering angle are aligned as indicated by the blue and green lines, you
can see that the beam pattern has a gain of 0 dB. The noise sources are nulled as indicated by the red
lines.

As the model is simulating, you can adjust the signal direction, steering angle and noise directions by
dragging the sliders, or by editing the constant values.

Set Parameters

The parameters for the beamformer are set in the model workspace. You can modify the parameters
by editing and running the setMVDRExampleModelWorkspace function.
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Hardware-Efficient Euler Rotations Using CORDIC
This example shows how to implement Euler rotations using a CORDIC kernel. The resulting model is
deployable to FPGA or ASIC devices.

Euler Rotations

Euler rotations are a common convention for describing arbitrary three dimensional rotations. You
can modify them to describe either rotation of a vector in a fixed coordinate system, or rotation of a
coordinate system with respect to a fixed vector. In this example, assume rotations of vectors with
respect to fixed coordinate systems.

You can perform an Euler rotation of a vector as follows. First, rotate the vector by  about the z-axis.
Then, rotate by  about the resultant x-axis. Finally, rotate by  about the rotated z-axis to obtain the
final coordinates of the vector.

It is common to construct Euler rotations by multiplying three individual rotation matrices. For
example, you can rotate a vector  using the matrix transformation below.

The matrix  represents a rotation about the axis . For example, the matrix  is given by

While this form is easily understood, it has several inefficiencies. If , , and  are variables, you
must recalculate  and  for each angle prior to forming up the matrix. You further need to
multiply and add these results, which can result in unnecessary word length growth. Finally, the
entire matrix multiplication must be properly pipelined for maximum efficiency. This can be a time
consuming process.

Deploy Euler Rotations Using CORDIC Algorithm

Euler rotations operate by performing rotations in planes of intersecting coordinate axes. Therefore,
efficient two dimensional rotations can be used to build up the full transformation. The Coordinate
Rotation DIgital Computer (CORDIC) algorithm performs these rotations using a series of shift and
add operations, followed by a multiplication by a precomputed constant. It is extremely efficient and
often used as a key component of high-frequency, high-throughput systems. It also eliminates the
need to explicitly calculate any trigonometric functions at runtime, thus freeing further
computational resources.

You can perform a full Euler rotation by using CORDIC to first rotate an input vector by  in the XY
plane, followed by a CORDIC rotation by  in the resulting YZ plane. A final CORDIC rotation by  in
the resulting XY plane completes the transformation. This model shows a subsystem implementing
this transformation.

open_system("euler_rotations")
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This subsystem shows the details of the actual Euler transformation. Note that the angles  and  are
delayed to align all data pipelines.

open_system("euler_rotations/HDL_DUT")

This subsystem illustrates a single planar rotation. The x and y components of the vector, xIn and
yIn, are input to the CORDIC Rotation block, along with the angle alpha and validIn. The z
component of the vector, zIn, is passed along in a series of registers whose latency matches the
latency of the CORDIC rotation.

open_system("euler_rotations/HDL_DUT/Rotate about Z Axis")
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Define Data and Simulate

Define data and simulate the model.

uIn = fi([sqrt(3)/2;0;1/2],1,16,8);
dt = numerictype(1,16,8);
nIters = 18;
out = sim("euler_rotations");

The model outputs the first 360 datapoints to the MATLAB® workspace. The model has been chosen
to simulate one rotation about the z-axis.

Trajectory of Rotation

This figure shows the trajectory of the vector over the course of the simulation. The vector from the
origin shows the initial vector, while the vectors on the raised line demonstrate the direction of
rotation.

outData = out.simout.Data;
quiver3(0,0,0,sqrt(3)/2, 0, 0.5);
hold on;
plot3(outData(:,1), outData(:,2), 0.5*ones(length(outData)));
quiver3(sqrt(3)/2*[1;0;-1;0],sqrt(3)/2*[0;1;0;-1],[0.5;0.5;0.5;0.5],...
    0.5*[0;-1;0;1],0.5*[1;0;-1;0],[0;0;0;0], 'r-');
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HDL Statistics

Generating HDL code for the system with the datatypes chosen gives excellent performance. The
resource usage is shown below, and the device operates at approximately 373 MHz. All
characterization was performed using Xilinx Vivado® using a ZC706 Evaluation Board.

Resource = ["LUT";"LUTRAM";"FF"];
Used = [3957;99;3673];
table(Resource, Used)

ans =

  3x2 table

    Resource    Used
    ________    ____

    "LUT"       3957
    "LUTRAM"      99
    "FF"        3673

Modifying and Extending Euler Rotations

You can rearrange the constituent pieces used to develop this transformation to yield countless other
transformations. The only requirement is that the full transformation you build be composed of
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rotations along planes where principle axes intersect. This is one way to develop efficient, FPGA-
ready solutions.
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Simulation Data Inspector

• “View Data in the Simulation Data Inspector” on page 54-2
• “Import Data from a CSV File into the Simulation Data Inspector” on page 54-11
• “Microsoft Excel Import, Export, and Logging Format” on page 54-16
• “Configure the Simulation Data Inspector” on page 54-24
• “How the Simulation Data Inspector Compares Data” on page 54-32
• “Save and Share Simulation Data Inspector Data and Views” on page 54-37
• “Inspect and Compare Data Programmatically” on page 54-43
• “Limit the Size of Logged Data” on page 54-48
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View Data in the Simulation Data Inspector
You can use the Simulation Data Inspector to visualize the data you generate throughout the design
process. Simulation data that you log in a Simulink model logs to the Simulation Data inspector. You
can also import test data and other recorded data into the Simulation Data Inspector to inspect and
analyze it alongside the logged simulation data. The Simulation Data Inspector offers several types of
plots, which allow you to easily create complex visualizations of your data.

View Logged Data
Logged signals as well as outputs and states logged using the Dataset format automatically log to
the Simulation Data Inspector when you simulate a model. You can also record other kinds of
simulation data so the data appears in the Simulation Data Inspector at the end of the simulation. To
see states and output data logged using a format other than Dataset in the Simulation Data
Inspector, open the Configuration Parameters dialog box and, in the Data Import/Export pane,
select the Record logged workspace data in Simulation Data Inspector parameter.

Note When you log states and outputs using the Structure or Array format, you must also log
time for the data to record to the Simulation Data Inspector.

The Simulation Data Inspector displays available data in the table in the Inspect pane. To plot a
signal, select the check box next to the signal. You can modify the layout and add different
visualizations to analyze the simulation data. For more information, see “Create Plots Using the
Simulation Data Inspector”.
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The Simulation Data Inspector manages incoming simulation data using the archive. By default, the
previous run moves to the archive when you start a new simulation. You can plot signals from the
archive, or you can drag runs of interest back into the work area.

Import Data from the Workspace or a File
You can import data from the base workspace or from a file to view on its own or alongside simulation
data. The Simulation Data Inspector supports all built-in data types and many data formats for
importing data from the workspace. In general, whatever the format, sample values must be paired
with sample times. The Simulation Data Inspector allows up to 8000 channels per signal in a run
created from imported workspace data.

You can also import data from these types of files:

• MAT file
• CSV file — Format data as shown in “Import Data from a CSV File into the Simulation Data

Inspector”.
• Microsoft® Excel® file — Format data as described in “Microsoft Excel Import, Export, and

Logging Format”.
• MDF file — MDF file import is supported for Linux and Windows operating systems. The MDF file

must have a .mdf, .mf4, .mf3, .data, or .dat file extension and contain data with only integer
and floating data types.
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• ULG file — Flight log data import requires a UAV Toolbox license.

To import data from the workspace or from a file that is saved in a data or file format that the
Simulation Data Inspector does not support, you can write your own workspace data or file reader to
import the data using the io.reader class. You can also write a custom reader to use instead of the
built-in reader for supported file types. For examples, see:

• “Import Data Using a Custom File Reader”
• “Import Workspace Variables Using a Custom Data Reader”

To import data, select the Import button in the Simulation Data Inspector. 

In the Import dialog, you can choose to import data from the workspace or from a file. The table
below the options shows data available for import. If you do not see your workspace variable or file
contents in the table, that means the Simulation Data Inspector does not have a built-in or registered
reader that supports that data. You can select which data to import using the check boxes, and you
can choose whether to import that data into an existing run or a new run.

54 Simulation Data Inspector

54-4



When you import data into a new run, the run always appears in the work area. You can manually
move imported runs to the archive.

View Complex Data
To view complex data in the Simulation Data Inspector, import the data or log the signals to the
Simulation Data Inspector. You can control how to visualize the complex signal using the Properties
pane in the Simulation Data Inspector and in the Instrumentation Properties for the signal in the
model. To access the Instrumentation Properties for a signal, right-click the logging badge for the
signal and select Properties.

You can specify the Complex Format as Magnitude, Magnitude-Phase, Phase, or Real-Imaginary. If
you select Magnitude-Phase or Real-Imaginary for the Complex Format, the Simulation Data
Inspector plots both components of the signal when you select the check box for the signal. For
signals in Real-Imaginary format, the Line Color specifies the color of the real component of the
signal, and the imaginary component is a different shade of the Line Color. For example, the
Rectangular QAM Modular Baseband signal on the lower graph displays the real component of
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the signal in light blue, matching the Line Color parameter, and the imaginary component is shown
in a darker shade of blue.

For signals in Magnitude-Phase format, the Line Color specifies the color of the magnitude
component, and the phase is displayed in a different shade of the Line Color.

View String Data
You can log and view string data with your signal data in the Simulation Data Inspector. For example,
consider this simple model. The value of the sine wave block controls whether the switch sends a
string reading Positive or Negative to the output.
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The plot shows the results of simulating the model. The string signal is shown at the bottom of the
graphical viewing area. The value of the signal is displayed inside a band, and transitions in the string
signal's value are marked with criss-crossed lines.

You can use cursors to inspect how the string signal values correspond with the sine signal's values.
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When you plot multiple string signals on a plot, the signals stack in the order they were simulated or
imported, with the most recent signal positioned at the top. For example, you might consider the
effect of changing the phase of the sine wave controlling the switch.
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View Frame-Based Data
Processing data in frames rather than point by point provides a performance boost needed in some
applications. To view frame-based data in the Simulation Data Inspector, you have to specify that the
signal is frame-based in the Instrumentation Properties for the signal. To access the
Instrumentation Properties dialog for a signal, right-click the signal's logging badge and select
Properties. To specify a signal as frame-based, select Columns as channels (frame based) for
Input processing.

View Event-Based Data
You can log or import event data to the Simulation Data Inspector. To view the logged event-based
data, select the check box next to Send: 1. The Simulation Data Inspector displays the data as a
stem plot, with each stem representing the number of events that occurred for a given sample time.
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See Also

More About
• Inspect Simulation Data
• Compare Simulation Data
• Share Simulation Data Inspector Data and Views on page 54-37
• Decide How to Visualize Data
• Dataset Conversion for Logged Data
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Import Data from a CSV File into the Simulation Data Inspector
To import data into the Simulation Data Inspector from a CSV file, format the data in the CSV file.
Then, you can import the data using the Simulation Data Inspector UI or the
Simulink.sdi.createRun function.

Tip When you want to import data from a CSV file where the data is formatted differently from the
specification in this topic, you can write your own file reader for the Simulation Data Inspector using
the io.reader class.

Basic File Format
In the simplest format, the first row in the CSV file is a header that lists the names of the signals in
the file. The first column is time. The name for the time column must be time, and the time values
must increase monotonically. The rows below the signal names list the signal values that correspond
to each time step.

The import operation does not support time data that includes Inf or NaN values or signal data that
includes Inf values. Empty or NaN signal values render as missing data. All built-in data types are
supported.

Multiple Time Vectors
When your data includes signals with different time vectors, the file can include more than one time
vector. Every time column must be named time. Time columns specify the sample times for signals to
the right, up to the next time vector. For example, the first time column defines the time for signal1
and signal2, and the second time column defines the time steps for signal3.
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Signal columns must have the same number of data points as the associated time vector.

Signal Metadata
You can specify signal metadata in the CSV file to indicate the signal data type, units, interpolation
method, block path, and port index. List metadata for each signal in rows between the signal name
and the signal data. Label metadata according to this table.

Signal Property Label Value
Data type Type: Built-in data type.
Units Unit: Supported unit. For example,

Unit: m/s specifies units of
meters per second.

For a list of supported units,
enter showunitslist in the
MATLAB Command Window.

Interpolation method Interp: linear, zoh for zero order
hold, or none.

Block Path BlockPath: Path to the block that generated
the signal.

Port Index PortIndex: Integer.

You can also import a signal with a data type defined by an enumeration class. Instead of using the
Type: label, use the Enum: label and specify the value as the name of the enumeration class. The
definition for the enumeration class must be saved on the MATLAB path.

When an imported file does not specify signal metadata, the Simulation Data Inspector assumes
double data type and linear interpolation. You can specify the interpolation method as linear, zoh
(zero-order hold), or none. If you do not specify units for the signals in your file, you can assign units
to the signals in the Simulation Data Inspector after you import the file.

You can specify any combination of metadata for each signal. Leave a blank cell for signals with less
specified metadata.
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Import Data from a CSV File
You can import data from a CSV file using the Simulation Data Inspector UI or using the
Simulink.sdi.createRun function.

To import data using the UI, open the Simulation Data Inspector using the Simulink.sdi.view
function or the Data Inspector button in the Simulink™ toolstrip. Then, click the Import button.

In the Import dialog, select the option to import data from a file and navigate in the file system to
select the file. After you select the file, data available for import shows in the table. You can choose
which signals to import and whether to import them to a new or existing run. This example imports
all available signals to a new run. After selecting the options, click the Import button.

 Import Data from a CSV File into the Simulation Data Inspector

54-13



When you import data into a new run using the UI, the new run name includes the run number
followed by Imported_Data.

When you import data programmatically, you can specify the name of the imported run.

csvRunID = Simulink.sdi.createRun('CSV File Run','file','csvExampleData.csv');

See Also
Functions
Simulink.sdi.createRun

More About
• “View Data in the Simulation Data Inspector”
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• “Microsoft Excel Import, Export, and Logging Format”
• “Import Data Using a Custom File Reader”
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Microsoft Excel Import, Export, and Logging Format
Using the Simulation Data Inspector or Simulink Test, you can import data from a Microsoft Excel file
or export data to a Microsoft Excel file. You can also log data to an Excel file using the Record block.
The Simulation Data Inspector, Simulink Test, and the Record block all use the same file format, so
you can use the same Microsoft Excel file with multiple applications.

Tip When the format of the data in your Excel file does not match the specification in this topic, you
can write your own file reader to import the data using the io.reader class.

Basic File Format
In the simplest format, the first row in the Excel file is a header that lists the names of the signals in
the file. The first column is time. The name for the time column must be time, and the time values
must increase monotonically. The rows below the signal names list the signal values that correspond
to each time step.

The import operation does not support time data that includes Inf or NaN values or signal data that
includes Inf values. Empty or NaN signal values imported from the Excel file render as missing data
in the Simulation Data Inspector. All built-in data types are supported.

Multiple Time Vectors
When your data includes signals with different time vectors, the file can include more than one time
vector. Every time column must be named time. Time columns specify the sample times for signals to
the right, up to the next time vector. For example, the first time column defines the time for signal1
and signal2, and the second time column defines the time steps for signal3.
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Signal columns must have the same number of data points as the associated time vector.

Signal Metadata
The file can include metadata for signals such as data type, units, and interpolation method. The
metadata is used to determine how to plot the data, how to apply unit and data conversions, and how
to compute comparison results. For more information about how metadata is used in comparisons,
see “How the Simulation Data Inspector Compares Data”.

Metadata for each signal is listed in rows between the signal names and the signal data. You can
specify any combination of metadata for each signal. Leave a blank cell for signals with less specified
metadata.

Label each piece of metadata according to this table. The table also indicates which tools and
operations support each piece of metadata. When an imported file does not specify signal metadata,
double data type, linear interpolation, and union synchronization are used.
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Property Descriptions

Signal
Property

Label Values Simulation
Data Inspector
Import

Record Block
Logging and
Simulation
Data Inspector
Export

Simulink Test
Import and
Export

Data type Type: Built-in data
type.

Supported Supported Supported

Units Unit: Supported unit.
For example,
Unit: m/s
specifies units
of meters per
second.

For a list of
supported units,
enter
showunitslis
t in the
MATLAB
Command
Window.

Supported Supported Supported

Interpolation
method

Interp: linear, zoh
for zero order
hold, or none.

Supported Supported Supported

Synchronization
method

Sync: union or
intersection
.

Supported Not Supported

Metadata not
included in
exported file.

Supported

Relative
tolerance

RelTol: Percentage,
represented as
a decimal. For
example,
RelTol: 0.1
specifies a 10%
relative
tolerance.

Supported Not Supported

Metadata not
included in
exported file.

Supported

Absolute
tolerance

AbsTol: Numeric value. Supported Not Supported

Metadata not
included in
exported file.

Supported

Time tolerance TimeTol: Numeric value,
in seconds.

Supported Not Supported

Metadata not
included in
exported file.

Supported
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Signal
Property

Label Values Simulation
Data Inspector
Import

Record Block
Logging and
Simulation
Data Inspector
Export

Simulink Test
Import and
Export

Leading
tolerance

LeadingTol: Numeric value,
in seconds.

Supported

Only visible in
Simulink Test.

Not Supported

Metadata not
included in
exported file.

Supported

Lagging
tolerance

LaggingTol: Numeric Value,
in seconds.

Supported

Only visible in
Simulink Test.

Not Supported

Metadata not
included in
exported file.

Supported

Block Path BlockPath: Path to the
block that
generated the
signal.

Supported Supported Supported

Port Index PortIndex: Integer. Supported Supported Supported
Name Name: Signal name Supported Not Supported

Metadata not
included in
exported file.

Supported

User-Defined Data Types
In addition to built-in data types, you can use other labels in place of the DataType: label to specify
fixed-point, enumerated, alias, and bus data types.
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Property Descriptions

Data Type Label Values Simulation
Data Inspector
Import

Record Block
Logging and
Simulation
Data Inspector
Export

Simulink Test
Import and
Export

Enumeration Enum: Name of the
enumeration
class.

Supported

Enumeration
class definition
must be saved
on the MATLAB
path.

Supported

Enumeration
class definition
must be saved
on the MATLAB
path.

Supported

Enumeration
class definition
must be saved
on the MATLAB
path.

Alias Alias: Name of a
Simulink.Ali
asType object
in the MATLAB
workspace.

Supported

For matrix and
complex
signals, specify
the alias data
type on the first
channel.

Not Supported Supported

For matrix and
complex
signals, specify
the alias data
type on the first
channel.

Fixed-point Fixdt: • fixdt
constructor.

• Name of a
Simulink.
NumericTy
pe object in
the MATLAB
workspace.

• Name of a
fixed-point
data type as
described in
“Fixed-Point
Numbers in
Simulink” on
page 35-13.

Supported Not Supported Supported

Bus Bus: Name of a
Simulink.Bus
object in the
MATLAB
workspace.

Supported Not Supported Supported

When you specify the type using the name of a Simulink.Bus object and the object is not in the
MATLAB workspace, the data still imports from the file. However, individual signals in the bus use
data types described in the file rather than data types defined in the Simulink.Bus object.
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Complex, Multidimensional, and Bus Signals
You can import and export complex, multidimensional, and bus signals using an Excel file. The signal
name for a column of data indicates whether that data is part of a complex, multidimensional, or bus
signal. Excel file import and export do not support array of bus signals.

Multidimensional signal names include index information in parentheses. For example, the signal
name for a column might be signal1(2,3). When you import data from a file that includes
multidimensional signal data, elements in the data not included in the file take zero sample values
with the same data type and complexity as the other elements.

Complex signal data is always in real-imaginary format. Signal names for columns containing complex
signal data include (real) and (imag) to indicate which data each column contains. When you
import data from a file that includes imaginary signal data without specifying values for the real
component of that signal, the signal values for the real component default to zero.

Multidimensional signals can contain complex data. The signal name includes the indication for the
index within the multidimensional signal and the real or imaginary tag. For example, signal1(1,3)
(real).

Dots in signal names specify the hierarchy for bus signals. For example:

• bus.y.a
• bus.y.b
• bus.x

Tip When the name of your signal includes characters that could make it appear as though it were
part of a matrix, complex signal, or bus, use the Name metadata option to specify the name you want
the imported signal to use in the Simulation Data Inspector and Simulink Test.

Function-Call Signals
Signal data specified in columns before the first time column is imported as one or more function-call
signals. The data in the column specifies the times at which the function-call signal was enabled. The
imported signals have a value of 1 for the times specified in the column. The time values for function-
call signals must be double, scalar, and real, and must increase monotonically.
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When you export data from the Simulation Data Inspector, function-call signals are formatted the
same as other signals, with a time column and a column for signal values.

Simulation Parameters
You can import data for parameter values used in simulation. In the Simulation Data Inspector, the
parameter values are shown as signals. Simulink Test uses imported parameter values to specify
values for those parameters in the tests it runs based on imported data.

Parameter data is specified using two or three columns. The first column specifies the parameter
names, with the cell in the header row for that column labeled Parameter:. The second column
specifies the value used for each parameter, with the cell in the header row labeled Value:.
Parameter data may also include a third column that contains the block path associated with each
parameter, with the cell in the header row labeled BlockPath:. Specify names, values, and block
paths for parameters starting in the first row that contains signal data, below rows used to specify
signal metadata. For example, this file specifies values for two parameters, X and Y.

Multiple Runs
You can include data for multiple runs in a single file. Within a sheet, you can divide data into runs by
labeling data with a simulation number and a source type, such as Input or Output. Specify the
simulation number and source type as additional signal metadata, using the label Simulation: for
the simulation number and the label Source: for the source type. The Simulation Data Inspector
uses the simulation number and source type only to determine which signals belong in each run.
Simulink Test uses the information to define inputs, parameters, and acceptance criteria for tests to
run based on imported data.

You do not need to specify the simulation number and output type for every signal. Signals to the
right of a signal with a simulation number and source use the same simulation number and source
until the next signal with a different source or simulation number. For example, this file defines data
for two simulations and imports into four runs in the Simulation Data Inspector:

• Run 1 contains signal1 and signal2.
• Run 2 contains signal3, X, and Y.
• Run 3 contains signal4.
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• Run 4 contains signal5.

You can also use sheets within the Microsoft Excel file to divide the data into runs and tests. When
you do not specify simulation number and source information, the data on each sheet is imported into
a separate run in the Simulation Data Inspector. When you export multiple runs from the Simulation
Data Inspector, the data for each run is saved on a separate sheet. When you import a Microsoft Excel
file that contains data on multiple sheets into Simulink Test, you are prompted to specify how to
import the data.

See Also
Simulink.sdi.createRun | Simulink.sdi.exportRun

More About
• “View Data in the Simulation Data Inspector”
• “Import Data from a CSV File into the Simulation Data Inspector”
• “Import Data Using a Custom File Reader”
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Configure the Simulation Data Inspector
The Simulation Data Inspector supports a wide range of use cases for analyzing and visualizing data.
You can modify preferences in the Simulation Data Inspector to match your visualization and analysis
requirements. The preferences that you specify persist between MATLAB sessions.

By specifying preferences in the Simulation Data Inspector, you can configure options such as:

• How signals and metadata are displayed.
• Which data automatically imports from parallel simulations.
• Where prior run data is retained and how much prior data to store.
• How much memory is used during save operations.
• The system of units used to display signals.

To open the Simulation Data Inspector preferences, click Preferences. 

Note You can restore all preferences in the Simulation Data Inspector to default values by clicking
Restore Defaults in the Preferences menu or by using the Simulink.sdi.clearPreferences
function.

Logged Data Size and Location
By default, simulation data logs to disk with data loaded into memory on demand, and the maximum
size of logged data is constrained only by available disk space. You can use the Disk Management
settings in the Simulation Data Inspector to directly control the size and location of logged data.

The Record mode setting specifies whether logged data is retained after simulation. When you
change the Record mode setting to View during simulation only, no logged data is available in the
Simulation Data Inspector or the workspace after the simulation completes. Only use this mode when
you do not want to save logged data. The Record mode setting reverts to View and record data
each time you start MATLAB. Changing the Record mode setting can affect other applications, such
as visualization tools. For details, see “View Data Only During Simulation”.

To directly limit the size of logged data, you can specify a minimum amount of free disk space or a
maximum size for the logged data. By default, logged data must leave at least 100 MB of free disk
space with no maximum size limit. Specify the required disk space and maximum size in GB, and
specify 0 to apply no disk space requirement or no maximum size limit.

When you specify a minimum disk space requirement or a maximum size for logged data, you can
also specify whether to prioritize retaining data from the current simulation or data from prior
simulations when approaching the limit. By default, the Simulation Data Inspector prioritizes
retaining data for the current run by deleting data for prior runs. To prioritize retaining prior data,
change the When low on disk space setting to Keep prior runs and stop recording. You see a
warning message when prior runs are deleted and when recording is disabled. If recording is
disabled due to the size of logged data, you need to change the Record Mode back to View and
record data to continue logging data, after you have freed up disk space. For more information, see
“Specify a Minimum Disk Space Requirement or Maximum Size for Logged Data”.
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The Storage Mode setting specifies whether to log data to disk or to memory. By default, data logs to
disk. When you configure a parallel worker to log data to memory, data transfer back to the host is
not supported. Logging data to memory is not supported for rapid accelerator simulations or models
deployed using Simulink Compiler.

You can also specify the location of the temporary file that stores logged data. By default, data logs to
the temporary files directory on your computer. You may change the file location when you need to
log large amounts of data and a secondary drive provides more storage capacity. Logging data to a
network location can degrade performance.

Programmatic Use

You can programmatically configure and check each preference value.

Preference Functions
Record mode Simulink.sdi.setRecordData

Simulink.sdi.getRecordData
Required Free Space Simulink.sdi.setRequiredFreeSpace

Simulink.sdi.getRequiredFreeSpace
Max Disk Usage Simulink.sdi.setMaxDiskUsage

Simulink.sdi.getMaxDiskUsage
When low on disk space Simulink.sdi.setDeleteRunsOnLowSpace

Simulink.sdi.getDeleteRunsOnLowSpace
Storage Mode Simulink.sdi.setStorageMode

Simulink.sdi.getStorageMode
Storage Location Simulink.sdi.setStorageLocation

Simulink.sdi.getStorageLocation

Archive Behavior and Run Limit
When you run multiple simulations in a single MATLAB session, the Simulation Data Inspector retains
results from each simulation so you can analyze the results together. Use the Simulation Data
Inspector archive to manage runs in the user interface and control the number of runs the Simulation
Data Inspector retains.

You can configure a limit for the number of runs to retain in the archive and whether the Simulation
Data Inspector automatically moves prior runs into the archive.

Manage Runs Using the Archive

By default, the Simulation Data Inspector automatically archives simulation runs. When you simulate
a model, the prior simulation run moves to the archive, and the Simulation Data Inspector updates
the view to show data for aligned signals in the current run.

The archive does not impose functional limitations on the runs and signals it contains. You can plot
signals from the archive, and you can use runs and signals in the archive in comparisons. You can
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drag runs of interest from the archive to the work area and vice versa whether Automatically
Archive is selected or disabled.

To prevent the Simulation Data Inspector from automatically moving prior simulations runs to the
archive, clear the Automatically archive setting. With automatic archiving disabled, the Simulation
Data Inspector does not move prior runs into the Archive pane or automatically update plots to
display data from the current simulation.

Tip To manually delete the contents of the archive, click Delete archived runs .

Control Number of Runs Retained in Simulation Data Inspector

You can specify a limit for the number of runs to retain in the archive. When the number of runs in
the archive reaches the limit, the Simulation Data Inspector deletes runs in the archive on a first-in,
first-out basis.

The run limit applies only to runs in the archive. For the Simulation Data Inspector to automatically
limit the data it retains by deleting old runs, select Automatically archive and specify a size limit.

By default, the Simulation Data Inspector retains the last 20 runs moved to the archive. To remove
the limit, select No limit. To specify the maximum number of runs to store in the archive, select Last
n runs and enter the limit. A warning occurs if you specify a limit that would delete runs already in
the archive.

Programmatic Use

To configure the Automatically archive option, use the Simulink.sdi.setAutoArchiveMode
function.

To specify the archive run limit, use the Simulink.sdi.setArchiveRunLimit function.

Incoming Run Names and Location
You can configure how the Simulation Data Inspector handles incoming runs from import or
simulation. You can choose whether new runs are added at the top of the work area or the bottom and
specify a naming rule to use for runs created from simulation.

By default, the Simulation Data Inspector adds new runs below prior runs in the work area. The
Archive settings also affect the location of runs. By default, prior runs are moved to the archive when
a new simulation run is created.

The run naming rule is used to name runs created from simulation. You can create the run naming
rule using a mix of literal text that is used in the run name as-is and one or more tokens that
represent metadata about the run. By default, the Simulation Data Inspector names runs using the
run index and model name: Run <run_index>: <model_name>.

Tip To rename an existing run, double-click the name in the work area and enter the new name, or
modify the run name in the Properties pane.
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Programmatic Use

You can programmatically check and modify the naming rule using the
Simulink.sdi.getRunNamingRule and Simulink.sdi.setRunNamingRule functions. Restore
the naming rule to its default programmatically using the Simulink.sdi.resetRunNamingRule
function.

Signal Metadata to Display
You can control which signal metadata is displayed in the work area of the Inspect pane and in the
results section on the Compare pane in the Simulation Data Inspector. You specify the metadata to
display separately for each pane using the Table Columns preferences in the Inspect and Compare
sections of the Preferences dialog, respectively.

Inspect Pane

By default, the signal name and the line style and color used to plot the signal are displayed on the
Inspect pane. To display different or additional metadata in the work area on the Inspect pane,
select the check box next to each piece of metadata you want to display in the Table Columns
preference in the Inspect section. You can always view complete metadata for the selected signal in
the Inspect pane using the Properties pane.

Note Metadata displayed in the work area on Inspect pane is included when you generate a report
of plotted signals. You can also specify metadata to include in the report regardless of what is
displayed in the work area when you create the report programmatically using the
Simulink.sdi.report function.

Compare Pane

By default, the Compare pane shows the signal name, the absolute and relative tolerances used in
the signal comparison, and the maximum difference from the comparison result. To display different
or additional metadata in the results on the Compare pane, select the check box next to each piece
of metadata you want to display in the Table Columns preference in the Compare section. You can
always view complete metadata for the signals compared for a selected signal result using the
Properties pane, where metadata that differs between the compared signals is highlighted. Signal
metadata displayed on the Compare pane does not affect the contents of comparison reports.

Signal Selection on the Inspect Pane
You can configure how you select signals to plot on the selected subplot in the Simulation Data
Inspector. By default, you use check boxes next to each signal to plot. You can also choose to plot
signals based on selection in the work area. Use Check Mode when creating views and visualizations
that represent findings and analysis of a data set. Use Browse Mode to quickly view and analyze
data sets with a large number of signals.

For more information about creating visualizations using Check Mode, see “Create Plots Using the
Simulation Data Inspector”.

For more information about using Browse Mode, see “Visualize Many Logged Signals”.

Note To use Browse Mode, your layout must include only Time Plot visualizations.
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How Signals Are Aligned for Comparison
When you compare runs using the Simulation Data Inspector, the comparison algorithm pairs signals
for signal comparison through a process called alignment. You can align signals between the
compared runs using one or more of the signal properties shown in the table.

Property Description
Data Source Path of the variable in the MATLAB workspace for

data imported from the workspace
Path Block path for the source of the data in its model
SID Simulink identifier

For more information about SIDs, see “Simulink
Identifiers”

Signal Name Name of the signal

You can specify the priority for each piece of metadata used for alignment. The Align By field
specifies the highest priority property used to align signals. The priority drops with each subsequent
Then By field. You must specify a primary alignment property in the Align By field, but you can
leave any number of Then By fields blank.

By default, the Simulation Data Inspector aligns signals between runs according to this flow chart.

For more information about configuring comparisons in the Simulation Data Inspector, see “How the
Simulation Data Inspector Compares Data”.

Colors Used to Display Comparison Results
You can configure the colors used to display comparison results using the Simulation Data Inspector
preferences. You can specify whether to use the signal color from the Inspect pane or a fixed color
for the baseline and compared signals. You can also choose colors for the tolerance and the difference
signal.

By default, the Simulation Data Inspector displays comparison results using fixed colors for the
baseline and compared signals. Using a fixed color allows you to avoid the baseline signal color and
compared signal color being either the same or too similar to distinguish.
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Signal Grouping
You can specify how to group signals within a run in the Simulation Data Inspector. The preferences
apply to both the Inspect and Compare panes and comparison reports. You can group signals by:

• Domain — Signal type. For example, signals created by signal logging have a domain of Signal,
while signals created from logging model outputs have a domain of Outports.

• Physical System Hierarchy — Signal Simscape™ physical system hierarchy. The option to group by
physical system hierarchy is available when you have a Simscape license.

• Data Hierarchy — Signal location within structured data. For example, data hierarchy grouping
reflects the hierarchy of a bus.

• Model Hierarchy — Signal location within model hierarchy. Grouping by model hierarchy can be
helpful when you log data from a model that includes model or subsystem references.

Grouping signals adds rows for the hierarchical nodes, which you can expand to show the signals
within that node. By default, the Simulation Data Inspector groups signals by domain, then by
physical system hierarchy (if you have a Simscape license), and then by data hierarchy.

To remove grouping and display a flat list of signals in each run, select None for all grouping options.

Programmatic Use

To specify how to group signals programmatically, use the Simulink.sdi.setTableGrouping
function.

Data to Stream from Parallel Simulations
When you run parallel simulations using the parsim function, you can stream logged simulation data
to the Simulation Data Inspector. A dot next to the run name in the Inspect pane indicates the status
of the simulation that corresponds to the run, so you can monitor simulation progress while
visualizing the streamed data. You can control whether data streams from a parallel simulation based
on the type of worker the data comes from.

By default, the Simulation Data Inspector is configured for manual import of data from parallel
workers. You can use the Simulation Data Inspector programmatic interface to inspect the data on
the worker and decide whether to send it to the client Simulation Data Inspector for further analysis.
To manually move data from a parallel worker to the Simulation Data Inspector, use the
Simulink.sdi.sendWorkerRunToClient function.

You may want to automatically stream data from parallel simulations that run on local workers or on
local and remote workers. Streaming data from both local and remote workers may affect simulation
performance, depending on how many simulations you run and how much data you log. When you
choose to stream data from local workers or all parallel workers, all logged simulation data
automatically shows in the Simulation Data Inspector.

Programmatic Use

You can configure Simulation Data Inspector support for parallel worker data programmatically using
the Simulink.sdi.enablePCTSupport function.
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Options for Saving and Loading Session Files
You can specify a maximum amount of memory to use while loading or saving a session file. By
default, the Simulation Data Inspector uses a maximum of 100 MB of memory when you load or save
a session file. You can specify a memory use limit as low as 50 MB.

To reduce the size of the saved session file, you can specify a compression option.

• None — Do not compress saved data.
• Normal — Compress the saved file as much as possible.
• Fastest — Compress the saved file less than Normal compression for faster save time.

Signal Display Units
Signals in the Simulation Data Inspector have two units properties: stored units and display units.
The stored units represent the units of the data saved to disk. The display units specify how the
Simulation Data Inspector displays the data. You can configure the Simulation Data Inspector to use a
system of units to define the display units for all signals. You can choose either the SI or US
Customary system of units, or you can display data using its stored units.

When you use a system of units to define display units for signals in the Simulation Data Inspector,
the display units update for any signal with display units that are not valid for that unit system. For
example, if you select SI units, the display units for a signal may update from ft to m.

Note The system of units you choose to use in the Simulation Data Inspector does not affect the
stored units for any signal. You can convert the stored units for a signal using the convertUnits
function. Conversion may result in loss of precision.

In addition to selecting a system of units, you can specify override units so that all signals of a given
measurement type are displayed using consistent units. For example, if you want to visualize all
signals that represent weight using units of kg, specify kg as an override unit.

Tip For a list of units supported by Simulink, enter showunitslist in the MATLAB Command
Window.

You can also modify the display units for a specific signal using the Properties pane. For more
information, see “Modify Signal Properties in the Simulation Data Inspector”.

Programmatic Use

Configure the unit system and override units using the Simulink.sdi.setUnitSystem function.
You can check the current units preferences using the Simulink.sdi.getUnitSystem function.

See Also
Functions
Simulink.sdi.clearPreferences | Simulink.sdi.setRunNamingRule |
Simulink.sdi.setTableGrouping | Simulink.sdi.enablePCTSupport |
Simulink.sdi.setArchiveRunLimit | Simulink.sdi.setAutoArchiveMode
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More About
• “Iterate Model Design Using the Simulation Data Inspector”
• “How the Simulation Data Inspector Compares Data”
• “Compare Simulation Data”
• “Create Plots Using the Simulation Data Inspector”
• “Modify Signal Properties in the Simulation Data Inspector”
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How the Simulation Data Inspector Compares Data
You can tailor the Simulation Data Inspector comparison process to fit your requirements in multiple
ways. When comparing runs, the Simulation Data Inspector:

1 Aligns signal pairs in the Baseline and Compare To runs based on the Alignment settings.

The Simulation Data Inspector does not compare signals that it cannot align.
2 Synchronizes aligned signal pairs according to the specified Sync Method.

Values for time points added in synchronization are interpolated according to the specified
Interpolation Method.

3 Computes the difference of the signal pairs.
4 Compares the difference result against specified tolerances.

When the comparison run completes, the results of the comparison are displayed in the navigation
pane.

Status Comparison Result
Difference falls within the specified tolerance.

Difference violates specified tolerance.

The signal does not align with a signal from the
Compare To run.

When you compare signals with differing time intervals, the Simulation Data Inspector compares the
signals on their overlapping interval.

Signal Alignment
In the alignment step, the Simulation Data Inspector decides which signal from the Compare To run
pairs with a given signal in the Baseline run. When you compare signals with the Simulation Data
Inspector, you complete the alignment step by selecting the Baseline and Compare To signals.

The Simulation Data Inspector aligns signals using a combination of their Data Source, Path, SID, and
Signal Name properties.

Property Description
Data Source Path of the variable in the MATLAB workspace for

data imported from the workspace
Path Block path for the source of the data in its model
SID Simulink identifier

For more information about SIDs, see “Simulink
Identifiers”

Signal Name Name of the signal in the model

With the default alignment settings, the Simulation Data Inspector aligns signals between runs
according to this flow chart.
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You can specify the priority for each of the signal properties used for alignment in the Simulation
Data Inspector Preferences. The Align By field specifies the highest priority property used to align
signals. The priority drops with each subsequent Then By field. You must specify a primary
alignment property in the Align By field, but you can leave any number of the Then By fields blank.

Synchronization
Often, signals that you want to compare don't contain the exact same set of time points. The
synchronization step in Simulation Data Inspector comparisons resolves discrepancies in signals' time
vectors. You can choose union or intersection as the synchronization method.

When you specify union synchronization, the Simulation Data Inspector builds a time vector that
includes every sample time between the two signals. For each sample time not originally present in
either signal, the Simulation Data Inspector interpolates the value. The second graph in the
illustration shows the union synchronization process, where the Simulation Data Inspector identifies
samples to add in each signal, represented by the unfilled circles. The final plot shows the signals
after the Simulation Data Inspector has interpolated values for the added time points. The Simulation
Data Inspector computes the difference using the signals in the final graph, so that the computed
difference signal contains all the data points between the signals.

When you specify intersection synchronization, the Simulation Data Inspector uses only the
sample times present in both signals in the comparison. In the second graph, the Simulation Data
Inspector identifies samples that do not have a corresponding sample for comparison, shown as
unfilled circles. The final graph shows the signals used for the comparison, without the samples
identified in the second graph.
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The choice between the synchronization options involves a trade off between speed and accuracy. The
interpolation required by union synchronization takes time, but provides a more precise result.
When you use intersection synchronization, the comparison finishes quickly because the
Simulation Data Inspector computes the difference for fewer data points and does not interpolate.
However, some data is discarded and precision lost with intersection synchronization.

Interpolation
The interpolation property of a signal determines how the Simulation Data Inspector displays the
signal and how additional data values are computed in synchronization. You can choose to interpolate
your data with a zero-order hold (zoh) or a linear approximation. You can also specify no
interpolation.

When you specify zoh or none for the Interpolation Method, the Simulation Data Inspector
replicates the data of the previous sample for interpolated sample times. When you specify linear
interpolation, the Simulation Data Inspector uses samples on either side of the interpolated point to
linearly approximate the interpolated value. Typically, discrete signals use zoh interpolation and
continuous signals use linear interpolation. You can specify the Interpolation Method for your
signals in the signal properties.

Tolerance Specification
The Simulation Data Inspector allows you to specify the scope and value of the tolerance for your
signal. You can define a tolerance band using any combination of absolute, relative, and time
tolerance values, and you can specify whether the specified tolerance applies to an individual signal
or to all the signals in a run.
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Tolerance Scope

In the Simulation Data Inspector, you can specify the tolerance for your data globally or for an
individual signal. Global tolerance values apply to all signals in a run that do not have Override
Global Tol set to yes. You can specify global tolerance values for your data at the top of the
graphical viewing area in the Compare view. To specify signal specific tolerance values, edit the
signal properties and ensure the Override Global Tol property is set to yes.

Tolerance Computation

In the Simulation Data Inspector, you can specify a tolerance band for your run or signal using a
combination of absolute, relative, and time tolerance values. When you specify the tolerance for your
run or signal using multiple types of tolerances, each tolerance can yield a different answer for the
tolerance at each point. The Simulation Data Inspector computes the overall tolerance band by
selecting the most lenient tolerance result for each data point.

When you define your tolerance using only the absolute and relative tolerance properties, the
Simulation Data Inspector computes the tolerance for each point as a simple maximum.

tolerance = max(absoluteTolerance,relativeTolerance*abs(baselineData));

The upper boundary of the tolerance band is formed by adding tolerance to the Baseline signal.
Similarly, the Simulation Data Inspector computes the lower boundary of the tolerance band by
subtracting tolerance from the Baseline signal.

When you specify a time tolerance, the Simulation Data Inspector evaluates the time tolerance first,
over a time interval defined as [(tsamp-tol), (tsamp+tol)] for each sample. The Simulation Data
Inspector builds the lower tolerance band by selecting the minimum point on the interval for each
sample. Similarly, the maximum point on the interval defines the upper tolerance for each sample.

If you specify a tolerance band using an absolute or relative tolerance in addition to a time tolerance,
the Simulation Data Inspector applies the time tolerance first, and then applies the absolute and
relative tolerances to the maximum and minimum points selected with the time tolerance.
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upperTolerance = max + max(absoluteTolerance,relativeTolerance*max)

lowerTolerance = min - max(absoluteTolerance,relativeTolerance*min)

Limitations
The Simulation Data Inspector does not support comparing:

• Signals of data types int64 or uint64.
• Variable-size signals.

See Also

Related Examples
• “Compare Simulation Data”
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Save and Share Simulation Data Inspector Data and Views
After you inspect, analyze, or compare your data in the Simulation Data Inspector, you can share your
results with others. The Simulation Data Inspector provides several options for sharing and saving
your data and results, depending on your needs. With the Simulation Data Inspector, you can:

• Save your data and layout modifications in a Simulation Data Inspector session.
• Share your layout modifications in a Simulation Data Inspector view.
• Share images and figures of plots you create in the Simulation Data Inspector.
• Create a Simulation Data Inspector report.
• Export data to the workspace.
• Export data to a file.

Save and Load Simulation Data Inspector Sessions
If you want to save or share data along with a configured view in the Simulation Data Inspector, save
your data and settings in a Simulation Data Inspector session. You can save sessions as MAT- or
MLDATX-files. The default format is MLDATX. When you save a Simulation Data Inspector session,
the session file contains:

• All runs, data, and properties from the Inspect pane, including which run is the current run and
which runs are in the archive.

• Plot display selection for signals in the Inspect pane.
• Subplot layout and line style and color selections.

Note Comparison results and global tolerances are not saved in Simulation Data Inspector sessions.

To save a Simulation Data Inspector session:

1 Hover over the save icon on the left side bar. Then, click Save As.

2 Name the file.
3 Browse to the location where you want to save the session, and click Save.

For large datasets, a status overlay in the bottom right of the graphical viewing area displays
information about the progress of the save operation and allows you to cancel the save operation.

The Save tab of the Simulation Data Inspector preferences menu on the left side bar allows you to
configure options related to save operations for MLDATX-files. You can set a limit as low as 50MB on
the amount of memory used for the save operation. You can also select one of three Compression
options:

• None, the default, applies no compression during the save operation.
• Normal creates the smallest file size.

 Save and Share Simulation Data Inspector Data and Views

54-37



• Fastest creates a smaller file size than you would get by selecting None, but provides a faster
save time than Normal.

To load a Simulation Data Inspector session, click the open icon  on the left side bar. Then,
browse to select the MLDATX-file you want to open, and click Open.

Alternatively, you can double-click the MLDATX-file. MATLAB and the Simulation Data Inspector open
if they are not already open.

When the Simulation Data Inspector already contains runs and you open a session, all of the runs in
the session move to the archive. The view updates to reflect show plotted signals from the session
file. You can drag runs between the work area and archive as desired.

When the Simulation Data Inspector does not contain runs and you open a session, the Simulation
Data Inspector puts runs in the work area and archive as specified in the file.

Share Simulation Data Inspector Views
When you have different sets of data that you want to visualize the same way, you can save a view. A
view saves the layout and appearance characteristics of the Simulation Data Inspector without saving
the data. Specifically, a view saves:

• Plot layout, axis ranges, linking characteristics, and normalized axes.
• Location of signals in the plots, including plotted signals in the archive.
• Signal grouping and columns on display in the Inspect pane.
• Signal color and line styling.

To save a view:

1
Click the layout button .

2 Click Save current view.
3 In the dialog box, specify a name for the view and browse to the location where you want to save

the MLDATX-file.
4 Click Save.

To load a view:

1
Click the layout button .

2 Click Open saved view.
3 Browse to the view you would like to load, and click Open.

Share Simulation Data Inspector Plots
Use the snapshot feature to share the plots you generate in the Simulation Data Inspector. You can
export your plots to the clipboard to paste into a document, as an image file, or to a MATLAB figure.
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You can choose to capture the entire plot area, including all subplots in the plot area, or to capture
only the selected subplot.

Click the camera icon  on the toolbar to access the snapshot menu. Use the radio buttons to
select the area you want to share and how you want to share the plot. After you make your selections,
click Snapshot to export the plot.

If you create an image, select where you would like to save the image in the file browser.

You can create snapshots of your plots in the Simulation Data Inspector programmatically using
Simulink.sdi.snapshot.

Create a Simulation Data Inspector Report
To generate documentation of your results quickly, create a Simulation Data Inspector report. You can
create a report of your data in either the Inspect or the Compare pane. The report is an HTML file
that includes information about all the signals and plots in the active pane. The report includes all
signal information displayed in the signal table in the navigation pane. For more information about
configuring the table, see “Inspect Metadata”.

To generate a Simulation Data Inspector Report:

1

Click the create report icon  on the left side bar.
2 Under Include in report, specify the type of report you want to create.
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• Select Inspect Signals to include the plots and signals from the Inspect pane.
• Select Compare Runs to include the data and plots from the Compare pane. When you

generate a Compare Runs report, you can choose to Report only mismatched signals or
to Report all signals. If you select Report only mismatched signals, the report shows only
signal comparisons that are not within the specified tolerances.

3 Specify a File name for the report, and navigate to the Folder where you want to save the
report.

4 Click Create Report.

The generated report automatically opens in your default browser.

Export Data to the Workspace or a File
You can use the Simulation Data Inspector to export data to the base workspace, a MAT file, or a
Microsoft Excel file. You can export a selection of runs and signals, runs in the work area, or all runs
in the Inspect pane, including the Archive.

When you export a selection of runs and signals, make the selection of data to export before clicking

the export button. 
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Only the selected runs and signals are exported. In this example, only the x1 signals from Run 1 and
Run 2 are exported. The check box selections for plotting data do not affect whether a signal is
exported.

When you export a single signal to the workspace or a MAT file, the signal is exported to a
timeseries object. Data exported to the workspace or a MAT file for a run or multiple signals is
stored as a Simulink.SimulationData.Dataset object.

To export data to a file, select the File option in the Export dialog. You can specify a file name and
browse to the location where you want to save the exported file. When you export data to a MAT file,
a single exported signal is stored as a timeseries object, and runs or multiple signals are stored as
a Simulink.SimulationData.Dataset object. When you export data to a Microsoft Excel file, the
data is stored using the format described in “Microsoft Excel Import, Export, and Logging Format”.

To export to a Microsoft Excel file, select the XLSX extension from the drop-down. When you export
data to a Microsoft Excel file, you can specify additional options for the format of the data in the
exported file. If the file name you provided already exists, you can choose to overwrite the entire file
or to only overwrite sheets containing data that corresponds to the exported data. You can also
choose which metadata to include and whether signals with identical time data share a time column
in the exported file.

Export Video Signal to an MP4 File
You can export a 2D or 3D signal that contains RGB or monochrome video data to an MP4 file using
the Simulation Data Inspector. For example, when you log a video signal in a simulation, you can
export the data to an MP4 file and view the video using a video player. To export a video signal to an
MP4 file:

1 Select the signal you want to export.
2 Click Export in the toolbar on the left or right-click the signal and select Export.
3 In the Export dialog box, choose to export Selected runs and signals to a file.
4 Specify a file name and the path to the location where you want to save the file.
5 Select MP4 video file from the list and click Export.

For the option to export to an MP4 file to be available:
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• You must export only one signal at a time.
• The selected signal must be 2D or 3D and contain RGB or monochrome video data.
• The selected signal must be represented in the Simulation Data Inspector as a single signal with

multidimensional sample values.

You may need to convert the signal representation before exporting the signal data. For more
information, see “Analyze Multidimensional Signal Data”.

• The data type for the signal values must be double, single, or uint8.

Exporting a video signal to an MP4 file is not supported for Linux operating systems.

See Also

Related Examples
• “View Data in the Simulation Data Inspector”
• “Inspect Simulation Data”
• “Compare Simulation Data”
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Inspect and Compare Data Programmatically
You can harness the capabilities of the Simulation Data Inspector from the MATLAB command line
using the Simulation Data Inspector API.

The Simulation Data Inspector organizes data in runs and signals, assigning a unique numeric
identification to each run and signal. Some Simulation Data Inspector API functions use the run and
signal IDs to reference data, rather than accepting the run or signal itself as an input. To access the
run IDs in the workspace, you can use Simulink.sdi.getAllRunIDs or
Simulink.sdi.getRunIDByIndex. You can access signal IDs through a Simulink.sdi.Run
object using the getSignalIDByIndex method.

The Simulink.sdi.Run and Simulink.sdi.Signal classes provide access to your data and allow
you to view and modify run and signal metadata. You can modify the Simulation Data Inspector
preferences using functions like Simulink.sdi.setSubPlotLayout,
Simulink.sdi.setRunNamingRule, and Simulink.sdi.setMarkersOn. To restore the
Simulation Data Inspector's default settings, use Simulink.sdi.clearPreferences.

Create a Run and View the Data
This example shows how to create a run, add data to it, and then view the data in the Simulation Data
Inspector.

Create Data for the Run

Create timeseries objects to contain data for a sine signal and a cosine signal. Give each
timeseries object a descriptive name.

time = linspace(0,20,100);

sine_vals = sin(2*pi/5*time);
sine_ts = timeseries(sine_vals,time);
sine_ts.Name = 'Sine, T=5';

cos_vals = cos(2*pi/8*time);
cos_ts = timeseries(cos_vals,time);
cos_ts.Name = 'Cosine, T=8';

Create a Run and Add Data

Use the Simulink.sdi.view function to open the Simulation Data Inspector.

Simulink.sdi.view

To import data into the Simulation Data Inspector from the workspace, create a Simulink.sdi.Run
object using the Simulink.sdi.Run.create function. Add information about the run to its
metadata using the Name and Description properties of the Run object.

sinusoidsRun = Simulink.sdi.Run.create;
sinusoidsRun.Name = 'Sinusoids';
sinusoidsRun.Description = 'Sine and cosine signals with different frequencies';

Use the add function to add the data you created in the workspace to the empty run.

add(sinusoidsRun,'vars',sine_ts,cos_ts);
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Plot the Data in the Simulation Data Inspector

Use the getSignalByIndex function to access Simulink.sdi.Signal objects that contain the
signal data. You can use the Simulink.sdi.Signal object properties to specify the line style and
color for the signal and plot it in the Simulation Data Inspector. Specify the LineColor and
LineDashed properties for each signal.

sine_sig = getSignalByIndex(sinusoidsRun,1);
sine_sig.LineColor = [0 0 1];
sine_sig.LineDashed = '-.';

cos_sig = sinusoidsRun.getSignalByIndex(2);
cos_sig.LineColor = [0 1 0];
cos_sig.LineDashed = '--';

Use the Simulink.sdi.setSubPlotLayout function to configure a 2-by-1 subplot layout in the
Simulation Data Inspector plotting area. Then use the plotOnSubplot function to plot the sine
signal on the top subplot and the cosine signal on the lower subplot.

Simulink.sdi.setSubPlotLayout(2,1);

plotOnSubPlot(sine_sig,1,1,true);
plotOnSubPlot(cos_sig,2,1,true);

Close the Simulation Data Inspector and Save Your Data

When you have finished inspecting the plotted signal data, you can close the Simulation Data
Inspector and save the session to an MLDATX file.

Simulink.sdi.close('sinusoids.mldatx')

Compare Two Signals in the Same Run
You can use the Simulation Data Inspector programmatic interface to compare signals within a single
run. This example compares the input and output signals of an aircraft longitudinal controller.

First, load the session that contains the data.

Simulink.sdi.load('AircraftExample.mldatx');

Use the Simulink.sdi.Run.getLatest function to access the latest run in the data.

aircraftRun = Simulink.sdi.Run.getLatest;

Then, you can use the Simulink.sdi.getSignalsByName function to access the Stick signal,
which represents the input to the controller, and the alpha, rad signal that represents the output.

stick = getSignalsByName(aircraftRun,'Stick');
alpha = getSignalsByName(aircraftRun,'alpha, rad');

Before you compare the signals, you can specify a tolerance value to use for the comparison.
Comparisons use tolerance values specified for the baseline signal in the comparison, so set an
absolute tolerance value of 0.1 on the Stick signal.

stick.AbsTol = 0.1;
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Now, compare the signals using the Simulink.sdi.compareSignals function. The Stick signal is
the baseline, and the alpha, rad signal is the signal to compare against the baseline.

comparisonResults = Simulink.sdi.compareSignals(stick.ID,alpha.ID);
match = comparisonResults.Status

match = 
  ComparisonSignalStatus enumeration

    OutOfTolerance

The comparison result is out of tolerance. You can use the Simulink.sdi.view function to open the
Simulation Data Inspector to view and analyze the comparison results.

Compare Runs with Global Tolerance
You can specify global tolerance values to use when comparing two simulation runs. Global tolerance
values are applied to all signals within the run. This example shows how to specify global tolerance
values for a run comparison and how to analyze and save the comparison results.

First, load the session file that contains the data to compare. The session file contains data for four
simulations of an aircraft longitudinal controller. This example compares data from two runs that use
different input filter time constants.

Simulink.sdi.load('AircraftExample.mldatx');

To access the run data to compare, use the Simulink.sdi.getAllRunIDs function to get the run
IDs that correspond to the last two simulation runs.

runIDs = Simulink.sdi.getAllRunIDs;
runID1 = runIDs(end - 1);
runID2 = runIDs(end);

Use the Simulink.sdi.compareRuns function to compare the runs. Specify a global relative
tolerance value of 0.2 and a global time tolerance value of 0.5.

runResult = Simulink.sdi.compareRuns(runID1,runID2,'reltol',0.2,'timetol',0.5);

Check the Summary property of the returned Simulink.sdi.DiffRunResult object to see whether
signals were within the tolerance values or out of tolerance.

runResult.Summary

ans = struct with fields:
       OutOfTolerance: 0
      WithinTolerance: 3
            Unaligned: 0
        UnitsMismatch: 0
                Empty: 0
             Canceled: 0
          EmptySynced: 0
     DataTypeMismatch: 0
         TimeMismatch: 0
    StartStopMismatch: 0
          Unsupported: 0
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All three signal comparison results fell within the specified global tolerance.

You can save the comparison results to an MLDATX file using the saveResult function.

saveResult(runResult,'InputFilterComparison');

Analyze Simulation Data Using Signal Tolerances
You can programmatically specify signal tolerance values to use in comparisons performed using the
Simulation Data Inspector. In this example, you compare data collected by simulating a model of an
aircraft longitudinal flight control system. Each simulation uses a different value for the input filter
time constant and logs the input and output signals. You analyze the effect of the time constant
change by comparing results using the Simulation Data Inspector and signal tolerances.

First, load the session file that contains the simulation data.

Simulink.sdi.load('AircraftExample.mldatx');

The session file contains four runs. In this example, you compare data from the first two runs in the
file. Access the Simulink.sdi.Run objects for the first two runs loaded from the file.

runIDs = Simulink.sdi.getAllRunIDs;
runIDTs1 = runIDs(end-3);
runIDTs2 = runIDs(end-2);

Now, compare the two runs without specifying any tolerances.

noTolDiffResult = Simulink.sdi.compareRuns(runIDTs1,runIDTs2);

Use the getResultByIndex function to access the comparison results for the q and alpha signals.

qResult = getResultByIndex(noTolDiffResult,1);
alphaResult = getResultByIndex(noTolDiffResult,2);

Check the Status of each signal result to see whether the comparison result fell within our out of
tolerance.

qResult.Status

ans = 
  ComparisonSignalStatus enumeration

    OutOfTolerance

alphaResult.Status

ans = 
  ComparisonSignalStatus enumeration

    OutOfTolerance

The comparison used a value of 0 for all tolerances, so the OutOfTolerance result means the
signals are not identical.

You can further analyze the effect of the time constant by specifying tolerance values for the signals.
Specify the tolerances by setting the properties for the Simulink.sdi.Signal objects that
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correspond to the signals being compared. Comparisons use tolerances specified for the baseline
signals. This example specifies a time tolerance and an absolute tolerance.

To specify a tolerance, first access the Signal objects from the baseline run.

runTs1 = Simulink.sdi.getRun(runIDTs1);
qSig = getSignalsByName(runTs1,'q, rad/sec');
alphaSig = getSignalsByName(runTs1,'alpha, rad');

Specify an absolute tolerance of 0.1 and a time tolerance of 0.6 for the q signal using the AbsTol
and TimeTol properties.

qSig.AbsTol = 0.1;
qSig.TimeTol = 0.6;

Specify an absolute tolerance of 0.2 and a time tolerance of 0.8 for the alpha signal.

alphaSig.AbsTol = 0.2;
alphaSig.TimeTol = 0.8;

Compare the results again. Access the results from the comparison and check the Status property
for each signal.

tolDiffResult = Simulink.sdi.compareRuns(runIDTs1,runIDTs2);
qResult2 = getResultByIndex(tolDiffResult,1);
alphaResult2 = getResultByIndex(tolDiffResult,2);

qResult2.Status

ans = 
  ComparisonSignalStatus enumeration

    WithinTolerance

alphaResult2.Status

ans = 
  ComparisonSignalStatus enumeration

    WithinTolerance

See Also
Simulation Data Inspector

Related Examples
• “Compare Simulation Data”
• “How the Simulation Data Inspector Compares Data”
• “Create Plots Using the Simulation Data Inspector”
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Limit the Size of Logged Data
In this section...
“Limit the Number of Runs Retained in the Simulation Data Inspector Archive” on page 54-48
“Specify a Minimum Disk Space Requirement or Maximum Size for Logged Data” on page 54-48
“View Data Only During Simulation” on page 54-49
“Reduce the Number of Data Points Logged from Simulation” on page 54-49

Logging simulation data can produce large amounts of data that fill up disk space. Such situations
include logging many signals, logging data for long simulations, and running many simulations
without deleting run data from the Simulation Data Inspector. You can choose among several options
to limit the size of logged simulation data. You can:

• Limit the number of runs retained in the Simulation Data Inspector archive.
• Reduce the number of data points logged in each simulation.
• Specify a minimum disk space requirement or maximum size for logged data.
• Configure logging for only viewing data during simulation.

Depending on your requirements, you can use more than one strategy to limit the size of logged data.

Limit the Number of Runs Retained in the Simulation Data Inspector
Archive
When you run multiple simulations in a single MATLAB session, logged simulation data accumulates
in the Simulation Data Inspector even if you overwrite the logging data in the MATLAB workspace. To
reduce the amount of data the Simulation Data Inspector retains, you can configure a limit for the
number of runs stored in the archive. When the number of runs in the archive reaches the size limit,
the Simulation Data Inspector starts to delete runs from the archive on a first-in, first-out basis.

Configure the archive Size setting in the Simulation Data Inspector preferences. The size limit only
applies to runs in the archive. For the Simulation Data Inspector to automatically limit data retention,
select Automatically archive and specify the maximum number of runs to retain in the archive. By
default, Automatically archive is enabled with an archive size limit of twenty runs. If you
experience issues with logged data consuming too much disk space, consider adjusting the size limit
for the archive in the Simulation Data Inspector preferences.

Specify a Minimum Disk Space Requirement or Maximum Size for
Logged Data
You can use preferences in the Simulation Data Inspector to directly limit the size of logged data by
specifying a minimum amount of disk space to leave free or by specifying a maximum size for logged
data on disk. Each setting accounts for all kinds of logged data. By default, logged data must leave at
least 100 MB of free disk space with no maximum size limit. Specify the required disk space and
maximum size in GB, and specify 0 to apply no disk space requirement or no maximum size limit.

When you specify a minimum disk space requirement or a maximum size for logged data, you can
also specify whether to prioritize retaining data from the current simulation or data from prior
simulations when approaching the limit. By default, the Simulation Data Inspector prioritizes
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retaining data for the current run. As the free disk space or logged data size approaches the limit,
prior runs are deleted first to free up space for data being logged in the current run. If deleting runs
does not free up enough space, recording is disabled. To prioritize retaining prior data, change the
When low on disk space setting to Keep prior runs and stop recording. You see a warning
message when prior runs are deleted and when recording is disabled. If recording is disabled due to
the size of logged data, you need to change the Record Mode back to View and record data to
continue logging data, after you have freed up disk space.

View Data Only During Simulation
In some situations, you may want to only view the data for logged signals and not save the values. For
example, when using the Simulation Data Inspector to visualize data streaming from hardware, you
may only want to view the data live and not record it. You can change the Record mode in the
Simulation Data Inspector preferences to View during simulation only so that logged data is not
saved and you can still view the data during simulation. The Record mode is reset to View and
record data at the start of each MATLAB session.

When you change the Record mode to View during simulation only:

• Logged data is not available in the Simulation Data Inspector or workspace after simulation.
• You can view data using dashboard blocks, scopes, and the Simulation Data Inspector, but plots

clear when you pan or zoom.
• You cannot access logged data during simulation using the Simulation Data Inspector

programmatic interface.

Reduce the Number of Data Points Logged from Simulation
Model configuration parameters and signal properties allow you to limit the number of data points
logged in a simulation. Be sure to carefully consider data requirements when limiting logged data
points. Limiting data can skip critical time points, and can lead to aliasing, if your effective sample
rate is too low.

You can reduce the number of data points using:

• Decimation — Log every nth signal value.
• Limit data points to last — Only log the last n signal values.
• Logging intervals — Specify specific time intervals in which to log data.

For details, see “Specify Signal Values to Log”.

See Also
Tools
Simulation Data Inspector

Related Examples
• “Specify Signal Values to Log”
• “Configure the Simulation Data Inspector”
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